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Receptors for complement C5a. The importance
of C5aR and the enigmatic role of C5L2
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Complement component C5a is one of the most potent inflammatory chemoattractants and has been implicated in the

pathogenesis of numerous inflammatory diseases. C5a binds two receptors, C5aR and C5L2. Most of the C5a functional effects

occur through C5aR, and the pharmaceutical industry has focused on this receptor for the development of new anti-inflammatory

therapies. We used a novel approach to generate and test therapeutics that target C5aR. We created human C5aR knock-in

mice, and used neutrophils from these to immunize wild-type mice. This yielded high-affinity blocking mAbs to human C5aR.

We tested these anti-human C5aR mAbs in mouse models of inflammation, using the human C5aR knock-in mice. These

antibodies completely prevented disease onset and were also able to reverse established disease in the K/B�N arthritis model.

The physiological role of the other C5a receptor, C5L2 is still unclear, and our studies with blocking mAbs to human C5L2

have failed to demonstrate a clear functional role in signaling to C5a. The development of effective mAbs to human C5aR is

an alternative approach to drug development, for this highly attractive target.
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The complement system plays an essential role in innate immunity,
and production of one of the pathway components, C5a, is particu-
larly important for recruitment of immune cells and effective clearance
of infectious agents. However, the detrimental effects of uncontrolled
C5a production have been implicated in various pathological condi-
tions making C5a and its receptors attractive targets for therapeutic
intervention for inflammatory diseases. Mice genetically deficient in
one of the receptors for C5a (C5aR) and antagonists that inhibit C5a
signaling have established that the blocking C5a or its receptors holds
enormous promise for treatment of various autoimmune diseases and
acute inflammatory conditions. This review will outline recent find-
ings on the biology of the two receptors for C5a, C5aR and C5L2, and
the rationale for development of new anti-inflammatory agents that
inhibit C5aR or C5L2 function.

THE COMPLEMENT SYSTEM AND THE GENERATION OF C5a

The complement system is an ancient defense mechanism that
facilitates phagocytosis and clearance of pathogens. It is a biochemical
cascade, comprising more than 20 serum proteins that normally
circulate as inactive forms. Complement can be activated by four
different pathways: the classical pathway, the alternative pathway, the
lectin pathway1 and, the recently discovered, extrinsic protease path-
way.2 Regardless of how the pathway is activated, the cascade leads to
the generation of one of the most important effector molecules, C5a.

The classical pathway is initiated by C1q binding to immune
complexes of complement fixing IgG1 and IgM on the surface of
pathogens. The lectin pathway is activated independently of immu-
noglobulin, by serum protein mannose-binding lectin, which directly
recognizes carbohydrate structures on bacterial and viral surfaces. The
lectin pathway is very similar to the classical pathway except for the
initial recognition and activation step, and, importantly, all the path-
ways converge to generate C5 convertase. C5 convertase from the
classical and alternative pathways (C4bC2aC3b and C3bC3bBb,
respectively) cleaves C5 into C5a and C5b. C5b binds to C3b and
initiates the formation of the membrane attack complex, which leads
to cell lysis and bacterial killing (reviewed in Ricklin and Lambris1 and
Ward3). Recently, there have been additional activation pathways
identified, which give rise to C5a. An extrinsic protease pathway
involves direct cleavage of C3 and C5 by a series of proteolytic
enzymes such as kallikrein4 and thrombin.2 Thrombin can directly
activate and cleave C5 to yield biologically active C5a in mice
genetically deficient in C3, in which C5 convertase cannot be formed.2

The final products of complement activation—C3a, C4a and
C5a—were referred to as anaphylatoxins because of their ability to
trigger degranulation of mast cells, basophils and neutrophils. Of
these, C5a is the most effective mediator of leukocyte degranulation or
chemotaxis, and represents one of the most potent inflammatory
molecules produced during immune responses.
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C5a STRUCTURE AND FUNCTION

