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SUMMARY

Four cucurbitane glycosides, momordicosides Q, R,
S, and T, and stereochemistry-established karavilo-
side XI, were isolated from the vegetable bitter melon
(Momordica charantia). These compounds and their
aglycones exhibitedanumberof biologic effectsben-
eficial to diabetes and obesity. In both L6 myotubes
and3T3-L1adipocytes, theystimulatedGLUT4 trans-
location to the cell membrane—an essential step for
inducible glucose entry into cells. This was associ-
atedwith increased activity of AMP-activated protein
kinase (AMPK), a key pathwaymediating glucose up-
take and fatty acid oxidation. Furthermore, momordi-
coside(s) enhanced fatty acid oxidation and glucose
disposal during glucose tolerance tests in both insu-
lin-sensitive and insulin-resistant mice. These find-
ings indicate that cucurbitane triterpenoids, the char-
acteristic constituents of M. charantia, may provide
leads as a class of therapeutics for diabetes and
obesity.

INTRODUCTION

Currently, there are 150 million people with diabetes worldwide,
and this figure is expected to increase to over 300million by2025.
This global pandemic is driven by type 2 diabetes (T2D) (Zimmet
et al., 2001). Since insulin resistance is a major metabolic abnor-
mality of T2D, there has beenconsiderable interest in insulin-sen-
sitizing agents to counteract insulin resistance for the treatment
of this disease (Moller, 2001). Currently, pharmacological treat-
ment of insulin resistance mainly targets two mechanisms: per-
oxisome-proliferator-activating receptors (PPARs) (Smyth and
Heron, 2006) and AMP-activated protein kinase (AMPK) (Ye
et al., 2005). The twomost popular agents now in use are the thia-
zolidinediones (TZDs) and the biguanides. The TZDs are widely
used but can have undesirable side effects (weight gain, fluid

retention, and heart failure). The biguanide metformin does not
cause weight gain but mainly acts in liver rather than muscle
and thus on its own is not a complete therapy. There is a world-
wide search for better agents (Moller, 2001; Smyth and Heron,
2006).
Traditional medicines (TM) or complementary and alternative

medicines are a fruitful source of future drugs to counteract insu-
lin resistance, consistent with a resurgence of interest in drug
discovery from natural products (Koehn and Carter, 2005). For
example, metformin was a biguanide derivative of guanide, orig-
inated from the plant Goat’s Rue (Galega officinalis) as a struc-
ture-modified natural product to vastly improve its efficacy.
A major advantage of TM is that they have been used to treat
human diseases for many years and so there is considerable
knowledge concerning in vivo efficacy and safety, two of the
confounding problems facing other new chemical entities. How-
ever, in most cases there is little rigorous scientific evidence
proving their efficacy and the mode of action is generally not
known. To overcome these problems, it is essential to identify
the active ingredients or molecules and investigate their specific
effects in well-defined biological systems and animal models
relevant to humans.
In this study, we have taken a targeted approach to investigate

the active chemical molecules inMomordica charantia L. (Cucur-
bitaceae), alsoknownasbittermelon, bitter gourd, orbalsampear.
This plant is widely cultivated as a vegetable andmedicinal herb in
many Asian countries and has been shown to exert hypoglycemic
effects inanimalmodelsandhumans (GroverandYadav,2004).Al-
thoughmajor chemical constituents ofM. charantia include cucur-
bitane triterpenoids (Okabe et al., 1980, 1982a, 1982b; Miyahara
et al., 1981; Murakami et al., 2001; Harinantenaina et al., 2006;
Nakamura et al., 2006; Matsuda et al., 2007; Zhu et al., 1990),
the precise active compounds responsible for the antidiabetic
activity of this plant have not been clearly identified. In this work,
we investigated the chemical constituents of M. charantia for the
purpose of identifying the antidiabetic principles of this medicinal
vegetable. Four novel cucurbitane glycosides, momordicosides
Q, R, S, T, (2, 3, 5, 6); the absolute-stereochemistry-established
karaviloside XI (1); a spectroscopic-data-revised glycoside,
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momorcharaside B (7); and two known triterpenoids, momordico-
side A (9) and momordicoside B (10), were isolated (Figure 1A).
These compounds, particularly 1 and 5, and their aglycones (4
and 8), stimulated the translocation of the insulin-responsive glu-
cose transporter GLUT4 to the plasma membrane in muscle and
adipocyte cell lines. Intriguingly, these compounds also activated
the AMP-activated protein kinase (AMPK) pathway, a major regu-
latory pathway for GLUT4 translocation (Huang and Czech, 2007).
In vivo studies in mice showed a significant enhancement of glu-
cose disposal and increases in fatty acid oxidation after acute ad-
ministration of compound 5. These results suggest that cucurbi-
tane triterpenoids from M. charantia may provide novel leads for
the development of a new class of AMPK-activating agents.

RESULTS

Structural Identification
Compound 1 was established as C36H60O10 by HRESIMS (m/z
675.4064 [M+Na]+). The plane structure of compound 1 was es-
tablished as the recently reported karaviloside XI (Matsuda et al.,
2007) on the basis of their identical NMR data. Mild acid hydro-
lysis of 1 furnished aglycone 4 and allose. The absolute configu-

ration of aglycone 4was established by X-ray diffraction analysis
(Figure 1B) and its biogenetic relationship. Thus, the structure
of compound 1 was elucidated as 3-O-b-D-allopyranosyl-5b,
19-epoxycucurbita-6-ene-23(R),24(S),25-triol.
Momordicoside Q (2) showed [M+Na]+ at m/z 675.4113

(C36H60O10Na) in the HRESIMS. Acid hydrolysis of compound
2 yielded aglycone 4 and glucose. 1H NMR and 13C NMR signals
of compound 2were superimposable on those of karaviloside XI
(1) except for the variation of signals of the sugar moiety, which
was inferred as b-D-glucose from its anomeric proton (dH 4.95, d,
J = 8.1). According to these data, compound 2 was identified as
3-O-b-D-glucopyranosyl-5b,19-epoxycucurbita-6-ene-23(R),
24(S),25-triol.
The molecular formula of momordicoside R (3) was C42H70O15

revealed by HRESIMS (m/z 837.4632, [M+Na]+), which was
supportedby 13CNMRanddistortionless enhancement bypolar-
ization transfer (DEPT) data. Allose andglucosewere obtained by
acid hydrolysis of compound 3. 13C NMR andDEPT spectra indi-
cated the existence of six tertiarymethyls, one secondarymethyl,
two olefinic carbons, six quaternary carbons, and ten methenes,
threeofwhichbore ahydroxyl group. The above 13CNMRdata as
well as 1H NMRdata bore a resemblance to those of karaviloside

Figure 1. Chemical Structures of Cucurbitane Triterpenoids from Bitter Melon
(A) Chemical structures of cucurbitane triterpenoids from bitter melon.

(B) Perspective ORTEP drawing for compound 4.
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XI (1) with the exception of the appearance of six additional
carbon signals for a monosaccharide moiety. Two anomeric
proton signals, H-10 (dH 5.34, d, J = 7.7) and H-100 (dH 5.21, d,
J = 7.8), were assigned to b-D-allopyranosyl and b-D-glucopyra-
nosyl moieties, respectively. 1H-detected heteronuclear multiple-
bond correlation (HMBC) experiment disclosed the long-range
correlations between H-10 and C-3, and H-100 and C-25, which
established the linkage of each sugar moiety. The above evi-
dence and analysis of heteronuclear single-quantum coherence
(HSQC), HMBC, total correlated spectroscopy (TOCSY) spectra
confirmed compound 3 as 3-O-b-D-allopyranosyl-25-O-b-D-
glucopyranosyl-5b,19-epoxycucurbita-6-ene-23(R),24(S)-diol.
HRESIMSofmomordicoside S (5) presented themolecular for-

mula of C48H82O20 (m/z 1001.5253 [M+Na]+). 1H NMR, 13C NMR,
and DEPT data showed the presence of seven tertiary methyls,
one secondary methyl, a trisubstituted double bond, six quater-
nary carbons, seven aglycone methylenes, and three sugar
methylenes, aswell as three anomeric carbons, which suggested
a triterpenoid glycoside with three sugar moieties. Enzymatic
hydrolysis of compound 5 liberated aglycone 8 and glucose.
Aglycone 8 was identical to the aglycone of momordicoside A
(1H NMR, 13C NMR, DEPT, ESIMS, [a]), which was secured by
the same hydrolysis procedure (Okabe et al., 1980). Thus, the
absolute configuration of the aglycone 8 was established. The
signals of three anomeric protons, H-10 (dH 4.75, d, J = 7.8),
H-100 (dH 5.12, d, J = 7.4), and H-10 00 (dH 5.09, d, J = 7.3), indicated
to three b-D-glucopyranosyl moieties. In addition, the HMBC
correlations between C-3 and H-10, C-60 and H-100, and C-25
and H-10 00 were also observed. Based on the comprehensive

