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Asthma is a chronic inflammatory disease of the airways, involving recurrent
episodes of airway obstruction and wheezing. A common pathological feature
in asthma is the presence of a characteristic allergic airway inflammatory
response involving extensive leukocyte infiltration, mucus overproduction and
airway hyper-reactivity. The pathogenesis of allergic airway inflammation is
complex, involving multiple cell types such as T helper 2 cells, regulatory T
cells, eosinophils, dendritic cells, mast cells, and parenchymal cells of the
lung. The cellular response in allergic airway inflammation is controlled by a
broad range of bioactive mediators, including IgE, cytokines and chemokines.
The asthmatic allergic inflammatory response has been a particular focus of
efforts to develop novel therapeutic agents. Animal models are widely used to
investigate inflammatory mechanisms. Although these models are not perfect
replicas of clinical asthma, such studies have led to the development of
numerous novel therapeutic agents, of which some have already been
successful in clinical trials.

Asthma is a chronic inflammatory disease of
the airways affecting approximately 300 million
individuals worldwide (Ref. 1). The prevalence of
asthma increased dramatically in many Western
countries during the last 30 years of the 20th
century and is now greater than 10% (Ref. 2).
In several Western countries, the rates of
asthma have reached a plateau since the 1990s,

especially in adults (Ref. 3). Nevertheless, the
high incidence of asthma represents a huge
economic burden. For example, the cost to
the US economy attributable to asthma was
estimated to be US$12.7 billion in 1998 (Ref. 4).
Furthermore, high levels of nonatopic asthma
have been recognised in the developing world
(Ref. 5).
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Asthma involves recurrent episodes of airway
obstruction and wheezing, ranging in severity
from mild to life-threatening. The majority
of asthmatics have a characteristic allergic
inflammatory response in the lungs involving
excessive activation of T helper 2 (Th2) cells,
eosinophil infiltration, mucus overproduction,
and airway hyper-reactivity. In many cases, this
results from an allergic response to
environmental allergens (Ref. 6). It is important
to note that asthma is highly heterogeneous,
and that the asthmatic inflammatory response
does not always correspond closely to classical
allergy. For example, a significant number of
asthmatics have an inflammatory pathology
dominated largely by neutrophils rather than
eosinophils (Ref. 7). The heterogeneity of
asthma is beyond the scope of this review, and
we focus here principally on the cellular and
molecular mechanisms underlying allergic
airway inflammation (AAI).

Animal studies have been valuable for
elucidating the cellular and molecular pathways
required for AAI. Murine models have been
particularly useful, because of the many tools
available to dissect mechanisms of allergic
inflammation. Neutralising antibodies,
transgenic mice (usually overexpressing
selective genes) and knockout mice (lacking
selective genes) are particularly powerful in
assessing the role of individual molecules and
cells (Ref. 8). The popularity of such models
needs to be considered against their limitations
(Ref. 9). There are many structural and
functional differences between mice and
humans, and mice do not spontaneously
develop asthma. Experimental AAI is usually
induced artificially by parenteral administration
of allergen in adjuvant. Furthermore, in a
standard murine AAI model, degranulated
eosinophils are detected only in the airway
lumen and not in the lung tissue (Ref. 10).

The vast majority of animal studies assess acute
responses to inhalation of high concentrations of
antigen, which generate vigorous cellular
infiltration but are not good models of airway
remodelling, a common feature of established
asthma. A chronic model has been developed
that has more histological similarities to clinical
asthma (Ref. 11). In another chronic model,
mice were followed for several weeks after
cessation of challenge. AAI resolved, but airway
hyper-responsiveness (AHR) and remodelling

did not resolve during the period of
observation (Ref. 12). There are, however,
relatively few studies on chronic allergen
exposure. Furthermore, the standard mouse
models do not reliably demonstrate the early-
and late-phase responses that are characteristic
of clinical asthma (Ref. 13). Finally, results in
mouse models may differ markedly between
strains, making it difficult to extrapolate
findings to clinical asthma. Despite these
limitations, mouse models are widely used to
identify potential targets and to assess new
therapeutic agents (Refs 8, 14). This review
draws heavily on animal models of AAI.
Clinical trials of novel therapeutic agents are
also included, but we do not attempt a
comprehensive coverage of descriptive clinical
studies.

Differentiation of effector T helper cells
CD4þ Th cells are necessary for the pathogenesis
of AAI. Depletion of murine CD4þTcells prevents
antigen-induced pulmonary eosinophilia and
AHR (Ref. 15). The Th2 subset, which controls
the allergic response through the production of
cytokines such as interleukin (IL)-4, IL-5, IL-9
and IL-13, is particularly prominent in allergic
asthma (Refs 16, 17). The key role of Th2 cells is
illustrated in Figure 1. Differentiation of naive
CD4þ T cells is a tightly regulated process.
Experiments in mice have demonstrated that
the cytokine microenvironment has a major role
in regulating T cell differentiation, but other
factors such as antigen concentration, and
expression of costimulatory molecules and
Notch ligands, also contribute (Refs 18, 19).