Nuclear magnetic resonance spectroscopy shows the structure of
human C5a to be a four-helix bundle; the four a-helical segments
juxtapose in an antiparallel topology, which are stabilized by three
disulfide bonds (Cys21-Cys47, Cys22-Cys54 and Cys34-Cys55) and
connected by three peptide loops.5–7 The flexible carboxyl terminal tail
(aa 69–74 MQLGR) forms a helical turn that is connected by a short
loop (reviewed in Monk et al.8), which is important for effector
functions of C5a. When this region is missing, C5a still binds to the
receptor but loses agonistic activity.9 This and other data support a
‘two-site binding’ model for C5a–C5aR interaction.10 The model
suggests that the N terminus and disulphide-linked core region of
C5a interact with a ‘recognition site’ that includes both the N terminus
and the third extracellular loop of C5aR, and the C-terminal region of
C5a fits into a binding pocket around the fifth transmembrane region,
called the ‘effector site.’10,11 This model explains why C5a without the
C-terminal region loses full effector function, even though it binds to
the receptor.

C5a is one of the most potent inflammatory peptides and shows
diverse activities on many cell types. Depending on the cell type, C5a
signaling can lead to various outcomes including phagocytosis,
degranulation, H2O2 production, granule enzyme release, delay or
enhancement of apoptosis, chemokine and cytokine production, and
chemotaxis. Table 1 summarizes the pleiotropic functions of C5a for
different cell types.

Once C5a is cleaved from C5, plasma enzyme carboxypeptidases
rapidly metabolize C5a by removing the C-terminal arginine to form
‘C5a desArg.’29,30 C5a desArg has a reduced potency, B10–1000 times
compared with C5a depending on the its function.31 The Kd of C5a
and C5a desArg binding to C5aR is estimated at 1 and 412–660 nM,

respectively.32,33 Both C5a and C5a desArg are cleared from body
fluids very quickly. When 125I-C5a or 125I-C5a desArg are injected
intravenously into adult rabbits, more than 50% of the injected
radioactivity for both mediators is cleared from the circulation within
2 min and accumulates in highly vascularized organs such as lung,
liver and spleen.34 This rapid removal of C5a from circulation is

believed to be due to the binding of C5a to receptors for C5a on
leukocytes. When purified granulocytes or monocytes were added to
complement-activated plasma in vitro, up to 80% of C5a was removed
from plasma and C5aR-blocking antibody inhibited C5a clearance.35

Notably, when C5aR internalization and recycling in granulocytes was
blocked by treating leukocytes with the ionophore monensin, C5a was
still cleared from plasma indicating that rather than ligand-receptor
internalization, binding of C5a to the receptor on leukocytes is
important in C5a removal from the circulation.35

RECEPTORS FOR C5a: C5aR AND C5L2

The potent inflammatory functions of C5a (see Table 1) indicate that
inhibition of this ligand, or its receptor(s), might alleviate certain
inflammatory conditions. There are two receptors known to bind to
C5a; C5aR (CD88) and C5L2 (GPR77). Both are seventh transmem-
brane proteins and their genes are located on chromosome 19,
q13.33–13.34 (human) directly neighboring each other. They cluster
together with the genes for other closely related chemoattractant
receptors such as formyl-peptide receptors FPRH1 and FPRH2.36

C5aR was the first anaphylatoxin receptor to be cloned, in 1991.37,38

In contrast, C5L2 was cloned much later, in 2000, by PCR amplifica-
tion using degenerate primers based on amino-acid sequences known
to be conserved in chemoattractant receptors.39 The C5L2 sequence
shows closest identity to that of C5aR (58%) and C3aR (55%).40,41

C5a and C5a desArg have been reported as ligands for C5L2.41

Okinaga et al.33 performed competitive ligand-binding assays with
125I-C5a in cell lines transfected with human C5aR or C5L2. They
showed that C5a bound to both C5aR and C5L2 with high affinity (Kd

3.4 and 2.5 nM, respectively). C5a desArg bound to C5aR with greatly
reduced affinity (660 nM) compared with C5a, but it bound to C5L2
with affinity as high as C5a (12 nM). Whether C3a and C3a desArg
serve as ligands for C5L2 is uncertain, as different laboratories have
produced conflicting data.33,42,43