analysis of 13C NMR, DEPT, HSQC, HMBC, and TOCSY spectra,
the structure of momordicoside S (5) was formulated as 3-O-[b-
D-glucopyranosyl(1/6)-b-D-glucopyranosyl]-25-O-b-D-gluco-
pyranosyl-22(S),23(R),24(R),25-tetrahydroxycucurbit-5-ene.
HRESIMS afforded a possible molecular formula of momordi-

coside T (6) as C53H90O24 (1113.5714, [M+Na]+), which sug-
gested a triterpenoid glycoside with four monosaccharide moie-
ties. Xylose and glucose were released by acid hydrolysis of
compound 6. Carbon signals from 13C NMR and DEPT data
were in good agreement with those of momordicoside S (5), ex-
cept that five extra signals due to a xylopyranosyl moiety were
observed. Four anomeric proton signals were assigned as
b-D-glucopyranosyl moiety [H-10 (dH 4.71, d, J = 7.8)], b-D-gluco-
pyranosyl moiety [H-100 (dH 5.29, d, J = 6.6)], b-D-xylopyranosyl
moiety [H-10 00 (dH 5.30, d, J= 7.2)], and b-D-glucopyranosylmoiety
[H-100 00 (dH5.10,d,J=7.8)] from its 1HNMRspectrum, respectively.
The oligoglycoside structure of compound 6 was characterized
byHMBCcorrelation:H-10 andC-3,H-100 andC-60, H-10 00 andC-40,
H-100 00 and C-25. Based on the above spectroscopic evidence,
together with TOCSY spectrum, structure of compound 6 was
determined to be 3-O-{b-D-xylopyranosyl(1/4)-[b-D-glucopyra-
nosyl(1/6)]-b-D-glucopyranosyl}-25-O-b-D-glucopyranosyl-
22(S),23(R),24(R),25-tetrahydroxycucurbit-5-ene.
The spectroscopic data of momorcharaside B (7) reported by

Zhu et al. were not consistent with the described structure (Zhu
et al., 1990). Herein, we revised the spectroscopic data of mo-
morcharaside B. Its molecular formula C36H62O10 was derived
from HRESIMS (m/z 677.4224, [M+Na]+). Acid hydrolysis of
momorcharaside B with 2% aqueous HCl-dioxane (1:1, v/v)

Figure 2. Effect of Cucurbitane Triterpenoids on GLUT4 Translocation in Cells
L6 myotubes (A) or 3T3-L1 adipocytes (B) were incubated with vehicle (Veh, DMSO containing saline, final concentration of DMSO: 0.2%), 100 nM insulin (In), 2

mM AICAR (AIC), or test compounds (10 mM) for 30 min, and GLUT4 translocation from the cytosol to plasma membrane (PM) was measured as described in the

Experimental Procedures. The dose-response curve was constructed in 3T3-L1 adipocytes for each compound at concentrations from 0.1 nM to 10 mM (C) The

results were quantified as a percentage of the maximum effect of insulin (100%) and expressed as means ± SE. Three to four independent experiments were

performed for each compound. *p < 0.05, **p < 0.01 versus Veh control.
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gave glucose and aglycone 8. Six glucopyranosyl carbon signals
disappeared by contrast with those of momordicoside A. b-D-
configuration of the sugarmoietywas discerned from the coupling
constant of anomeric proton (J = 7.7). Consequently, its structure
was formulated as 3-O-b-D-glucopyranosyl-22(S),23(R),24(R),
25-tetrahydroxycucurbit-5-ene by 1H NMR, 13C NMR and DEPT
spectra.

Assessment of Antidiabetes Properties in Cells
In order to assess the potential activity of these compounds on
glucose metabolism and insulin action, we first examined their
effects on the translocation of the glucose transport GLUT4 to
the plasma membrane, because this is an essential step for
inducible glucose uptake into muscle and fat cells. The results
showed that most compounds exhibited the same pattern of
biologic activity to stimulate GLUT4 translocation in L6 muscle
cells (Figure 2A) and 3T3L1 adipocytes (Figure 2B), and among
them 1, 4, 5, and 8 increased GLUT4 translocation by 3- to
4-fold, an efficacy close to the maximum effect of insulin (5-fold)
and AICAR (!4-fold). The dose-response curves (Figure 2C)
showed that compounds 1, 4, 5, and 8 exhibited this biological
activity at concentrations as low as 0.1 nM and reached their
maximal effects at between 10 and 100 nM.

GLUT4 translocation is mainly regulated by two independent
pathways: the insulin signaling pathway and the AMP-activated
protein kinase (AMPK) pathway (Huang and Czech, 2007). The
phosphatidyl inositol 30 kinase (PI3K)/Akt pathway is known
to play a major regulatory role in the insulin action pathway,
and PI3K inhibitors such aswortmannin, inhibit insulin stimulated
GLUT4 translocation. The stimulatory effects of cucurbitane
triterpenoids on GLUT4 translocation were not affected by wort-
mannin (Figure 3A). Moreover, in contrast to that observed with
insulin, these compounds had no significant effect on phosphor-
ylation of Akt phosphorylation, a downstream substrate of PI3K
(Figure 3B).These data indicate that the stimulatory effects of
cucurbitane triterpenoids on GLUT4 translocation are not likely
to be mediated via the PI3K/Akt pathway.

The stress kinase, AMPK, has also been shown to regulate
GLUT4 translocation (Huang and Czech, 2007), and hencewe in-
vestigatedwhether the cucurbitane triterpenoids activate AMPK.
In 3T3-L1 adipocytes we observed increased phosphorylation
(Thr172) of AMPK with compounds 1, 4, 5, and 8 (Figure 4A) to
a level comparablewith thewell-described AMPKagonist AICAR
(Figure 4B). Consistent with our data for GLUT4 translocation,
AMPK phosphorylation was not induced by these compounds
at a concentration of 0.1 nM, but was elevated at 100 nM
to 10 mM (Figure 4B). We also observed increased AMPK phos-
phorylation in L6myotubes by compounds 1, 4, 5, and 8, again to
a relatively similar level to AICAR (Figures 4C and 4D).

Assessment of Antidiabetes Properties in Animals
On the basis of these in vitro data, we examined whether this
class of compounds had any beneficial effects on glucose and
fuel metabolism in vivo. For these studies, we restricted our anal-
ysis to compounds 5 and/or 6 because we were not able to iso-
late the other compounds in sufficient quantity for in vivo admin-
istration. We first examined whole-body energy expenditure and
fat oxidation in the resting state. The results (Figure 5) showed a
small increase in energy expenditure (indicated by increased

oxygen consumption, VO2) at around 30 min and 7.5 hr after
the administration of compound 5 (100 mg/kg) as compared to
vehicle (0.9% saline). Strikingly, there was a substantial increase
in fat oxidation (indicated by decreased respiratory exchange ra-
tio, RER)with compound 5during this entire period of time. These
effects are comparable to those induced by AICAR at 250mg/kg.
We further examined the effects of compounds 5 and 6 on

whole-body glucose metabolism. Compound 5 had no signifi-
cant effect on basal blood glucose levels (Figure 6A). However,
we did observe a significant increase in glucose clearance during
an intraperitoneal glucose tolerance test. Under the same condi-
tions, AICAR at a dose of 500 mg/kg (but not at 250 mg/kg; data
not shown) had a modest effect on glucose tolerance. Thus,
these data indicate that the cucurbitane triterpenoids are signif-
icantly more potent in vivo than a traditional AMPK agonist.
Although metformin had a small effect to reduce blood glucose
(from 6.30 ± 0.17 to 5.27 ± 0.21 mM, p < 0.05, n = 8) at the toler-
able dose (200 mg/kg), it did not have any significant effect
on glucose disappearance during the ipGTT. In order to examine

Figure 3. Effects of Compounds 1, 4, 5, and 8 on Insulin Signaling
Pathways
Experiments were performed in 3T3-L1 adipocytes and values represent

means ± SE. Cells were incubated with 100 nM insulin, 10 mM test compounds

in the presence of vehicle (Veh, DMSO containing saline, final concentration of

DMSO: 0.2%) or 10 mM wortmanin.