IL-4 signalling through STAT6 (signal
transducer and activator of transcription 6) was
originally thought to be necessary for Th2 cell
commitment (Refs 20, 21). It is now apparent
that Th2 cell differentiation can occur in the
absence of both IL-4 and STAT6. Nevertheless,
STAT6 is essential for eosinophilic inflammation
and Th2 cell tracking to the lung in murine AAI
(Refs 22, 23), and in clinical asthma,
phosphorylated STAT6 is increased in
peripheral blood memory CD4þ T cells, and it
decreases after therapy with oral corticosteroids
(Ref. 24). The transcription factor GATA-3 is the
master regulator of Th2 cell development
(Ref. 25). GATA-3 regulates expression of other
well-described Th2 differentiation transcription
factors – c-MAF, NF-ATc (nuclear factor of
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activated T cells c) and STAT6 (Refs 26, 27, 28) –
and controls Th2 differentiation through
epigenetic transactivation of promoter regions
of the genes for IL-4, IL-5 and IL-13 (Refs 25,
29). The signals that initiate GATA-3 expression
during antigen priming of a naive CD4þ T cell
remain unclear. One possible mechanism may

be through the Notch signal transduction
pathway. This pathway regulates cell
differentiation in many different tissues. Cell-
surface Notch receptors can be engaged by
ligands of the Delta-like or Jagged families.
Expression of Delta-like or Jagged ligands on
dendritic cells was elicited by Th1- and

Cytokine regulation of allergic asthma
Expert Reviews in Molecular Medicine © 2008 Cambridge University Press
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Figure 1. Cytokine regulation of allergic asthma. Pulmonary dendritic cells process and present inhaled
antigens to naive CD4þ T cells. Generation of Th2 cells is enhanced by the presence of the cytokines IL-4
and TSLP, and is influenced by Notch ligands. Secretion of IL-4 by naive T cells contributes to their
differentiation into Th2 cells. Th2 cells secrete IL-4 and IL-13, and express CD40L, to stimulate IgE
production by B cells. IgE binds to Fc receptors on the surface of mast cells. When mast cells are activated
by antigen-dependent crosslinking of IgE receptors, they degranulate, releasing histamine and TNF-a, and
they secrete cytokines including IL-4 and IL-13. Eosinophil survival is supported by IL-5, and CCL11
(eotaxin-1) and other cytokines attract eosinophils to the airways. Eosinophils are toxic to epithelial cells. IL-
4, -9 and -13 promote airway hyper-reactivity, mucus secretion and cytokine secretion by epithelial cells.
Regulatory T cells (Treg) suppress the activation and differentiation of naive CD4þ T cells. Abbreviations: IL,
interleukin; TSLP, thymic stromal lymphopoietin.
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Th2-inducing stimuli, respectively (Ref. 19).
Engagement of Notch on CD4þ T cells by
Jagged on dendritic cells favoured Th2
differentiation and IL-4 production. Under
these conditions, Notch induced GATA-3 and
stimulated IL-4 transcription via the
transcription factor RBP-Jk (Jk recombination
signal sequence binding protein) (Refs 19, 30).
In the absence of GATA-3, Notch signalling
promoted naive CD4þ T cells to differentiate to
Th1 cells (Ref. 31).

For a naive Tcell, an alternative pathway to Th2
commitment is polarisation into the Th1 lineage.
Signalling through interferon (IFN)-g and the
T-bet transcription factor (encoded by TBX21)
has been identified as the major pathway that
determines Th1 differentiation, while the IL-12–
STAT4 pathway also plays an important but
lesser role (Refs 32, 33, 34). T-bet is essential for
Th1 cell differentiation and commits naive
T cells to this lineage by repressing GATA-3
expression (Ref. 35). The lungs of naive T-bet-
knockout (Tbx212/2) mice have a striking
phenotype indicative of a Th2-dominated
environment, including prominent perivascular
and peribronchial eosinophilia, extensive
airway remodelling and increased AHR
(Ref. 36). The lung phenotype of these mice
emphasises the critical role of Th2 cells in AAI.
In patients with clinical asthma, reduced
peripheral blood mononuclear cell T-bet mRNA
expression has been reported (Ref. 37).

While the Th1–Th2 paradigm is over two
decades old, a third, distinct Th cell subset has
recently been recognised. The Th17 subset is
defined on the basis of secretion of the cytokine
IL-17, now known as IL-17A, which has been
particularly associated with neutrophilic
inflammation. Th17 cells also produce IL-17F,
which has a number of similar effects to IL-17A
(Ref. 38). The transcription factors RORgt
(retinoic-acid-related orphan receptor gt) and
STAT3 are essential for the development of
Th17 cells, and RORgt appears to be the Th17
cell counterpart of GATA-3 in Th2 cells and
T-bet in Th1 cells (Refs 38, 39). Human T cells
require exposure to IL-1b and IL-6 to induce
RORgt (Ref. 40), whereas in mice the necessary
factors are transforming growth factor b (TGF-
b) and IL-1b (Ref. 41) or TGF-b and IL-21
(Ref. 42). Once differentiation along the Th17
pathway has been induced, the cells expand in
the presence of IL-23 (Ref. 43). The role of

RORgt in AAI has not yet been reported.
Studies on the role of IL-17A in asthma are
reviewed below.