The functional role of a receptor is intimately associated with the
cell types upon which it is expressed. C5aR was initially thought to be
expressed mainly on leukocytes such as neutrophils, eosinophils,
basophils, monocytes, dendritic cells and mast cells, but it is now
established that C5aR can be widely expressed, on both immune
and nonimmune cells. Reported nonimmune cell that express C5aR
include vascular endothelial cells,44 cardiomyocytes,45 astrocytes,46

microglia,47 neural stem cells,48 oligodendrocytes,49 synoviocytes,50

articular chondrocytes,51 renal glomerular mesangial cells,52 hepatic
kupfer cells and stimulated hepatocytes,53–55 bronchial epithelial
cells56 and keratinocytes.57 C5aR shows a dramatic pattern of regula-
tion, especially in tissues from mice undergoing the cecal ligation/
puncture sepsis model.58 C5aR immunoreactivity was strikingly
increased in lung, liver, kidney and heart in the cecal ligation/puncture
model.

C5L2 is expressed at much lower levels on both immune and
nonimmune cells, compared with C5aR. C5L2 is expressed on
neutrophils, macrophages,59 immature dendritic cells39 and some
nonimmune type cells such as adipocytes and skin fibroblasts,60 as
well as adrenal gland, spinal cord, thyroid, liver, lung, spleen, brain
and heart.61 In our studies, we have raised highly specific monoclonal
antibodies (mAbs) to human C5L2 and confirmed that C5L2 in
humans is expressed on neutrophils and other nonlymphoid cells,
but at levels considerably less than that of C5aR (H Lee and CR
Mackay, unpublished). These mAbs should be useful in establishing
the precise pattern of C5L2 expression and regulation in tissues,
particularly where expression may deviate from that of C5aR, such
as in adipose tissue.

Table 1 Functional activity of C5a on different cell types

Cell type Activity

Neutrophils Enhanced expression of adhesion molecules12

Chemotaxis13

Oxidative burst (O2 consumption)14

Phagocytosis14

Release of granule enzymes15

Delayed apoptosis16

Eosinophils Release of granule enzymes17,18

Chemotaxis19

Basophils Histamine release20

Mast cells Histamine secretion20

Chemotaxis21

Plasmacytoid dendritic cells Chemotaxis22

Macrophages/monocytes Chemotaxis23

Cytokine release24

Thymocytes Enhances apoptosis25

Endothelium Vasodilation26

Chemokine release26

Hepatocytes Enhanced regeneration27

Microglia Chemotaxis28
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C5a RECEPTORS: STRUCTURE AND SIGNALING PROPERTIES

Both C5aR and C5L2 are seven transmembrane proteins that belong
to rhodopsin-like family. Although these two receptors share struc-
tural similarity, there are several important differences. C5aR signaling
pathways have been studied extensively. C5aR couples to pertussis
toxin-sensitive Gia2, Gia3

62 or pertussis toxin-insensitive Ga16
63 and

initiates several downstream signaling pathways (reviewed in Johswich
and Klos64). Signaling of C5aR involves intracellular calcium mobili-
zation, and activation of different pathways such as phosphatidylino-
sitol-bisphosphate-3-kinase/Akt (also known as protein kinase-B;
PKB),65 Ras/B-Raf/mitogen-activated protein kinase/extracellular sig-
nal-related kinase,66 phospholipase D (PLD),67 protein kinase C,66

p21-activated kinases, which are downstream effectors of cdc42 and
rac GTPases,68 signal transducers and activators of transcription,
sphingosine kinase69 and NF-kB.70 In neutrophils, C5a activates
phosphatidylinositol-bisphosphate-3-kinase to phosphorylate Akt,
and subsequently Bad protein is phosphorylated and prevents pro-
apoptotic caspase 9 activation resulting in inhibition of apoptosis.65

C5a protects neurons from glutamate-induced apoptosis through
mitogen-activated protein kinase-mediated regulation of caspase 3.71