(A) GLUT4 transduction during inhibition of insulin signal transduction from

three to four independent experiments (*p < 0.05, **p < 0.01 versus Veh).

(B) Immunoblots for phospho-Akt (Ser473) and Akt in 3T3-L1 adipocytes (rep-

resentative blots of three repeats). Cells were incubated with Veh, 100 nM

insulin or test compounds (at 10 mM each) for 30 min.
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whether cucurbitane triterpenoids also acutely improve glucose
tolerance in the insulin-resistant state, we tested the effect of
compound 6 (10 mg/kg) in high-fat-fed mice. As shown in
Figure 6B, compound 6 resulted in a significant improvement
in glucose tolerance in high-fat-fed animals.

DISCUSSION

Bitter melon is one of the most popular dietary botanicals for the
treatment of diabetes mellitus, though the responsible active
components are not clearly elucidated. It has been widely
reported that its antidiabetic metabolites are the mixture of poly-
peptides, glycosides, alkaloids, and sterols. Earlier studies
appear to indicate that polypeptide-p of M. charantia has hypo-
glycemic effects in gerbils, langurs, and human (Khanna et al.,
1981). Recent studies have suggested the antidiabetic proper-

ties of bitter melon extracts in insulin-target tissues such as skel-
etal muscle and adipose tissues (Grover and Yadav, 2004). How-
ever, the antidiabetic activity of cucurbitane triterpenoids, the
characteristic chemical constituents of M. charantia, is not well
defined. Only two cucurbitane triterpenes were reported to
show blood hypoglycemic effects in the alloxan-injected mice
at 400 mg/kg (Harinantenaina et al., 2006). However, it should
be noted that the diabetic animal model used in this study was
very mild. Moreover, the biologic mechanisms involved in their
antidiabetic properties are not clear. Particularly, our study fo-
cused on the structure identification, and biological evaluation
of four novel cucurbitane glycosides, momordicosides Q, R, S,
T (2, 3, 5, 6), karaviloside XI (1), and their aglycones.
We have revealed two classes of cucurbitane triterpenoids

(1–10), both of which stimulate GLUT4 translocation in adipo-
cytes and muscle cells and both of which stimulate the activity

Figure 4. Effects of Compounds 1, 4, 5, and 8 on AMPK Phosphorylation
3T3-L1 and L6 cells were treated with test compounds as described in the Experimental Procedures and equal amounts of lysates were resolved by SDS-PAGE

and immunoblotted for AMPK and phospho-AMPK (Thr172).

(A) Representative blots for compounds 1, 4, 5 and 8 in 3T3-L1 adipocytes.

(B) Quantification of the ratio of phospho-AMPK to total AMPK from three independent experiments (means ± SE).

(C) Representative blots for compounds 1, 4, 5 and 8 in L6 myotubes at 0.1 mM.

(D) Quantification of the ratio of phospho-AMPK to total AMPK from three independent experiments in L6 myotubes (means ± SE).
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of the AMPK pathway. Among these compounds, we have iden-
tified two glycosides, karaviloside XI (1) and momordicoside S
(5), that show the most significant potency. Interestingly, agly-
cones of these two compounds also show similar biologic
properties, which suggest that cucurbitane aglycones may be
the important pharmacophore for the antidiabetic activity.

To screen the antidiabetic properties of these compounds, we
chose GLUT4 translocation in muscle cells and adipocytes as
the primary system. This screen measures the movement of
the insulin responsive glucose transporter GLUT4 to the cell sur-
face, an essential step for insulin-responsive glucose transport
in muscle and adipose tissue that becomes defective in insulin
resistance (Huang and Czech, 2007). We found that most of
the tested compounds in the cucurbitane triterpenoid class,
particularly 1, 4, 5, and 8, exhibited a strong effect to stimulate
GLUT4 translocation by several fold in both cell types to a level
that was comparable to maximal insulin and AICAR stimulation.
Of particular note, the concentration required for compounds 1,
4, 5, and 8 to reach their maximal effect was approximately

10,000 times lower compared to AICAR (0.1 uM for 1, 4, 5, and
8 versus 1–2 mM for AICAR). These results indicate that cucurbi-
tane triterpenoids are highly potent and efficacious in stimulating
GLUT4 translocation in insulin responsive cells.
To investigate the mechanism responsible for the stimulated

GLUT4 translocation by these compounds, we examined their
effects on the cellular signaling pathways that are known to
mediate this process. Our findings clearly demonstrate that in
contrast to previous studies (Grover and Yadav, 2004), these
compounds do not activate the PI3K/Akt pathway in cells and
their ability to stimulate GLUT4 translocation was insensitive to
the PI3K inhibitor wortmannin. We further investigated whether
the AMPK pathway is involved because this pathway is another
major regulator of GLUT4 translocation during exercise or in re-
sponse to some antidiabetic agents such as AICAR and metfor-
min (Huang and Czech, 2007). Indeed, these triterpenoids were
able to increase the phosphorylation of AMPK to a relatively sim-
ilar level to AICAR, suggesting that the AMPK signaling pathway
is likely responsible for the stimulation of GLUT4 translocation by
this class of compounds.
The identification of the AMPK pathway as a likely mechanism

for the stimulation of GLUT4 translocation by triterpenoids from
M. charantia is particularly interesting in relation to diabetes and
obesity because activation of AMPK increases fatty acid oxida-
tion, inhibits lipid synthesis, and can improve insulin action (Ye
et al., 2005; Iglesias et al., 2002). Based on a number of studies
showing that AMPK regulates a variety of different metabolic
pathways, it is widely recognized as a useful and safe target
for the treatment of metabolic disorders such as T2D and dysli-
pidemia (Ye et al., 2005; Musi, 2006). Hence, our findings of
the activation of the AMPK pathway by these compounds may
implicate these triterpenoids as a novel class of molecules with
therapeutic potential for insulin resistant states by targeting
AMPK.
One of the difficulties in pursuing the mechanism of action of

these isolated compounds at the present stage is their limited
availability due to the complicated secondary metabolites from
M. charantia. Despite this, we were able to scale up isolation of
S (5) and T (6) to produce amounts sufficient for limited acute
studies in animals. Consistent with the in vitro studies implicating
the AMPK pathway, we observed that momordicoside S (5) was
able to stimulate whole-body fat oxidation in mice, with a minor
increase in energy expenditure. The AMPK activator AICAR has
been shown to acutely lower plasma glucose and ameliorate
insulin resistance in high-fat-fed rats (Iglesias et al., 2002). Based
on our findings described above, we predicted that cucurbitane
triterpenoids may have similar effects on glucose metabolism
in vivo. Indeed, we found that both momordicoside S (5) and
T (6) significantly enhanced glucose tolerance in normal mice,
and the efficacy was comparable to that produced by AICAR
at a 5- to 50-fold higher dose. Interestingly, neither a tolerable
intraperitoneal dose of metformin nor a reduced dose of AICAR
(250 mg/kg; data not shown) had any detectable effect on glu-
cose tolerance. These findings are consistent with the results
on GLUT4 translocation and AMPK activity in vitro and show
that cucurbitane triterpenoids identified in the present study
have increased potency to improve glucose tolerance in mice
compared with commonly used AMPK activators AICAR or met-
formin. Compound 6 was also able to acutely improve glucose

Figure 5. Effects of Compound 5 on Whole-Body VO2 and RER in
Mice
(A and B) Mice were placed in a metabolic chamber at 9:00 a.m. and after 2 hr

of rest compound 5 (100 mg/kg), AICAR (250 mg/kg), or saline (Veh) was

injected subcutaneously into the mice. *p < 0.05, **p < 0.01% versus Veh;

y p < 0.05, yy p < 0.01 5 versus Veh (n = 6–8/group).
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tolerance in high-fat-fed mice, suggesting therapeutic potential
of these cucurbitane triterpenoids for the treatment of insulin
resistance. Based on their in vitro effects, we suspect that other
compounds of this class may have similar effects.
It is intriguing that many compounds that appear to have

beneficial effects in the treatment of insulin resistance do so at
least in part via activating AMPK activity. In particular, metformin
(Zhou et al., 2001) and berberine (Lee et al., 2006), two
plant-derived compounds that have been described to increase
insulin sensitivity and reduce body weight, both activate AMPK.
Interestingly, both metformin and berberine have also been de-
scribed as weak mitochondrial poisons, and so it is believed
that elevated intracellular AMP levels ensuing as a function of
reduced mitochondrial respiration may trigger increased AMPK
activity (Brunmair et al., 2004; Pereira et al., 2007). In this con-
text, it is interesting that the upstream AMPK kinase, LKB1, is
required for AMPK activation by metformin and its subsequent
therapeutic effects in vivo (Shaw et al., 2005). We have observed
no activation of AMPK by compounds 1, 4, 5, and 8 in HeLa cells
(data not shown) which lack LKB1, suggesting that these triter-
penoid compounds may activate AMPK in a similar fashion to
metformin. However, it is important to mention that we have
not observed any toxic effects of these compounds in either cells
in culture or in animals, suggesting that if they do affect mito-
chondrial integrity, these effects are likely to be quite mild.
In view of the potency of the cucurbitane triterpenoids on glu-

cose metabolism, it will be of great interest to determine the pri-

Figure 6. Acute Effects of Compounds 5
and 6 on Blood Glucose in Mice
(A) Standard chow-fed (Ch) mice fasted for 5-7 hr

were used for the experiments. Following a basal

blood sample at "60 min, vehicle (100 ml of 15%

glycerol, 5% ethanol and 80% saline), compound

5 (100 mg/kg), compound 6 (at a lower dose:

10 mg/kg), AICAR (500 mg/kg), or metformin

(200 mg/kg) was injected intraperitoneally (ip). A

second sample of blood was taken around 0 min

to assess followed an immediate ip glucose toler-

ance test (ipGTT) at a glucose load of 3.0 g/kg in

insulin sensitive Ch-fed mice.

(B) The effect on blood glucose in insulin-resistant,

high-fat-fed (HFF) mice. The ipGTTwas performed

at a glucose load of 2.0 g/kg. *p < 0.05, **p < 0.01

versus corresponding vehicle controls (n = 7–9/

group).

mary targets of these compounds leading
to the activation of AMPK. One possibility
might be that they act at intracellular tar-
get(s) after entering cells by some active
transport system as the structural fea-
tures of glycosides may render them as
substrates for naturally occurring trans-
porters (Lipinski et al., 2001). For exam-
ple, cardiac sodium pumps are the re-
ceptors for classical cardiac glycosides
such as digitalis, and there is a report
which shows that ginsenoside Rg1 can
be transported into epithelial cells with

peak concentration of 1.28 mg/105 cells at 0.5 hr (Meng et al.,
2007). Alternatively, cucurbitane triterpenoids may bind to cell-
surface receptors, initiating an intracellular signaling pathway
analogous to that seen with other biological molecules such as
leptin and adiponectin. Future studies will be required to distin-
guish between these possibilities.

SIGNIFICANCE

The structures and absolute configurations of four novel
cucurbitane glycosides, momordicosides Q, R, S, and T,
and karaviloside XI (1) were elucidated on the basis of spec-
troscopic data, chemical degradation, and X-ray diffraction
analyses. Momordicoside S (5), karaviloside XI (1), and their
aglycones (4 and 8), exhibited a number of biologic effects in
cells. In both L6myotubes and 3T3-L1 adipocytes, they stim-
ulated GLUT4 translocation from cytosol to the cell mem-
brane. This effect was associated with an increase in the ac-
tivity of AMP-activated protein kinase. Consistent with these
in vitro effects, administration of momordicoside S (5) into
mice significantly enhanced glucose disposal from the cir-
culation and promoted fatty acid oxidation. Additionally,
we have demonstrated significant amelioration of glucose
intolerance by momordicoside T (6). Based on our review
of the literature, there are approximately 70 reported cucur-
bitane triterpenoids, and our UPLC/ESIMS analyses of the
extracts of bitter melon suggest their high abundance in
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Table 1. 13C and 1H NMR Data of Compounds 2, 3, 5–7 in C5D5N

dC dH

2a 3b 5b 6b 7a 2c 3d 5d 6d 7c

1 18.9 18.5 22.6 22.5 22.6 1.30 1.78 1.31 1.72 1.52 1.78 1.46 1.78 1.58 1.76

2 27.6 27.2 29.1 29.0 29.1 1.76 2.36 1.74 2.32 1.90 2.50 1.20 2.38 1.92 2.50

3 85.4 85.2 87.3 87.3 87.7 3.70 br s 3.64 br s 3.53 br s 3.66 br s 3.86 br s

4 39.1 38.6 41.6 41.6 41.8

5 85.8 85.8 143.2 143.1 143.2

6 134.2 133.8 118.6 118.7 118.7 6.21 (10.5) 6.14 dd (1.3 8.3) 5.37 d (4.4) 5.42 d (4.2) 5.4 d (4.8)

7 130.0 130.1 24.5 24.5 24.6 5.54 dd (3.7 9.0) 5.5 dd (3.3 9.8) 1.62 2.18 1.70 2.24 1.64 2.27

8 52.3 51.9 43.7 43.7 43.8 2.25 2.26 1.58 1.66 1.60

9 45.3 44.9 34.6 34.6 34.7

10 40.1 39.7 38.4 38.3 38.5 2.25 2.24 2.16 2.22 2.18

11 23.9 23.5 32.4 32.4 32.5 1.30 1.58 1.29 1.58 1.28 1.52 1.34 1.56 1.32 1.54

12 31.2 30.7 30.7 30.6 30.8 1.521.56 1.44 1.54 1.46 1.54 1.52 1.60 1.48 1.58

13 45.6 45.2 46.7 47.3 46.8

14 48.9 48.6 49.0 49.1 49.2

15 33.3 32.9 35.2 35.2 35.3 1.101.15 1.09 1.14 1.04 1.14 1.12 1.22 1.15 1.23

16 28.5 28.1 27.6 27.7 27.8 1.381.92 1.36 1.86 1.48 2.34 1.56 2.42 1.58 2.48

17 51.6 51.2 47.8 47.7 47.7 1.48 1.44 1.95 2.00 2.02

18 15.0 14.6 15.4 15.3 15.3 0.77 s 0.74 s 0.82 s 0.83 s 0.89 s

19 80.1 79.8 28.1 28.0 28.2 3.57 d (8.3) 3.7 d (8.3) 3.56 d (7.7) 3.74 d (7.7) 0.80 s 0.81 s 0.85 s

20 32.7 32.3 42.8 42.8 43.1 2.09 2.04 2.14 2.20 2.22

21 18.9 18.5 14.9 14.9 14.8 1.12 d (6.1) 1.06 d (6.0) 1.38 d (6.6) 1.37 d (6.6) 1.44 d (6.6)

22 43.3 42.3 71.3 71.3 72.5 1.22 2.38 1.14 2.26 4.59 d (3.6) 4.66 4.60

23 67.7 66.6 71.4 71.3 71.2 4.59 4.48 4.18 4.24 4.14

24 79.9 79.7 74.1 74.1 75.4 3.56 3.61 4.28 4.36 4.46

25 73.6 81.0 81.5 81.5 74.4 1.65 s 1.72 s 1.81 s 1.82 s 1.70 s

26 28.0 23.0 23.2 23.3 24.2 1.67 s 1.73 s 1.70 s 1.71 s 1.68 s

27 27.0 24.6 24.0 24.1 29.1 1.56 s 1.45 s 1.43 s 1.44 s 1.53 s

28 21.1 20.5 25.8 25.7 26.0 0.87s 0.86 s 1.00 s 1.03 s 1.09 s

29 25.6 25.2 28.4 28.4 28.5 0.93 s 0.83 s 0.78 s 0.78 s 0.83 s

30 20.2 19.8 18.1 18.0 18.1 1.12 d (6.1) 1.06 d (6.0) 1.38 d (6.6) 1.37 d (6.6) 1.44 d (6.6)

10 106.7 104.0 106.9 106.8 107.4 4.95 (8.1) 5.34 d (7.7) 4.75 d (7.8) 4.71 d (7.8) 4.9 d (7.7)

20 75.8 72.7 75.2 76.2 75.5 4.02 3.92 3.84 4.12 3.98

30 78.3 72.3 78.4 74.8 78.7 4.03 4.67 3.89 3.81 4.00

40 71.9 68.9 71.5 80.0 71.8 4.25 4.14 4.05 4.28 4.22

50 78.4 75.8 77.3 75.0 78.2 4.026 4.44 4.02 4.00 4.24

60 63.1 62.9 70.1 68.4 63.1 4.45 4.58 4.32 4.50 4.24 4.76 4.62 4.84 4.4 4.59

100 98.5 105.1 105.1 5.21 d (7.8) 5.12 d (7.4) 5.29 d (6.6)

200 75.0 75.2 75.0 3.96 3.98 4.00

300 78.5 78.4 78.4 4.22 3.90 3.96

400 71.5 71.5 71.4 4.16 4.18 4.14

500 78.0 78.3 78.4 3.93 4.18 4.18

600 62.5 62.6 62.6 4.32 4.52 4.30 4.47 4.34 4.54

100 0 97.6 105.1 5.09 d (7.3) 5.30 d (7.2)

20 00 75.1 75.0 4.00 3.94

300 0 78.4 78.4 3.79 4.24

400 0 71.4 70.8 3.91 4.16

50 00 78.7 67.1 4.10 3.85 4.17

600 0 62.6 4.20 4.40

100 00 97.6 5.10 d (7.8)
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this plant. Along with this, their extremely high potency indi-
cates that cucurbitane triterpenoids are likely to be major
contributors to the antidiabetic effects of bitter melon. Im-
portantly, we have identified AMPK as a potential mediator
of the cucurbitane triterpenoids for their stimulation of
GLUT4 translocation in muscle and fat cells. The present
study provides an important basis for further analysis of
structure-activity relationship to develop optimized leads
from cucurbitane triterpenoids for the treatment of insulin
resistance and obesity.