Regulatory T cells
Regulatory T cells (Treg) are another important
subset of CD4þ T cells. While Treg have been
most extensively studied in autoimmune
diseases, there is now abundant evidence that
Treg are an integral component of all immune
responses, including allergic reactions (Ref. 44).
The best-described Treg develop in the thymus
and are termed naturally occurring or nTreg.
These arise from a distinct developmental
pathway, which depends on the production of
thymic stromal lymphopoietin (TSLP) by
Hassall’s corpuscles in the thymic medulla. TSLP,
a cytokine related to IL-7, stimulates dendritic
cells, which are necessary for nTreg development
(Ref. 45). nTreg are best characterised by
expression of the transcription factor FOXP3
(forkhead box P3). Other populations of Treg,
collectively known as inducible Treg, develop in
the periphery from antigen-exposed effector
T cells and may also express FOXP3 (Ref. 44).
The most widely used surface marker to identify
Treg is the alpha chain of the IL-2 receptor
(CD25), although activated effector T cells also
express CD25 (Ref. 46). In humans, Treg can be
distinguished from activated effector T cells
because Treg express much lower levels of the
surface marker CD127. CD127loCD25þ Treg make
up 6% of blood CD4þ T cells in healthy
individuals (Ref. 47). nTreg principally mediate
immunosuppression via cell–cell contact,
whereas inducible Treg may mediate inhibitory
effects by secretion of the immunosuppressive
cytokines IL-10 and TGF-b (Ref. 44).

A role for Treg has been demonstrated in studies
on mouse models of AAI. In one approach,
antigen-specific CD4þCD25þ Treg cells were
transferred into antigen-sensitised animals prior
to challenge. The Treg reduced the resulting
AHR, lung eosinophil infiltration, and Th2
cytokine production (Ref. 48). These effects
depended on IL-10 production in the recipient,
but did not require IL-10 production by the Treg
themselves. In an alternative approach, depletion
of Treg with an anti-CD25 antibody prior to
antigen sensitisation increased AHR, eosinophil
infiltration and Th2 cytokine production, and
elevated the capacity of pulmonary dendritic
cells to elicit a Th2 response (Ref. 49). In another
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study, when mice were treated with
cyclophosphamide prior to sensitisation, the
resulting pulmonary eosinophil infiltration and
Th2 response were greatly increased, and this
was associated with a reduction of FOXP3
expression in the lungs and lymphoid organs,
suggesting that cyclophosphamide depletes Treg
(Ref. 50). In a model of tolerance induced by
respiratory exposure to allergen, pulmonary
dendritic cell production of IL-10, and the
resulting production of IL-10 by Treg, was
required for the induction of mucosal tolerance
(Ref. 51). In a rat model of chronic aeroallergen
exposure, Treg appeared in the respiratory
mucosa and regional lymph nodes within 24 h of
initial antigen exposure, and prevented further
AHR (Ref. 52). Taken together, these animal
studies indicate that Treg inhibit the extent of
allergic inflammation.

There is emerging evidence that Treg can
control Th2 responses in humans. CD4þCD25þ

blood T cells from nonatopic donors inhibited
antigen-stimulated IL-5 production by
CD4þCD252 T cells, whereas inhibition by
CD4þCD25þ T cells from atopic donors was
much less effective (Ref. 53). In a study on
cytokine production by individual blood T cells,
the dominant allergen-specific cells were IL-10-
secreting in healthy individuals, resembling a
type of inducible Treg known as T regulatory 1
(Tr1) cells. By contrast, in atopic individuals,
the most abundant allergen-specific cells were
Th2-like IL-4 secretors (Ref. 54). Both these
papers propose that atopy may be associated
with an imbalance between Th2 cells and Treg.

The effects of Treg could account for some of the
observations associated with the ‘hygiene
hypothesis’. This hypothesis attempts to explain
the recent increased incidence of asthma in
developed countries on the basis of reduced
exposure to infectious agents, especially during
early life. Early studies suggested that skewing
of the Th response towards Th2 and away from
Th1, because of reduced exposure to Th1-
inducing pathogens, was a major contributor to
increased asthma incidence. However, several
observations argue against this. First, there is
increasing evidence that in asthma in humans,
and AAI in animals, Th1 cytokines contribute
to pathogenesis (see section ‘Th1 cytokines’
below). Second, the incidence of several Th1-
cytokine-driven inflammatory diseases such as
type 1 diabetes also increased in the late 20th

century (Ref. 55). Third, high parasite burdens,
which are associated with strong Th2
inflammation, can protect against allergic
disease (Ref. 56).

An alternative proposal relates the increasing
incidence of asthma in developed countries to
diminished Treg function (Ref. 57). Infection
with helminth parasites induces vigorous Th2
responses and Treg cells. In mice, infection with
the gastrointestinal nematode Heligmosomoides
polygyrus provided significant protection
against AAI (Ref. 58). Remarkably, protection
could be conferred following transfer of
helminth-induced Tregs into uninfected
allergen-sensitised mice. IL-10 is required for
helminth-induced protection against AAI
(Ref. 59). It is therefore possible that the low
incidence of parasite infection in developed
countries leads to lower generation of Treg and
enhanced Th2 responses.