PLD activated by C5a produces phosphatidic acid and diglyceride in
neutrophils. PLD is known to control many neutrophil functions,
such as the oxidative response, degranulation, chemotaxis and pro-
tease release.72 C5a also results in extracellular signal-related kinase
phosphorylation downstream of RAS/RAF signaling and causes nico-
tinamide adenine dinucleotide phosphate (reduced form) oxidase
assembly and results in reactive oxygen species production in rat
alveolar macrophages.73 Mitogen-activated protein kinase inhibitor
PD98059 and SB203580 and phosphatidylinositol-bisphosphate-3-
kinase inhibitor wortmannin and LY294002 inhibit C5a-induced
migration of macrophages,74 indicating an important role for the
mitogen-activated protein kinase and phosphatidylinositol-bispho-
sphate-3-kinase pathways in chemotaxis. C5a stimulates the genera-
tion of sphingosine-1-phosphate and sphingosine kinase-1 activity in
human macrophages, and knocking down sphingosine kinase-1 using
antisense oligonucleotides abolishes C5a-induced intracellular calcium
signals, degranulation, cytokine production and chemotaxis.69 In
neutrophils, C5a activates IkBa, which suppresses NF-kB, whereas
in macrophages C5a actuates NF-kB and leads to cytokine and
chemokine production (reviewed in Guo et al.75). In human
HEK293 cells, C5a induces signal transducers and activators of
transcription phosphorylation both at Tyr705 and Ser727 residues
through the activation of PTX-insensitive Ga16 protein, and Ras/
Raf/MEK/extracellular signal-related kinase and c-Src/JAK pathways
are involved.76

DISSECTING THE ROLE OF THE ENIGMATIC C5a RECEPTOR,

C5L2

Unlike C5aR, C5L2 has been regarded, until recently, as a nonfunc-
tional decoy receptor. Okinaga et al.33 showed that when the murine
B cell line L1.2-expressing C5L2 was treated with C5a, there was no
mobilization of intracellular calcium, extracellular signal-related
kinase phosphorylation or receptor internalization, in contrast to
C5aR expressing cells, which responded to C5a as expected. Moreover,
they examined mRNA expression after C5a treatment of bone marrow
cells from C5aR-deficient mice to probe effects of C5L2 signaling on
transcription and found no detectable C5a-mediated changes in gene
expression. Similarly, RBL-2H3 cells transfected with C5L2 did not
show any intracellular calcium mobilization, degranulation or receptor
internalization upon C5a binding,41 and HL-60 and U937 cell lines,
which endogenously express C5L2 showed similar results in calcium

mobilization.42 It has been suggested that the inability of C5L2 to
signal is due to the change in a highly conserved ‘DRY (Asp-Arg-Tyr)
motif ’ located at amino-acid residues 137–139 near the third trans-
membrane domain, which is highly conserved in many GPCRs. The
central arginine residue of this motif has been shown to be important
in receptor coupling to G proteins.77 C5L2 has DLC (Asp-Leu-Cys) in
the motif and when central leucine was mutated to arginine, C5a
could induce a small increase in intracellular calcium levels in 293 T
cells co-expressing Ga16, suggesting that leucine at residue 132 in C5L2
contributes to G protein uncoupling.33 Other differences in the C5L2
structure, compared with C5aR, are the lack of the NPXXY (Asn-Pro-
X-X-Tyr) motif in the seventh transmembrane domain and a shorter
third intracellular loop lacking the conserved basic region and serine/
threonine residues, which are thought to be potential protein kinase
C phosphorylation sites41 (reviewed in Monk et al.8).

In 2005, Gao et al.61 reported that in a rat model of sepsis following
cecal ligation/puncture, mRNA and protein levels for C5L2 increased
in lung and liver and blocking C5L2 with an anti-C5L2 antibody
dramatically increased the level of the inflammatory cytokine IL-6 in
serum. Similar results were obtained by Gerard et al.78 from mice
genetically deficient in C5L2. They found that mice lacking C5L2
showed enhanced responses to both C5a and C5a desArg, suggesting
an anti-inflammatory function for C5L2.