EXPERIMENTAL PROCEDURES

General Experimental Procedures
Optical rotations were taken on a Perkin-Elmer 341 polarimeter. IR spectra

were recorded on Nicolet Magna FT-IR 750 spectrophotometer using KBr

disks. NMR spectra were recorded on Bruker AM-400 and INVOR-600 NMR

spectrometers. The chemical shift (d) values are given in ppm with TMS as

internal standard, and coupling constants (J) are in Hz. EIMS and HREIMS

spectra were recorded on Finnigan MAT-95 mass spectrometer. ESIMS and

HRESIMS spectra were recorded on Micromass LC-MS-MS mass spectrom-

eter. Column chromatographic separations were carried out by using silica gel

H60 (300–400 mesh, Qingdao Haiyang Chemical Group Corporation), MCI

GEL CHP20P (75–150 mm, Mitsubishi Chemical Industries), and Sephadex

LH-20 (Pharmcia Biotech AB) as packing materials. HSGF254 silica gel TLC

plates (Yantai Chemical Industrial Institute) were used for analytical TLC. The

Analytical HPLC system was composed of Waters 2690 separations module,

Waters 996 diode array detector (Waters), and All-tech 2000 ELSD. A LinCh-

rospher 100 RP-18e (Merck) column (125 3 4 mm i.d.; particle size 5 mm)

was used for the separation. The Preparative HPLC system composed of

two PrepStar SD-1 solvent delivery modules, a ProStar UV-Vis 320 detector,

and a ProStar 701 Fraction Collector (Varian). A LinChrospher 100 RP-18

(Merck) column (220 3 25 mm i.d.; particle size 12 m) was used for isolation.

Gas chromatography was carried out on a Shimadzu GC 14-BPF apparatus

equipped with a 5% OV225/AW-DMCS-Chromosorb W (80–100 mesh)

column (2.5 m 3 3 mm) as well as a hydrogen-flame ionization detector.

Plant Materials
Fruits were purchased from a cultivation plant in Guangxi Province. Represen-

tative samples were deposited at the Herbarium of Shanghai Institute of Mate-

ria Medica, Chinese Academy of Sciences, China.

Extraction and Isolation
The freeze-dried fruit powder (75 kg) was extracted by maceration with 80%

EtOH. After filtration and evaporation of the solvent under reduced pressure,

the alcohol extract was partitioned successively with CH2Cl2 and n-BuOH.

The n-BuOH-soluble extract (800 g) was subjected to macroporous resin

column chromatography eluting with H2O, 25% EtOH, 60% EtOH, and 95%

EtOH to yield four fractions: KG5 (600 g), KG6 (59 g), KG7 (50 g), and KG8

(30 g). KG8 was subjected to normal phase silica gel column chromatography

with gradient elution [CHCl3-MeOH-H2O 40:3:1 low layer (10 l), CHCl3-MeOH-

H2O 20:3:1 low layer (10 l), CHCl3-MeOH-H2O 10:3:1 low layer (10 l), CHCl3-

MeOH-H2O 8:3:1 low layer (8 l), CHCl3-MeOH-H2O 65:35:10 low layer (6 l)]

to give six fractions (Fr1-6). Compound 1 (150 mg), compound 2 (80 mg),

and compound 7 (150 mg) from Fr6 (5.5 g) were purified by repeated column

chromatography over MCI gel, silica gel, and Sephadex LH-20, respectively.

Further fractionation of KG7 by normal phase silica gel column chromatogra-

phy with gradient elution [CHCl3-MeOH-H2O 20:3:1 low layer (10 l), CHCl3-

MeOH-H2O 10:3:1 low layer (10 l), CHCl3-MeOH-H2O 8:3:1 low layer (8 l),

CHCl3-MeOH-H2O 65:35:10 low layer (10 l), CHCl3-MeOH-H2O 6:4:1 (6 l)]

gave six fractions (Fr7-12). Compound 5 (160 mg) and compound 6 (220 mg)

from Fr11 (6.5 g) were isolated by repeated column chromatography over

MCI gel, silica gel and Sephadex LH-20. Compound 3 (18 mg) from Fr8

(6.5 g) were separated by repeated column chromatography over MCI gel,

silica gel, Sephadex LH-20, and preparative HPLC (MeOH–H2O, 60:40-85:15).

Momordicosides A (350 mg) and B (250 mg) from Fr9 (4.3 g) were isolated by

repeated normal phase silica gel.

Acid Hydrolysis of Compounds 1, 2, 3, 5, 6, and 7
Compound 1 (100 mg) in 2% HCl-dioxane (1:1, 25 ml) were heated at 40#C for

7 days in a water bath. The reaction mixtures were neutralized with Ag2CO3,

filtered, and then extracted with CHCl3. Aglycone 4 (25 mg) was obtained

from CHCl3 layer by column chromatography and crystallized in MeOH. Com-

pounds 2, 3, 5, 6, and 7 (3 mg each) were refluxed with 2% HCl-dioxane (1:1,

25 ml) at 90#C for 4 hr. The reaction mixtures were neutralized with Ag2CO3,

filtered, and then extracted with CHCl3. The aqueous layer was evaporated,

and then the residue was treated with L-cysteine methyl ester hydrochloride

(4 mg) in pyridine (0.5 ml) at 60#C for 1 hr. After reaction, the solution was

treated with acetic anhydride (3 ml) at 60#C for 1 hr. Authentic samples were

prepared by the same procedure. The acetate derivatives were subjected to

GC analysis to identify the sugars (column temperature 210#C; injection tem-

perature 250#C; carrier gas N2 at a flow rate of 25 ml/min). D-allose (tR 5.0 min)

was observed from 1 and 3; D-glucose (tR 1.8min) was observed from 2, 3, 5, 6

and 7; D-xylose (tR 4.0 min) was observed from 6.

Enzymatic Hydrolysis of Compound 5
Compound 5 (60mg) andmomordicoside A (40mg) were treatedwith cellulose

in 0.1 M acetate buffer solution at 37#C for 7 days. The reaction mixtures were

then extractedwith CHCl3. Aglycone 8was obtained frombothCHCl3 layers by

preparative TLC.

Spectroscopic Data of Compounds
2, 3, 5, 6, 7
Momordicoside Q (2)

Amorphous powder; ½a%D
23

= "76 (c 0.1600, MeOH); IR nmax (KBr) 3396, 3165,

2935, 2783, 1612, 1514, 1454, 1417, 1277, 1263, 1223, 1165, 1122, 1039, 814,

689 cm-1; 1H NMR and 13C NMR data see Table 1; HRESIMS m/z 675.4113

(calcd for C36H60O10Na [M+Na]+, 675. 4084).

Table 1. Continued

dC dH

2a 3b 5b 6b 7a 2c 3d 5d 6d 7c

200 00 75.2 4.00

300 00 78.4 3.84

400 00 71.4 4.14

500 00 78.7 4.16

600 00 62.6 4.28 4.46

ppm, J in Hz.
a 100 MHz.
b 150 MHz.
c 400 MHz.
d 600 MHz.
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Momordicoside R (3)

Amorphous powder; ½a%D
23

= "64 (c 0.188, MeOH); IR nmax (KBr) 3415,2928,

2874, 1643, 1466, 1377, 1155, 1082, 1032 cm"1; 1H NMR and 13C NMR data

see Table 1; HRESIMS m/z 6837.4632 (calcd for C42H70O15Na [M+Na]+,

837.4612).