Dendritic cells
Antigen uptake and presentation to naive Tcells is
principally mediated by dendritic cells.
Generation of effector T cells by respiratory
dendritic cells is skewed towards a default Th2
programme (Ref. 60), generating robust Th2
effector function to provoke airway and lung
tissue eosinophilia (Ref. 61). In addition to
activation of the T-cell receptor, costimulatory
signals are required for activation of naive T
cells. The best-described costimulatory pathway
involves the B7 molecules CD80 and CD86 on
dendritic cells, which activate CD28 on T cells.
In a mouse model, CD80 and CD86 were
required for efficient T-cell priming and Th2
cytokine secretion during sensitisation to
antigen, but not during antigen challenge
(Ref. 62). However the effects of costimulation
are complex, because antibody crosslinking of
B7 on dendritic cells, which activates them, has
been reported to inhibit airway inflammation in
a mouse model (Ref. 63). CTLA4-Ig (abatacept),
which contains a natural ligand of CD80 and
CD86 that binds to these markers and blocks
their costimulatory function, was trialled in
active rheumatoid arthritis. CTLA4-Ig caused
marked clinical and functional improvement in
patients in whom at least three months of
therapy with tumour necrosis factor (TNF)
blockers was unsuccessful (Ref. 64). These
findings raise the possibility that CTLA4-Ig
may be beneficial in asthma, although it must
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be recognised that rheumatoid arthritis is not a
Th2 disorder.

Priming of naive CD4þ Tcells by dendritic cells
towards a Th1 or Th2 phenotype is also affected
by the presence of the cytokine TSLP (Ref. 65),
which not only acts directly on naive CD4þ T
cells to enhance proliferation and survival
(Ref. 66) but also can upregulate costimulatory
molecule expression on antigen-presenting
dendritic cells. Furthermore, CD4þ T cells
primed from TSLP-treated dendritic cells
produced significantly less IFN-g (Ref. 67). The
importance of TSLP for the development of
allergic asthma was demonstrated by the
attenuated inflammatory response of TLSP-
receptor-knockout mice in an asthma model,
and also by the protection of wild-type mice
against the asthma phenotype when TSLP was
neutralised in the lungs (Ref. 67). In patients
with asthma, the number of airway cells
expressing TSLP was increased, and correlated
with airway obstruction. TSLP was expressed
by epithelial cells, endothelial cells, neutrophils,
mast cells and macrophages (Ref. 68). Epithelial
cells are a major source of TSLP, highlighting
the important overlapping functions between
innate and adaptive immunity for Th1- or
Th2-directed responses (Ref. 69).

The role of dendritic cell expression of Notch
ligands in Th1 and Th2 differentiation is reviewed
above in ‘Differentiation of effector T cells’.

Eosinophils
Airway eosinophilia is a key feature of AAI.
Eosinophils produce leukotriene (LT) C4, major
basic protein and a broad range of cytokines
and proallergic mediators (Ref. 70). However,
there are conflicting results on the association
between eosinophils and AHR. In some studies,
using IL-5-knockout mice or neutralising anti-
IL-5 antibody, in which eosinophils were
depleted, AHR was abolished (Refs 71, 72).
However, other reports failed to demonstrate an
association between eosinophilia and AHR. In a
study on mice treated with anti-IL-5 antibody,
eosinophils were depleted but AHR was not
affected (Ref. 73), and other mouse models of
AAI have been reported in which eosinophils
were not required for AHR (Refs 74, 75).

Findings in recently developed eosinophil-
deficient mice have also been controversial. In
one strategy for generating eosinophil-deficient
mice, knockout of a high-affinity GATA site in

the GATA-1 promoter effectively deleted
eosinophils but not other leukocyte lineages.
Assessment of these ‘Ddbl GATA’ mice in AAI
revealed that loss of eosinophils did not affect
mucus hypersecretion or AHR, although
subepithelial collagen deposition was reduced
after prolonged allergen challenge (Ref. 76). A
second eosinophil-deficient mouse strain was
developed by ectopic expression of diphtheria
toxin A chain under the eosinophil peroxidase
promoter. When examined in a model of
allergic asthma, these ‘PHIL’ mice had a modest
reduction in mucus secretion and complete
reversal of AHR (Ref. 77). By contrast to
evidence presented with the Ddbl GATA mice,
these findings suggest a direct role for
eosinophils in causing key asthma pathologies.
One explanation for the discrepant results could
lie in the differing genetic backgrounds of the
two strains. The Ddbl GATA mice were bred on
the Th2-susceptible BALB/c background while
the PHIL mice originated from the Th2-resistant
C57BL/6 background. These discrepant results
highlight limitations in the capacity of mouse
models to predict mechanisms in human
asthma. The role of eosinophils in AAI remains
controversial. Furthermore, human studies have
failed to demonstrate a causal relationship
between eosinophil infiltration and asthma (see
section ‘IL-5’ below).