All of the above data supported the notion that C5L2 is a
nonsignaling receptor and that it serves as a decoy, similar to a
number of other nonsignaling decoy chemoattractant receptors.
However, recent data now suggest a functional positive regulatory
role of C5L2 for C5a signalling.59 Using another C5L2-deficient mouse
strain, Chen et al. showed that these mice were hypersensitive to
lipopolysaccharide-induced septic shock and showed reduced airway
hyperresponsiveness and inflammation in an ovalbumin-induced
model. We have attempted to resolve these discrepancies through
another approach—use of C5L2 antagonistic mAbs. We produced a
mAb that completely antagonizes C5a binding to C5L2 transfectants.
In our hands, the anti-C5L2 mAb did not significantly inhibit
neutrophil chemotaxis to C5a (H Lee, Y Lim and CR Mackay,
unpublished). Moreover, anti-C5aR mAbs completely blocked neu-
trophil chemotaxis to C5a, suggesting that C5aR was the predominant,
if not the only, receptor for chemotactic responses to C5a. Likewise in
a phagocytosis assay in vitro, anti-C5aR mAb completely blocked
neutrophil phagocytosis, whereas anti-C5L2 mAb showed no effect
(unpublished). Hopefully, mAbs will be developed that recognize and
block mouse C5L2, and these should help resolve the in vivo relevance
of this receptor.

ROLE OF C5a AND ITS RECEPTORS IN INFLAMMATORY

DISEASES

As C5a is such a potent pro-inflammatory mediator, it is very
important to control expression to allow rapid responses to patho-
gens, but at the same time protection for the host against unregulated
overactivity.1 When this tightly regulated balance is disrupted, over-
production of C5a can occur, leading to uncontrolled inflammation.
Excessive production of C5a can downregulate immune responses in
some leukocytes, and, at the same time, it can overactivate other cell
types. For example, when high levels (10–100 nM) of C5a are present in
plasma, neutrophils become functionally paralyzed and demonstrate
defective phagocytosis and reduced generation of H2O2, loss of
chemotactic responses to C5a and end up losing bacteria-killing
effect.79–81 On the other hand, high levels of C5a potentiate macro-
phage responses to lipopolysaccharide, to produce excessive levels
of pro-inflammatory mediators such as TNF-a and various other
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chemokines82 leading to uncontrolled inflammation. On endothelial
cells, high levels of C5a leads to enhanced production of pro-
inflammatory mediators such as IL-8, IL-1b and RANTES,83 and
tissue factor, which serves as a cofactor for blood coagulation.84

Overproduced C5a or upregulated C5aR expression has been
implicated in the pathogenesis of many inflammatory conditions,
autoimmune and neurodegenerative diseases. These include rheuma-
toid arthritis,85–87 respiratory distress syndrome,88 inflammatory
bowel diseases,89 glomerulonephritis,90 systemic lupus erythemato-
sus,91 ischemia/reperfusion injury,92 chronic obstructive pulmonary
disease,93 sepsis,79 multiple sclerosis,94 asthma and allergy,95

atherosclerosis,96 xenograft rejection,97 hemorhagic shock98,99 and
antiphospholipid syndrome.100

DEVELOPMENT OF INHIBITORS OF C5a/C5aR SIGNALING

Over the past decades, even before the discovery of C5aR, many
groups have tried to develop highly potent and specific small molecule
antagonists to block C5a function. This has turned out to be surpris-
ingly difficult, probably because C5a has a relatively high molecular
weight (410 000) and blocking large protein–protein interactions
with small molecules can be difficult, especially if the interaction
involves multiple sites. Nevertheless, in recent years a few potent
antagonists for C5aR have been developed101 including nonpeptidic
small molecules,102,103 C5a mutants,104 short peptides105 and cyclic
peptides,106–108 mAbs and antibody fragments.109–112

NON-PEPTIDE C5aR ANTAGONISTS
Nonpeptide small molecular weight antagonists that can be
easily administered orally have been developed. Merck identified
series of chemical compounds, which were effective antagonists for
C5aR but because of unwanted agonistic activity, they were not
developed further.102 Mitsubishi Pharma Corporation (Yokohama,
Japan) developed an orally active nonpeptide C5aR antagonist
W-54011. W-54011 inhibits 125I-labeled C5a to human neutrophils,
intracellular calcium mobilization, chemotaxis and generation
of reactive superoxide species without showing agonistic activity
up to 10mM. Neurogen reported a nonpeptide antagonist
NDT9520492, which contains a three-ring structure103 and a similar
compound NGD 2000-1 was tested in human clinical trials for the
treatment of rheumatoid arthritis. Phase I studies of NGD 2000-1
showed that it inhibited cytochrome P450 (3A4), a metabolic enzyme
found in the liver, which metabolizes many drugs (reviewed in Monk
et al.8 and Sumichika113). Development of NGD 2000-1 has been
abandoned.