Momordicoside S (5)

Amorphous powder; ½a%D
23

= "8 (c 0.2245, MeOH); IR nmax (KBr) 3406, 2933,

2873, 1646, 1551, 1452, 1383, 1306, 1076, 1038, 534; 1H NMR and 13C

NMR data see Table 1; HRESIMS m/z 1001.5253 (calcd for C48H82O20Na

[M+Na]+, 1001.5297).

Momordicoside T (6)

Amorphous powder; ½a%D
23

= "1 (c 0.1385, MeOH); IR nmax (KBr) 3408, 2931,

2857, 1639, 1468, 1381, 1308, 1163, 1076, 1039 cm"1; 1H NMR and 13C

NMR data see Table 1; HRESIMS m/z 1113.5714 (calcd for C53H90O24Na

[M+Na]+, 1113.5720).

Momorcharaside B (7)

Amorphous powder; ½a%D
23

="20 (c 0.1600, MeOH); IR nmax (KBr) 3406, 2949,

2875, 1633, 1468, 1381, 1167, 1076, 1036, 951, 619 cm"1; 1H NMR and 13C

NMR data see Table 1; HRESIMS m/z 677.4224 (calcd for C36H62O10Na

[M+Na]+, 677.4241).

X-Ray Crystallographic Data for Compound 4
C30H56O8 + 3 H2O, mol. wt. = 544.75, orthorhombic space group P212121,

a = 6.33550(12) Å, b = 13.7125(2) Å, c = 35.1964(7) Å, V = 3057.71(18) Å3,

Z = 4, d = 1.183 g/cm3. F(000) = 1200, m = 0.676 mm"1. A single crystal of

dimensions 0.12 3 0.03 3 0.02 mm was used for X-ray measurements. The

data collection was performed on a Gemini R Ultra diffractometer using

Cu-Ka-radiation. Data were collected up to q = 65.60# at 100 K. A total of

5059, thereof 4908, independent reflections were measured, giving a Rint of

0.0312. Programs used were Data collection and reduction Crysalis Version

1.171.35. Crystal structure solution and refinement was achieved using direct

methods as implemented in SHELXTL Version 6.12 and visualized using XP

program. 359 Parameters were refined using 4908 reflections with F0 > 4s

(Fo) giving R1 = 0.0469, wR2 = 0.1050, Goodness of Fit 1.144, remaining elec-

tron density 0.247 and "0.217 e" Å"3. The absolute structure could be deter-

mined with high probability giving a Flack 3 Parameter of "0.0505 (0.2077),

the result is confirmed by the analysis of Bijvoet pais implemented in Platon.

CCDC 654600 contains the supplementary crystallographic data for this pa-

per. These data can be obtained free of charge via http://www.ccdc.cam.ac.

uk/conts/retrieving.html (or from the CCDC, 12 Union Road; Cambridge CB2

1EZ, UK; fax: +44 1223 336 033; email: deposit@ccdc.cam.ac.uk).

Cell Culture
L6myoblasts up topassage15were cultured ina-minimal essentialmedium (a-

MEM) supplemented with 10% heat-inactivated fetal calf serum (FCS) at 37#C

in5%CO2. For differentiation intomyotubes, cellswere cultured ina-MEMsup-

plemented with 2% heat-inactivated FCS at 37#C in 5% CO2 and were main-

tained in thismediumpostdifferentiation. Myotubeswere used for experiments

5–7 days after differentiation. 3T3-L1 cells were cultured at 37#C in Dulbecco’s

modified Eagle’s medium (DMEM) containing 10% bovine calf serum (BCS) in

an atmosphere of 10%CO2. The differentiation of 3T3-L1 cells was induced as

described previously (Govers et al., 2004). Briefly, the confluent cells were

incubated for 2 days in DMEM that was supplemented with 10% fetal bovine

serum (FBS), 0.5 mM 3-isobutyl-1-methylxanthine, 1 mM dexamethasone,

and 5 mg/MI insulin. Thereafter, the medium was replaced every other day

with DMEM containing 10% FBS and 5 mg/MI insulin.

GLUT4 Translocation Assay
HA-GLUT4 translocation to the PM was measured as previously described

(Govers et al., 2004)withminormodifications. Briefly, cellswere grown in black,

clear-bottom, 96-well plates and starved for 2 hr in serum- and bicarbonate-

free DMEM containing 20 mM HEPES (pH 7.4) and 0.2% BSA (DMEM/BSA)

at 37#C before starting the experiment. Plates were then transferred to 19#C,

and vehicle, 100 nM insulin, 2 mM AICAR, 10 mM wortmanin, or test com-

pounds were added for 30 min. At given time points, paraformaldehyde was

added to the wells to a concentration of 3%. After 15 min, the paraformalde-

hyde was quenched by the addition of glycine (final concentration, 50 mM).

The cells were washed extensively and incubated for 20 min with 5% normal

swine serum (NSS) in the absence or presence of 0.1% saponin to analyze

the amount of HA-GLUT4 at the PM or the total HA-GLUT4 content, respec-

tively. Cells were incubated for 60 min with anti-HA or, as a control, a nonrele-

vant antibody (mouse IgG1-MOPC21) in PBS containing 2% NSS. Cells were

extensively washed and incubated for 20 min in 5% NSS in the presence or

absence of 0.1% saponin. Cells were then incubated with ALEXA488-conju-

gated goat-antimouse in PBS containing 2%NSS. After washing, fluorescence

was measured using the bottom-reading mode in a fluorescence microtiter

plate reader (FLUOstar Galaxy, BMG Labtechnologies).

Determination of Phosphorylation of Akt and AMPK
Differentiated 3T3-L1 and L6 cells were serum-starved in DMEM/BSA (2 hr at

37#C) prior to incubation either with test compounds (1, 4, 5, 8) or vehicle

(DMSO containing saline, final concentration of DMSO: 0.2%) for 30 min, or

with 100 nM Insulin or 2 mM AICAR for 25 min. Following treatment, cells

were washed three times with ice-cold PBS and subsequently lysed in 13

RIPA buffer (50 mM Tris HCl [pH 8], 150 mM NaCl, 1% NP-40, 0.5% sodium

Deoxycholate, 0.1% SDS) supplemented with Complete protease inhibitor

cocktail (Roche) and phosphatase inhibitors [2 mM Na3VO4, 1 mM Na4P2O7,

1 mM (NH4)6Mo7O24$4H2O, 10 mM NaF], then passed through a 22-gauge

needle 103 and centrifuged at 20,0003 g for 20min. Supernatant protein con-

centration was determined via BCA assay (Pierce). Equal amounts of protein

were then diluted 43 in SDS sample buffer (62.5 mM Tris-HCl, 20% glycerol,

2% SDS, 75 mMDTT, and 0.05% bromophenol blue), subjected to SDS PAGE

and immunoblotted with antibodies specific for Akt, phospho-Akt (Ser473),

AMPK, and phospho-AMPK-a (Thr172) (Cell Signaling Technology). Immuno-

blots were quantified using Image J software (NIH) and expressed at a ratio of

phosphorylation to total.

Experimental Animals
C57BL/6 mice (10 week old males) supplied by the Animal Resources Center

(Perth, Australia) were acclimatized in communal cages at 22#C, with a 12 hr

light, 12 hr dark cycle (lights on at 0700) for 1 week and had access to a stan-

dard chow diet (Gordon’s Specialty Stock Feed) or a high (lard) fat diet for 7

weeks ad libitum to generate glucose intolerance similarly to a previous report

(Iglesias et al., 2002). All experimental procedures were approved by the

Garvan Institute Animal Experimentation Ethics Committee, following guide-

lines issued by the National Health and Medical Research Council of Australia.

Determination ofWhole-Body Energy Expenditure and Fat Oxidation
The oxygen consumption rate (VO2) and CO2 production rate was measured

using an eight chamber indirect calorimeter (Oxymax series; Columbus Instru-

ments) as described previously (Molero et al., 2006). The animals were placed

in the metabolic chamber (20 cm3 10 cm3 12.5 cm) at 9:30 a.m. After 2 hr of

acclimation, momordicoside S (5) (100 mg/kg), AICAR (250 mg/kg) or normal

saline (vehicle) was injected subcutaneously. VO2 was measured in individual

mice at 27 min intervals over a 24 hr period under a consistent environmental

temperature (22#C) and its values are proportional to energy expenditure.

During the study, mice had ad libitum access to food and water. Respiratory

exchange rate (RER) was calculated from VO2 and CO2 production and its

values are in reverse proportion to whole-body fat oxidation.