Mast cells
Along with eosinophils, another enigmatic cell
type in asthma is the mast cell. These cells are
packed with a host of preformed inflammatory
molecules including histamine, TNF-a, and
tryptases and chymases, which are serine
proteases. Granule contents are released in
response to numerous stimuli, of which the
most relevant to AAI is crosslinking of the
high-affinity IgE receptor (Fc1R1), and also
perhaps Toll-like receptor signalling (Ref. 78). In
addition to preformed mediators, mast cells
also secrete de novo synthesised cytokines,
chemokines and inflammatory lipids after
activation (Ref. 79, 80). In clinical asthma, mast
cells produce the key Th2 cytokines IL-4, IL-5
and IL-13 (Refs 81, 82), although the relative
contribution of mast cells versus Th2 cells to the
production of these cytokines is controversial.

Investigations on the requirement for mast cells
in murine AAI have given conflicting results
(Refs 83, 84, 85). In clinical studies, the efficacy
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of an anti-IgE neutralising antibody has indirectly
implicated mast cells in the pathogenesis of
human allergic asthma. The humanised
antibody omalizumab binds to the CH3 domain
of IgE, preventing IgE from binding to both
Fc1RI (high-affinity) and Fc1RII (low-affinity)
IgE receptors (Ref. 86). Omalizumab inhibited
both the early and late asthma responses to
allergen, and reduced the levels of circulating
IgE (Ref. 87). It reduced sputum and tissue
eosinophilia and IgEþ and Fc1RIþ cells in the
bronchial mucosa (Ref. 88). Although
omalizumab is clinically very effective in the
treatment of asthma, its high cost has limited its
usefulness to the most severe cases (Ref. 89).
The findings suggest that mast cells are critical
in the pathogenesis of clinical asthma, although
the beneficial effects of omalizumab may
involve other Fc1Rþ cells.

Airway epithelial cells
The more sophisticated functions of airway
epithelium that regulate lung inflammation are
often overshadowed by its more mundane, yet
important, function as a physical barrier to the
external environment, and its role as a mucus
secretory unit. Airway epithelial cells are
responsive to many mediators involved in
asthma, and activated airway epithelial cells
express many chemokines, cytokines and other
mediators known to promote AHR and airway
inflammation and remodelling (Refs 90, 91). For
example, airway epithelial cells release the
neurotrophins nerve growth factor and brain-
derived neurotrophic factor in response to
inflammatory cytokines including TNF-a, IL-1b
and IL-4 (Ref. 92). Nerve growth factor
augments airway inflammation in a mouse
model (Ref. 93). The extensive array of pro-
inflammatory mediators produced by airway
epithelial cells clearly demonstrates their role in
lung inflammation and remodelling, but
whether stimulation of these cells can
independently induce aberrant AHR is unclear.

The airway epithelium is constantly exposed to
inhaled antigens and environmental pollens that
may trigger an asthmatic episode. Some of these
external stimuli can directly modulate cellular
function, thereby contributing to the initiation
and maintenance of airway inflammation. For
example, the Der p1 antigen of house dust mite
activates protease-activated receptors on airway
epithelial cells to induce IL-6, IL-8 and

granulocyte–macrophage colony-stimulating
factor (GM-CSF) expression (Refs 94, 95, 96).
Interestingly, asthmatic airway epithelial cells
produced more CCL20 [chemokine (C-C motif)
ligand 20; also known as MIP-3a] after
exposure to Der p1 than did control airway
epithelial cells, indicating an intrinsic
hypersensitivity of asthmatic epithelium to
house dust mite allergens (Ref. 97). Pollen
extracts have intrinsic NADPH oxidase activity
that alters the redox status in airway epithelial
cells, resulting in generation of more reactive
oxygen species, which ultimately augments the
development of AAI in mice (Ref. 98).
Furthermore, protease activity in pollens such
as ryegrass and Kentucky blue grass cause
airway epithelial cell detachment in vitro,
suggesting such proteases may disrupt airway
epithelial integrity in vivo (Ref. 99).

There are few reports that specifically address
the mechanisms of airway epithelial cell
function in vivo in AAI. These studies have
utilised the Clara cell 10 kDa secretory protein
(CC10) promoter to specifically target gene
expression in airway epithelial cells. Targeting
of NF-kB signalling in the airway epithelium
conclusively demonstrated a prominent NF-kB-
dependent role for this cell type in the
pathogenesis of AAI (Ref. 100). Similarly, tissue-
specific gene targeting identified a requirement
for STAT6-mediated responses in airway
epithelial cells for the development of IL-13-
driven AHR and mucus production (Ref. 101).
Surfactant protein-A and -D are produced by
alveolar epithelial cells, and administration of
these molecules in mice led to reduced
inflammation in an AAI model (Ref. 102). IL-4
and IL-13 induced high levels of expression of
the fatty-acid-binding protein aP2 in airway
epithelial cells. In a model of AAI, aP2-
knockout mice had markedly reduced airway
eosinophils, and bone marrow chimaera studies
implicated nonhaematopoietic cells, most likely
airway epithelial cells, in aP2 expression
(Ref. 103). These findings suggest an intriguing
link between asthma and fatty acid metabolism.
Collectively, these studies demonstrate that
airway epithelial cell function is vital in the
pathogenesis of AAI.