C5a MUTANTS AND ANTAGONISTIC PEPTIDES FOR C5aR
C5a1–71T1M,C27S,Q71C monomer (C5aRAM; CGS 27913) was devel-
oped by modifying the C-terminal region of human C5a.104 C5aRAM
and its dimer C5aRAD (CGS 32359) inhibit 125I-C5a binding to
human neutrophils, C5a-induced intracellular calcium mobilization,
CD11b integrin upregulation, superoxide generation, lysozyme release
and chemotaxis. In vivo, C5aRAM inhibited C5a-induced dermal
edema in rabbits and C5a-induced neutropenia in micropigs.104

Moreover, in a porcine model of surgical revascularization,
when given intravenous (i.v.) injection before surgical procedure,
C5aRAD significantly inhibited neutrophil activation and reduced
infarct size.114

A novel recombinant C5aR antagonist DpIII-A8 was discovered by
Heller et al.115 by screening human C5a phage libraries in which the C
terminus of C5a desArg was mutated. It inhibits binding of 125I-hC5a
to differentiated U-937 cells, C5a-induced chemotaxis and lysosomal

enzyme release without agonistic activity. In the reverse passive
Arthus reaction, i.v. injection of DpIII-A8 significantly inhibited
polymorphonuclear leukocyte accumulation in the peritoneum, skin
and the lung. In a model of intestinal ischemia/reperfusion injury,
DpIII-A8 decreased tissue injury by reducing bowel wall edema,
hemorrhage and pulmonary microvascular dysfunction.115

Peptide analogues of the C terminus of C5a were generated based
on structure/activity studies. N-MePhe-Lys-Pro-D-cha-Trp-D-Arg
(C-089) is a full antagonist and blocks C5a-induced degranulation
and GTPase activity in human neutrophils.105 Taylor’s group used
C-089 as a structural template and modified it to generate potent
and selective C5a antagonists. A cyclic peptide, Phe-[Orn-Pro-
D-Cha-Trp-Arg] (F-[OPdChaWR]), which showed high affinity
for C5aR and inhibited 125I-C5a binding and C5a-mediated
myeloperoxidase release from human neutrophils.106,107 They acety-
lated F-[OPdChaWR] to derive a new antagonist, AcF-[OPdChaWR],
which inhibits 125I-C5a binding to intact polymorphonuclear leuko-
cytes with an IC50 of 20 nM

108 (reviewed in Monk et al.8 and
Sumichika113). It inhibited C5a- and lipopolysaccharide-induced
neutropenia and the reverse passive Arthus reaction in rats.116 In a
rat model of immune-mediated monoarticular arthritis, oral admin-
istration of AcF-[OPdChaWR] significantly reduced the severity of
pathology such as swelling of knee, histopathology, gait disturbance
and serum and intra-articular levels of inflammatory cytokines.117

AcF-[OPdChaWR] also reduces pathological symptoms in other
animal models of inflammatory diseases, such as ischemia/reperfusion
injury,118,119 inflammatory bowel diseases,89 hemorrhagic shock,98

lupus nephritis120 and sepsis.121 This compound has been evaluated
in human clinical trials.122

Figure 1 Molecular representation of the surface of human C5aR with the

binding site for inhibitory monoclonal antibodies (mAbs). The small region in

the second extracellular loop of C5aR (EEYFPP) was the main target for

blocking and inhibitory mAbs.109 The picture was kindly provided by Søren

Berg Padkjær (Novo Nordisk A/S) and was produced using the program

MolSoft BrowserPro using a homology model based on alignment of C5aR
sequence with rhodopsin. C5aR backbone (schematic), Epitope ‘EEYFPP’

(spacefilling). It is likely that this region in the second extracellular loop of

C5aR plays a critical role, either as a second binding site for C5a and/or as

a region that transmits a conformational change in receptor structure, that

results in receptor signaling.
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THERAPEUTIC mAbs TO C5aR