Measurement of Blood Glucose and Glucose Tolerance Test
The experiment was performed in mice after 5–7 hr of fasting. Blood glucose

taken from the tail tip was measured using a glucosemeter (Accu-Chek,

Roche). Following the measurement of basal blood glucose concentration

at 0 min, vehicle solution (100 ml of 15% glycerol, 5% ethanol, and 80% saline),

momordicodise S (5) (100 mg/kg), momordicodise T (6) (at a low dose: 10 mg/

kg), AICAR (500 mg/kg), or metformin (200 mg/kg) was injected into the peri-

toneal cavity. Around 60 min, a sample was taken to assess the direct effect

on blood glucose and this was immediately followed by an intraperitoneal

glucose tolerance test (ipGTT). The glucose load was 3.0 g/kg for normal,

chow-fed mice and 2.0 g/kg for insulin-resistant, high-fat-fed mice. These

different glucose doses for different insulin sensitivity states were chosen to

maximize the detection of treatment effects based on pilot experiments.

Chemistry & Biology

Novel Triterpenoids with Antidiabetic Properties

272 Chemistry & Biology 15, 263–273, March 2008 ª2008 Elsevier Ltd All rights reserved

http://www.ccdc.cam.ac.uk/conts/retrieving.html
http://www.ccdc.cam.ac.uk/conts/retrieving.html
mailto:deposit@ccdc.cam.ac.uk


Data Analyses
An unpaired student t test was used for the comparison between treatments or

groups and a p value % 0.05 is considered statistically significant.

SUPPLEMENTAL DATA

Supplemental Data include NMRdata of compounds 1-10 andUPLC/MS anal-

yses of bitter melon extracts and can be found with this article online at http://

www.chembiol.com/cgi/content/full/15/3/263/DC1/.
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UPLC/ESIMS analysis of bitter melon extract (KG7) 
RT: 0.00 - 8.90 SM: 11G

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
Time (m in)

0

50

100

0

50

100

0

50

100

0

50

100

0

50

100

0

50

100

0

50

100

0

50

100

RT: 4.38
AA: 4133358
SN: 2296

RT: 5.23
AA: 239816
SN: 148

RT: 7.85
AA: 297103
SN: 95

RT: 8.76
AA: 96100
SN: 75

RT: 6.21
AA: 278040
SN: 45

RT: 6.61
AA: 60810
SN: 34

RT: 3.92
AA: 40964
SN: 19

RT: 3.21
AA: 14085
SN: 10

RT: 4.31
AA: 4824674
SN: 2905

RT: 6.14
AA: 1412317
SN: 413

RT: 4.85
AA: 217795
SN: 55

RT: 7.05
AA: 101846
SN: 41

RT: 7.61
AA: 93053
SN: 40

RT: 8.60
AA: 77834
SN: 32

RT: 3.47
AA: 85536
SN: 30

RT: 6.68
AA: 33216915
SN: 9771

RT: 5.06
AA: 1971956
SN: 825

RT: 7.43
AA: 764547
SN: 290

RT: 7.89
AA: 51508
SN: 29

RT: 4.50
AA: 67557
SN: 23

RT: 3.64
AA: 17834
SN: 12

RT: 3.66
AA: 1448348
SN: 884

RT: 6.98
AA: 772583
SN: 166

RT: 5.65
AA: 1040557
SN: 150

RT: 7.43
AA: 173234
SN: 54

RT: 8.57
AA: 144943
SN: 48

RT: 4.71
AA: 20483
SN: 15

RT: 3.17
AA: 35637
SN: 13

RT: 3.78
AA: 1410415
SN: 1192

RT: 5.39
AA: 286833
SN: 121

RT: 7.17
AA: 204484
SN: 82

RT: 4.99
AA: 197590
SN: 71

RT: 7.85
AA: 169833
SN: 55

RT: 6.65
AA: 137803
SN: 54

RT: 3.28
AA: 45684
SN: 19

RT: 4.08
AA: 2408048
SN: 1785

RT: 8.01
AA: 145597
SN: 52

RT: 7.52
AA: 117810
SN: 48

RT: 6.44
AA: 129010
SN: 45

RT: 5.62
AA: 100294
SN: 39

RT: 4.66
AA: 53859
SN: 27

RT: 2.98
AA: 54810
SN: 24

RT: 3.42
AA: 28301
SN: 23

RT: 2.56
AA: 15457
SN: 12

RT: 0.85
AA: 15299
SN: 10

RT: 4.10
AA: 7286297
SN: 2348

RT: 5.65
AA: 148934
SN: 50

RT: 6.72
AA: 130871
SN: 39

RT: 7.57
AA: 165764
SN: 35

RT: 8.32
AA: 66009
SN: 27

RT: 2.77
AA: 43162
SN: 22

RT: 4.36
AA: 3875192
SN: 3078

RT: 8.83
AA: 80441
SN: 85

RT: 8.25
AA: 135207
SN: 72

RT: 7.05
AA: 188980
SN: 66

RT: 6.49
AA: 79431
SN: 50

RT: 5.84
AA: 102865
SN: 40

RT: 3.40
AA: 125539
SN: 37

RT: 2.56
AA: 39417
SN: 29

NL: 3.99E5
m /z= 797.00-798.00 
F: + c Q1MS [ 
150.00-1500.00]  MS  
ICIS Kg07

NL: 5.34E5
m /z= 834.00-835.00 
F: + c Q1MS [ 
150.00-1500.00]  MS  
ICIS Kg07

NL: 2.22E6
m /z= 652.00-653.00 
F: + c Q1MS [ 
150.00-1500.00]  MS  
ICIS Kg07

NL: 1.67E5
m /z= 696.00-697.00 
F: + c Q1MS [ 
150.00-1500.00]  MS  
ICIS Kg07

NL: 1.65E5
m /z= 809.00-810.00 
F: + c Q1MS [ 
150.00-1500.00]  MS  
ICIS Kg07

NL: 2.62E5
m /z= 628.00-629.00 
F: + c Q1MS [ 
150.00-1500.00]  MS  
ICIS Kg07

NL: 4.45E5
m /z= 830.00-831.00 
F: + c Q1MS [ 
150.00-1500.00]  MS  
ICIS Kg07

NL: 4.17E5
m /z= 744.00-745.00 
F: + c Q1MS [ 
150.00-1500.00]  MS  
ICIS Kg07
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UPLC/ESIMS analysis of bitter melon extract (KG8) 

 
 

RT: 0.00 - 9.99 SM: 11G

0 1 2 3 4 5 6 7 8 9
Tim e (m in)

0

50

100

0

50

100

0

50

100

0

50

100

0

50

100

0

50

100

0

50

100

0

50

100
4.42

3.90
4.70

5.995.39 7.29 7.873.60 9.947.026.32 8.34 9.318.692.662.28 3.151.040.81 1.730.31

4.42

4.70 7.513.90 9.554.93 5.99 7.87 9.277.295.75 6.17 8.666.873.582.301.14 2.660.81 1.67 3.240.26
RT: 4.90
AA: 10048408
SN: 3591