Cytokines and chemokines
Cytokine regulation of AAI is complex, with a
plethora of factors contributing to pathogenesis
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(Refs 104, 105, 106). Here we review the role of
several key cytokines in AAI.

IL-4
IL-4 is an important cytokine for CD4þ Th2 cell
differentiation (Refs 21, 107) and IgE class
switching (Ref. 108). IL-4 can bind to two
surface receptor complexes: one formed by the
IL-4Ra chain and the common g cytokine
receptor chain (gc), and the other formed by the
IL-4Ra and the IL-13Ra chain. IL-13 also binds
to the latter complex. Ligation of either receptor
complex triggers signalling of STAT6 and other
pathways (Ref. 109). The importance of IL-4 for
Th2 cell priming during AAI was demonstrated
by the reversal of allergen-induced AHR in
mice treated with anti-IL-4 antibodies during
both sensitisation and challenge stages, while
treatment during antigen challenge alone
did not confer protection (Ref. 73). In an
experimental system involving transfer of OVA-
specific IL42/2 Th2 cells into sensitised mice,
IL-4 regulated airway eosinophilia but not mucus
hypersecretion (Ref. 110). Mice deficient for IL-4
displayed attenuated airway eosinophilia,
although different effects on AHR were reported
in different models (Refs 111, 112), possibly
reflecting the critical role on genetic background
in the development of AHR in mouse models. In
clinical studies, a soluble IL-4 receptor was
administered weekly by nebuliser to asthma
patients who discontinued inhaled steroids at the
commencement of the study. The soluble IL-4
receptor demonstrated significant benefit in
patient-measured FEV1 (forced expiratory
volume in 1 s) (Ref. 113), but these studies have
not been followed up by publications on larger
trials.

IL-5
The prominent airway and lung tissue
eosinophilia in allergic asthma has led to a
focus on the mediators that govern the
production, survival and activation of
eosinophils. IL-5 fulfils all these functions and
is elevated in bronchoalveolar lavage fluid from
human asthmatics and allergic mice (Refs 70,
114). IL-5 acts on bone marrow progenitors to
accelerate the production of eosinophils
(Ref. 115). IL-52/2 mice have a marked
reduction in the number of eosinophils in the
airway, lung tissue and peripheral blood in AAI
(Ref. 72), although the requirement for

eosinophils in murine AHR is controversial (see
section ‘Eosinophils’ above). The effects of
clinical studies with neutralising anti-IL-5
antibodies were disappointing. Treatment
markedly reduced the levels of blood and
sputum eosinophils in asthmatic patients, but
did not affect AHR. These results argue against
a role for eosinophils in the pathogenesis of
asthma (Ref. 116). Similar results have been
found in other trials with anti-IL-5 antibodies
(Refs 117, 118). Furthermore, although anti-IL-5
treatment resulted in near-complete elimination
of eosinophils from the blood and sputum, it
reduced airway eosinophils only by 55%,
suggesting that other factors may have
maintained eosinophil viability in the airways
(Ref. 119). These results have been discouraging
for therapeutic approaches designed to target a
single cytokine in allergic asthma.

IL-9
IL-9 has multiple actions similar to those of other
Th2 cytokines, consistent with an effector role in
AAI (Ref. 120). Transgenic mice with elevated
pulmonary expression of IL-9 exhibit increases
in inflammatory cell influx, mucus production
and mast cell numbers (Ref. 121). IL-9 acts via
IL-13 to induce mucus production and
eosinophil chemoattraction by the pulmonary
epithelium (Ref. 122). In two separate studies
with mouse models of allergen-induced asthma,
administration of neutralising anti-IL-9
antibodies was reported to reduce eosinophilia,
AHR, airway damage and IgE (Refs 123, 124).
However, different findings were obtained in
IL-9-knockout mice, in which AHR,
eosinophilia and goblet cell hyperplasia were
not impaired in a model of allergic asthma
(Ref. 125). Although the reasons for the
differences are not clear, the results in the
knockout mice have discouraged attempts to
assess the effects of specific blockade of IL-9 in
clinical asthma.

IL-13
IL-13 binds to the IL-4Ra–IL-13Ra1 receptor
complex, as does IL-4, and shares many effects
with IL-4 (Refs 126, 127). As mentioned above,
IL-4 also signals through the receptor formed
by the IL-4Ra chain and gc, and there is an
additional IL-13 receptor chain, the IL-13Ra2
chain, which can act as a decoy receptor,
inhibiting the effects of IL-13 (Ref. 128).
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Administration of recombinant IL-13 to the
airways of naive mice strongly induces mucus
secretion in airway epithelial cells and is
sufficient to induce both airway eosinophilia
and IgE production. Neutralisation of IL-13
with a soluble fusion protein prevents AHR in
an AAI model in mice (Refs 127, 129).
The crucial action of IL-13 acting directly at
the level of the airway epithelium was
demonstrated by a compelling study (Ref. 101),
where overexpression of IL-13 restricted to
the airway epithelium was sufficient to
induce AHR and mucus production. The IL-
13Ra2 chain has an important role in
regulating AAI. In a model of AAI,
mice lacking this receptor chain exhibited
enhanced AHR, mucus production and fibrosis
(Ref. 130).