Monoclonal antibodies constitute a rapidly growing class of thera-
peutics due, in part, to their predictable pharmacokinetic properties,
their high success rate in the clinic123 and their ability to antagonize
large protein–protein interactions. Moreover, developments in the
production, humanization and engineering of mAbs124 has resulted
in more than 150 antibodies advancing to clinical development125

with 22 antibodies have been approved by the FDA for therapeutic
application.123 Recently, an antibody against complement component
C5 (Eculizumab; soliris) was approved by the FDA and represents the
first complement-targeting drug that had been given marketing
authorization.1

We have undertaken an extensive effort to develop therapeutic
mAbs to hC5aR. mAbs to C5aR were raised using two approaches.
First, we used a well-established approach126 for raising mAbs to
chemoattractant receptors, using L1.2 cells (a murine B cell lymphoma
line) expressing very high levels of hC5aR (B80 000 receptors per
cell).109 In a second and perhaps more innovative approach, we
immunized wild-type mice with neutrophils from hC5aR knock-in
(KI) mice.109 In this approach, wild-type mice should mount a
focused response to hC5aR, since it will be the only antigen seen as
foreign, and is expressed at very high levels on neutrophils, up to
200 000 molecules per cell.127 Both approaches were successful in
generating highly specific mAbs to hC5aR. mAbs generated through
both of these approaches completely blocked C5a binding to its
receptor, intracellular calcium mobilization and leukocyte chemotaxis,
and showed no signs of agonist activity.109

Recent studies by us and others suggest a critical role for the second
extracellular loop of the chemoattractant receptors in ligand bind-
ing,109,128 receptor activation129 and even in antagonist binding.130 Of
the many mAbs generated by us against hC5aR, all of the most potent
inhibitors of C5a binding or function mapped to a very specific region
in the second extracellular loop of C5aR.109 The location of this region
is shown in a predicted three-dimensional structural model of hC5aR
(Figure 1), generated using the rhodopsin structure as a template and
alignment of conserved C5aR residues. Similar mapping of function-
blocking mAbs to the second extracellular loop have been reported for
CCR5.131

Use of hC5aR KI mice provides an excellent example of how
transgenic mice can be used for the in vivo evaluation of pharmaco-
logical agents such as therapeutic mAbs or small molecules. Use of
human molecule KI mice is particularly useful for preclinical devel-
opment of drugs that display selectivity for the human target. In our
studies with anti-C5aR mAbs, we used hC5aR KI mice in a model of
inflammatory arthritis. K/B�N inflammatory arthritis mediated by
serum transfer was induced in hC5aR KI mice, and the preventative
and therapeutic effect of mAb 7F3 were readily demonstrable.109 The
very rapid reversal of inflammation was likely due to blocking C5a and
C5aR signaling and preventing neutrophil migration to the joint,
rather than neutrophil depletion from the blood. C5aR is also
expressed by mast cells and macrophages, both of which play a role
in the K/B�N serum transfer model of arthritis. To our knowledge,
there is no other treatment that is as effective at reversing inflamma-
tion in this model, besides anti-C5 treatment. However, anti-C5
blocking mAb required a much higher amount of mAb
(B40 mg kg�1)132 compared with anti-C5aR mAb (as low as
B1 mg kg�1). The reason for this may presumably relate to the
high concentration (B170mg ml�1) of C5 that is normally present
in blood and tissue fluids.133 Blocking C5aR not only prevented
synovitis, but also cartilage degradation in the K/B�N arthritis
model.109 Blocking C5aR might provide additional benefit to rheu-

matoid arthritis patients, over its anti-inflammatory effects, as Onuma
et al. reported that C5aR is expressed on human articular chondro-
cytes, and expression levels were significantly higher in rheumatoid
arthritis patients than in control groups (26% in rheumatoid arthritis,
9.0% in osteoarthritis and 6.9% in normal). Moreover, IL-1b, which is
known to have a catabolic effect on chondrocyte metabolism,134,135

significantly enhances expression of C5aR on chondrocytes in
rheumatoid arthritis and normal samples.51 Also, it has been
reported that local production of almost all of the complement
components are found in joint tissue,136 and levels of C5aR expression
are also upregulated in inflammatory and proliferative synovial
tissues.85 These data suggest that C5aR may be directly involved
in joint destruction in rheumatoid arthritis patients. A model
summarizing the likely steps in the pathogenesis of rheumatoid
arthritis, and the involvement of C5a and its receptors, is shown in
Figure 2.