RT: 7.89
AA: 9674491
SN: 3506

RT: 5.48
AA: 2390886
SN: 883

RT: 9.58
AA: 557906
SN: 185

RT: 6.60
AA: 842981
SN: 183

RT: 3.88
AA: 841317
SN: 131

RT: 8.78
AA: 205914
SN: 60

RT: 1.04
AA: 41271
SN: 19

RT: 3.21
AA: 34807
SN: 17

RT: 2.44
AA: 40406
SN: 11

RT: 6.60
AA: 26268335
SN: 5620

RT: 5.66
AA: 18723330
SN: 3934RT: 4.95

AA: 4872117
SN: 1326

RT: 7.26
AA: 3358600
SN: 870

RT: 8.17
AA: 3937090
SN: 515

RT: 9.31
AA: 1295662
SN: 385

RT: 4.15
AA: 380040
SN: 50

RT: 3.18
AA: 190084
SN: 40

RT: 0.82
AA: 61387
SN: 22

RT: 5.28
AA: 16401987
SN: 5444

RT: 7.34
AA: 1777326
SN: 699

RT: 8.48
AA: 1691630
SN: 643

RT: 4.40
AA: 1685828
SN: 446

RT: 3.73
AA: 361488
SN: 108

RT: 9.30
AA: 97781
SN: 27

RT: 2.66
AA: 66846
SN: 25

RT: 6.49
AA: 73664
SN: 24

RT: 1.14
AA: 51175
SN: 16

RT: 2.23
AA: 40784
SN: 15

RT: 7.40
AA: 33514292
SN: 6187RT: 6.36

AA: 13068245
SN: 3270

RT: 8.09
AA: 6994762
SN: 1861

RT: 5.45
AA: 4755368
SN: 1557

RT: 9.85
AA: 651581
SN: 158

RT: 4.57
AA: 969932
SN: 113

RT: 1.04
AA: 257073
SN: 83

RT: 3.90
AA: 361601
SN: 62

RT: 2.58
AA: 46085
SN: 12

RT: 2.05
AA: 74446
SN: 11

RT: 5.48
AA: 6716447
SN: 2626 RT: 9.58

AA: 1990494
SN: 895

RT: 6.60
AA: 2390417
SN: 597

RT: 8.78
AA: 1128366
SN: 394

RT: 7.26
AA: 617955
SN: 190

RT: 3.40
AA: 272030
SN: 84

RT: 4.50
AA: 207995
SN: 75

RT: 1.04
AA: 48596
SN: 24

RT: 1.91
AA: 34948
SN: 17

RT: 5.67
AA: 18980492
SN: 8280 RT: 8.12

AA: 6154821
SN: 2872

RT: 9.36
AA: 1020384
SN: 405

RT: 7.02
AA: 572841
SN: 128

RT: 6.21
AA: 390634
SN: 118

RT: 1.04
AA: 576308
SN: 100

RT: 3.91
AA: 121557
SN: 28

RT: 4.89
AA: 141323
SN: 27

RT: 2.69
AA: 63963
SN: 24

RT: 1.61
AA: 36989
SN: 21

NL: 2.85E6
m/z= 652.00-653.00 F: + c 
Q1MS [ 300.00-1200.00]  
MS 
Kg08-gradient02-300-1200

NL: 4.95E5
m/z= 693.00-694.00 F: + c 
Q1MS [ 300.00-1200.00]  
MS 
Kg08-gradient02-300-1200

NL: 1.25E6
m/z= 650.00-651.00 F: + c 
Q1MS [ 300.00-1200.00]  
MS  ICIS 
Kg08-gradient02-300-1200

NL: 2.30E6
m/z= 666.00-667.00 F: + c 
Q1MS [ 300.00-1200.00]  
MS  ICIS 
Kg08-gradient02-300-1200

NL: 1.52E6
m/z= 636.00-637.00 F: + c 
Q1MS [ 300.00-1200.00]  
MS  ICIS 
Kg08-gradient02-300-1200

NL: 2.60E6
m/z= 680.00-681.00 F: + c 
Q1MS [ 300.00-1200.00]  
MS  ICIS 
Kg08-gradient02-300-1200

NL: 7.49E5
m/z= 649.00-650.00 F: + c 
Q1MS [ 300.00-1200.00]  
MS  ICIS 
Kg08-gradient02-300-1200

NL: 2.23E6
m/z= 518.00-519.00 F: + c 
Q1MS [ 300.00-1200.00]  
MS  ICIS 
Kg08-gradient02-300-1200
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UPLC/ESIMS analysis of bitter melon extract (KG8, continued) 

 

RT: 0.00 - 9.99 SM: 11G

0 1 2 3 4 5 6 7 8 9
Tim e (m in)

0

50

100

0

50

100

0

50

100

0

50

100

0

50

100

0

50

100

0

50

100

0

50

100

RT: 5.91
AA: 2918465
SN: 1566

RT: 7.16
AA: 1904458
SN: 913

RT: 8.23
AA: 2004772
SN: 532

RT: 4.64
AA: 495535
SN: 206

RT: 9.85
AA: 94910
SN: 42

RT: 5.19
AA: 85765
SN: 39

RT: 1.21
AA: 114329
SN: 30

RT: 4.13
AA: 103840
SN: 25

RT: 0.76
AA: 49381
SN: 20

RT: 3.08
AA: 53012
SN: 19

RT: 2.55
AA: 21100
SN: 15

RT: 6.03
AA: 5668276
SN: 2749

RT: 8.29
AA: 4499080
SN: 1918

RT: 7.40
AA: 3021487
SN: 919

RT: 5.75
AA: 753201
SN: 360

RT: 4.95
AA: 570139
SN: 147

RT: 9.93
AA: 92184
SN: 73

RT: 3.71
AA: 78768
SN: 39

RT: 2.86
AA: 98860
SN: 23

RT: 0.81
AA: 41442
SN: 21

RT: 1.78
AA: 23734
SN: 9

RT: 8.88
AA: 9006076
SN: 3551

RT: 8.18
AA: 1715173
SN: 517

RT: 9.83
AA: 410868
SN: 195

RT: 6.60
AA: 765420
SN: 182

RT: 5.55
AA: 221029
SN: 81

RT: 5.03
AA: 252951
SN: 54

RT: 3.68
AA: 138823
SN: 33

RT: 2.88
AA: 60424
SN: 22

RT: 1.01
AA: 49857
SN: 21

RT: 2.23
AA: 24813
SN: 11

RT: 9.57
AA: 17171287
SN: 5051

RT: 8.31
AA: 13665336
SN: 4652RT: 6.80

AA: 8902535
SN: 2432

RT: 5.45
AA: 1024476
SN: 291

RT: 4.95
AA: 209199
SN: 54

RT: 3.74
AA: 111167
SN: 38

RT: 1.31
AA: 73963
SN: 18

RT: 2.38
AA: 49182
SN: 13

RT: 7.18
AA: 19877447
SN: 6041

RT: 6.87
AA: 2086412
SN: 653

RT: 1.98
AA: 615206
SN: 203

RT: 0.13
AA: 720748
SN: 95

RT: 3.19
AA: 279922
SN: 42

RT: 4.71
AA: 163815
SN: 38

RT: 7.78
AA: 158108
SN: 34

RT: 5.15
AA: 127336
SN: 33

RT: 9.52
AA: 78768
SN: 26

RT: 8.67
AA: 201380
SN: 23

RT: 8.48
AA: 20662897
SN: 5763

RT: 7.34
AA: 17346555
SN: 4770

RT: 9.93
AA: 305640
SN: 166

RT: 4.42
AA: 601569
SN: 143

RT: 6.02
AA: 276042
SN: 72

RT: 3.38
AA: 79402
SN: 22

RT: 2.28
AA: 46052
SN: 12

RT: 0.79
AA: 27895
SN: 11

RT: 7.51
AA: 8257085
SN: 2753 RT: 9.55

AA: 2552570
SN: 904

RT: 4.71
AA: 982274
SN: 358

RT: 7.13
AA: 1517804
SN: 353

RT: 7.89
AA: 989357
SN: 291

RT: 6.21
AA: 512598
SN: 145

RT: 4.20
AA: 126559
SN: 31

RT: 3.36
AA: 88798
SN: 22

RT: 7.95
AA: 11854759
SN: 2938

RT: 9.19
AA: 3893909
SN: 811

RT: 5.28
AA: 1967607
SN: 423

RT: 6.57
AA: 576203
SN: 177

RT: 4.02
AA: 175857
SN: 53

RT: 3.62
AA: 74118
SN: 31

RT: 2.61
AA: 41869
SN: 15

NL: 4.10E5
m /z= 590.00-591.00 F: + c 
Q1MS [ 300.00-1200.00]  
MS  ICIS 
Kg08-gradient02-300-1200

NL: 7.00E5
m /z= 663.00-664.00 F: + c 
Q1MS [ 300.00-1200.00]  
MS  ICIS 
Kg08-gradient02-300-1200

NL: 1.04E6
m /z= 632.00-633.00 F: + c 
Q1MS [ 300.00-1200.00]  
MS  ICIS 
Kg08-gradient02-300-1200

NL: 2.23E6
m /z= 708.00-709.00 F: + c 
Q1MS [ 300.00-1200.00]  
MS  ICIS 
Kg08-gradient02-300-1200

NL: 2.56E6
m /z= 496.00-497.00 F: + c 
Q1MS [ 300.00-1200.00]  
MS  ICIS 
Kg08-gradient02-300-1200

NL: 2.31E6
m /z= 634.00-635.00 F: + c 
Q1MS [ 300.00-1200.00]  
MS  ICIS 
Kg08-gradient02-300-1200

NL: 1.09E6
m /z= 691.00-692.00 F: + c 
Q1MS [ 300.00-1200.00]  
MS  ICIS 
Kg08-gradient02-300-1200

NL: 1.11E6
m /z= 678.00-679.00 F: + c 
Q1MS [ 300.00-1200.00]  
MS  ICIS 
Kg08-gradient02-300-1200