The discovery that IL-4 and IL-13 share
receptors has led to the development of a
receptor antagonist molecule, pitrakinra, that
inhibits both cytokines. It is an IL-4 variant that
competitively inhibits receptor complexes
containing the IL-4Ra chain, thereby interfering
with the actions of both IL-4 and IL-13. In a
recent report on patients with allergic asthma,
administration of pitrakinra, either
subcutaneously or by inhalation, reduced the
late-phase response to allergen (Ref. 131). This
report provides good evidence for a role for
Th2 cytokines in clinical allergic asthma, and
suggests that simultaneous inhibition of more
than one Th2 cytokine may be necessary for
beneficial effects.

Th1 cytokines
Type 1 cytokines such as IFN-g and IL-12 inhibit
Th2-cell differentiation and Th2 cytokine effector
function. For this reason, Th1 cytokines were
originally regarded as potentially protective
against asthma, which was considered a purely
Th2 response (Ref. 18). Interestingly, an attempt
to inhibit the Th2 response in asthmatics
through recombinant IL-12 therapy reduced
airway eosinophil numbers but not AHR
(Ref. 132), which indicates a more complicated
role for Th1 cytokines in asthma than is
suggested by the earlier Th1–Th2 imbalance
paradigm. In fact, a number of studies have
reported enhanced IFN-g levels in asthmatic
patients, suggesting that IFN-g and Th1 cells
may in fact be pathogenic in asthma
(Refs 133, 134).

In mouse asthma models, while some studies
showed protective effects of Th1 cells (Refs 36,
135), other experiments on transfer of Th1 cells
into allergic mice failed to show Th1
suppression of Th2 cell function in vivo
(Ref. 136). Instead of being protective, Th1 cells
could potentially exacerbate inflammation
(Ref. 137). Neutralising anti-IFN-g antibodies in
mouse models of asthma resulted in reduced
AHR (Ref. 138, 139). These studies, taken
together with the clinical studies described in
the previous paragraph, suggest that Th1 cells
and IFN-g contribute to the pathogenesis of
AAI and asthma.

IL-17A
In clinical asthma, IL-17A is overexpressed in the
airways and is associated with neutrophil influx
(Ref. 140). IL-17A induces the production by
human airway smooth muscle cells of the
neutrophil chemoattractant CXCL8 (IL-8)
(Ref. 141) and the eosinophil chemoattractant
CCL11 (eotaxin-1) (Ref. 142). In a mouse model
of AAI, antibodies to IL-17A inhibited
neutrophil influx but enhanced eosinophil
influx (Ref. 143). In another mouse study, IL-
17A was required during the sensitisation phase
for the development of allergic responses, but it
attenuated the allergic response during the
effector phase (Ref. 144). These findings
suggest that IL-17A is more likely to be a
therapeutic target in asthma associated with
neutrophil influx than in classical eosinophilic
inflammation.

TNF-a
TNF-a is a pro-inflammatory cytokine principally
produced by monocytes and macrophages.
Antagonism of TNF-a by soluble receptors or
neutralising antibodies has been strikingly
effective in the therapy of rheumatoid arthritis
and other inflammatory diseases (Ref. 145). In a
mast-cell-dependent model of AAI, AHR,
inflammation and Th2 cytokine production
were markedly reduced in TNF 2/2 mice
(Ref. 146). In severe clinical asthma, TNF was
overexpressed, and a trial of soluble TNF
receptor demonstrated beneficial effects on
AHR, FEV1 and quality-of-life score (Ref. 147).

Chemokines
Chemokines are a large family of cytokines with
chemotactic activity. They are key regulators of
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leukocyte migration, both in homeostasis and in
inflammation (Ref. 148). Much attention has
been given to the possibility of manipulating
the chemokine system in the treatment of
asthma. The role of chemokines in asthma has
been reviewed recently (Refs 149, 150) and is
covered only briefly here. The complexity of
the chemokine network had provided
challenges in identifying suitable therapeutic
targets. Many chemokines bind to multiple
receptors, and many of the chemokine receptors
bind multiple chemokines (Ref. 149). Despite
this complexity, the chemokine receptor CCR3
is a potential target in asthma, because it is a
key chemotactic receptor on eosinophils, binding
the chemokines CCL5 (RANTES), CCL11
(eotaxin-1), CCL24 (eotaxin-2) and CCL26
(eotaxin-3) (Refs 151, 152). Knockout mice
lacking CCR3 demonstrate marked reduction in
AAI in asthma models, although effects on AHR
have been variable (Refs 152, 153, 154). Recently,
orally administered small-molecule CCR3
antagonists were shown to inhibit AAI in a
mouse model (Ref. 155).

Further evidence for a role of CCR3 in AAI
comes from studies on CXCL9 (MIG), CXCL10
(IP-10) and CXCL11 (I-TAC). These chemokines
are agonists of the CXCR3 chemokine receptor
and are induced by IFN-g. In addition to
binding to CXCR3, they function as receptor
antagonists of CCR3, thereby preventing
eosinophil migration (Refs 156, 157). These data
are consistent with in vivo studies on CXCL9
and CXCL10, which inhibited airway eosinophil
recruitment (Refs 158, 159), although expression
of CXCL10 in the airways caused spontaneous
AHR and airway eosinophilia (Ref. 160). The
different findings on CXCL10 indicate the
complexity of the chemokine network.