CONCLUSIONS

C5a and its receptors are attractive targets for therapeutic interven-
tion in numerous inflammatory diseases. The appropriate indications
for C5a–C5aR inhibition will emerge with the relevant human
clinical trials, although studies in rodents suggest that antagonists of
C5aR will find utility in a wide range of inflammatory diseases,
particularly rheumatoid arthritis. The most effective way to inhibit
C5aR is still to be resolved. We have developed blocking mAbs, since
small molecule inhibitors have proven difficult for this receptor.
Hopefully, anti-C5aR mAbs will enter human clinical trials in the
coming years.

Figure 2 Steps in the pathogenesis of rheumatoid arthritis, and the role of

C5a and C5aR. Steps in the pathogenesis of rheumatoid arthritis may
include the following: 1. Breakdown of T-cell and B-cell tolerance. This

could occur due to a variety of genetic and environmental conditions, but

ultimately results in the production of autoantibodies directed to self-

proteins. 2. Deposit of antibody complexes in synovial tissue. 3. Activation

of the complement pathway. In the K/B�N model of inflammatory arthritis,

autoantibody deposition activates the alternative complement pathway,

which leads to C5a production. C5a production serves to activate mast cells,

and to recruit inflammatory cells to the joint, such as polymorphonuclear

leukocytes (PMNs), mast cells and macrophages. 4. In human rheumatoid

arthritis, the synovial membrane becomes hyperplastic and ultimately

develops into a ‘pannus,’ which destroys the articular cartilage and

underlying bone. The release of angiogenic factors, such as VEGF or

angiogenic chemokines contributes to new blood vessel growth and

continued inflammation. Release of inflammatory cytokines such as TNF,

IL-1 and matrix metaloproteinases (MMPs) contribute to joint inflammation

and destruction.
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Gc-globulin concentrations and C5 haplotype-tagging polymorphisms contribute
to variations in serum activity of complement factor C5. Clin Biochem 2007;
40: 771–775.

134 Verschure PJ, Van Noorden CJ. The effects of interleukin-1 on articular cartilage
destruction as observed in arthritic diseases, and its therapeutic control. Clin Exp
Rheumatol 1990; 8: 303–313.

135 Pelletier JP, Roughley PJ, DiBattista JA, McCollum R, Martel-Pelletier J. Are cytokines
involved in osteoarthritic pathophysiology? Semin Arthritis Rheum 1991; 20: 12–25.

136 Mizuno M. A review of current knowledge of the complement system and the
therapeutic opportunities in inflammatory arthritis. Curr Med Chem 2006;
13: 1707–1717.

Receptors for complement C5a
H Lee et al

160

Immunology and Cell Biology


	Receptors for complement C5a. The importance of C5aR and the enigmatic role of C5L2
	THE COMPLEMENT SYSTEM AND THE GENERATION OF C5A
	C5a STRUCTURE AND FUNCTION
	C5a STRUCTURE AND FUNCTION
	RECEPTORS FOR C5a: C5aR AND C5L2
	C5a RECEPTORS: STRUCTURE AND SIGNALING PROPERTIES
	DISSECTING THE ROLE OF THE ENIGMATIC C5a RECEPTOR, C5L2
	ROLE OF C5a AND ITS RECEPTORS IN INFLAMMATORY DISEASES
	DEVELOPMENT OF INHIBITORS OF C5asolC5aR SIGNALING
	NON-PEPTIDE C5aR ANTAGONISTS
	C5a MUTANTS AND ANTAGONISTIC PEPTIDES FOR C5aR

	THERAPEUTIC mAbs TO C5aR
	THERAPEUTIC mAbs TO C5aR
	Conclusions
	Figure 1 Molecular representation of the surface of human C5aR with the binding site for inhibitory monoclonal antibodies (mAbs).
	Figure 2 Steps in the pathogenesis of rheumatoid arthritis, and the role of C5a and C5aR.
	Table 1 Functional activity of C5a on different cell types