Other chemokine receptors have been
identified as potential targets. A monoclonal
antibody to CCR2 – a marker of macrophages,
T cells, dendritic cells and neutrophils – was
recently demonstrated to inhibit eosinophilic
infiltration and AHR in AAI in cynomolgus
monkeys (Ref. 161). CCR4 is another potential
target, as IL-4-producing T cells in the blood
and bronchoalveolar fluid of asthma patients
express CCR3 and CCR4 (Ref. 162), and airway
eosinophilia and AHR were reduced in mice
lacking CCR4 (Ref. 163).

Given the importance of T cells to asthma, it is
significant to note that airway epithelial cells

produce several T cell chemokines. For example,
the recruitment of CCR4-expressing Th2 CD4þ

cells to the allergic lung is facilitated by airway
epithelial cell production of a CCR4 ligand,
CCL17 (TARC) (Ref. 164). Ligation of CD40 on
airway epithelium stimulates the production of
CCL2 and CCL5 (Ref. 165), further illustrating
the potential for cooperation between airway
epithelial cells and the adaptive immune
response in directing asthma. A recent study in
mice lacking the cytokine TNF-related
apoptosis-inducing ligand (TRAIL)
demonstrated reduced AAI and AHR. The
absence of TRAIL impaired production of
CCL20, thereby inhibiting the homing of
dendritic cells and T cells expressing CCR6, the
receptor of CCL20, to the airways (Ref. 166).

Additional cytokines regulating AAI
Other cytokines have been shown to be involved
in murine models and may have a role in clinical
asthma. These include IL-25, which is also known
as IL-17E because it is structurally a member of
the IL-17 family. IL-25 is produced by Th2 cells
and promotes airway inflammation and AHR in
mice in an IL-13-dependent fashion (Ref. 167).
The cytokine amphiregulin, a member of the
epidermal growth factor family, is produced by
activated mast cells and is associated with
mucus production in asthmatic airways
(Ref. 168). Considering the preferential
expression of amphiregulin in Th2 rather than
Th1 cells, and the impaired nematode clearance
in amphiregulin-deficient mice (Ref. 169),
amphiregulin may have an important role in
regulating AAI. Another relevant cytokine is
GM-CSF, which has a wide range of pro-
inflammatory effects on granulocytes,
macrophages and dendritic cells, including
effects on eosinophils that overlap those of
IL-5 (Ref. 170). Mice lacking functional
GM-CSF genes had a marked reduction in
bronchial eosinophilia and mucus production
(Ref. 171).

It is important to note that AAI is a highly
complex process, and that the activity of a vast
array of cytokines and chemokines in addition
to those described above is required for
pathogenesis. Nevertheless, clinical experience
with inhibition of TNF in rheumatoid arthritis
(Ref. 145) indicates that a blockade of a single
critical cytokine can have potent clinically
useful anti-inflammatory effects.
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Concluding comments
AAI involves the interplay of multiple cell types
and bioactive mediators, and is a key component
of asthma pathology. Studies into the
pathogenesis of AAI have informed clinical
trials aimed at targeting specific components of
the allergic response (Refs 88, 113, 116, 131, 132,
147). The variable success of these trials
suggests that the immunopathogenesis of
asthma is very complex, involving mechanisms
in addition to those suggested by mouse
models of AAI. It has been suggested that AAI
is most important during the early stages of
asthma, prior to the development of extensive
tissue damage and remodelling. This suggests
that clinical trials targeting Th2 immunity
might be better directed at children, rather than
the adult populations that have been tested to
date (Ref. 172).
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Further reading, resources and contacts

Publications
Kay, A.B. (2005) The role of eosinophils in the pathogenesis of asthma. Trends Mol Med 11, 148-152
This review provides further reading on one of the most controversial topics in asthma pathogenesis.

Holgate, S.T. and Polosa, R. (2006) The mechanisms, diagnosis, and management of severe asthma in adults.
Lancet 368, 780-793

This review provides an up-to-date coverage of clinical issues affecting the most severely affected 5–10% of
asthma patients, who have the most to gain from novel biological therapies.

Casale, T.B. and Stokes, J.R. (2008) Immunomodulators for allergic respiratory disorders. J Allergy Clin Immunol
121, 288-296

This recent article summarises data on clinical trials with novel therapeutic agents.

Harnett, M.M. and Harnett, W. Therapeutic immunomodulators from nematode parasites. Expert Rev Mol Med
(in press)

This forthcoming article in Expert Reviews in Molecular Medicine reviews the relationship between parasite
infection and allergic diseases.

Websites
The American Academy of Allergy, Asthma and Immunology website offers extensive information for patients,

medical professionals, its members and the media:

http://www.aaaai.org/

The Australasian Society for Clinical Immunology and Allergy website provides a variety of position papers and
other useful information for health professionals and patients:

http://www.allergy.org.au/
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Features associated with this article

Figure
Figure 1. Cytokine regulation of allergic asthma.
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