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Despite being one of the first recognized targets of
insulin action, the acceleration of glucose transport
into muscle and fat tissue remains one of the most
enigmatic processes in the insulin action cascade.
Glucose transport is accomplished by a shift in the
distribution of the insulin-responsive glucose trans-
porter GLUT4 from intracellular compartments to the
plasma membrane in the presence of insulin. The
complexity in deciphering the molecular blueprint of
insulin regulation of glucose transport arises be-
cause it represents a convergence of two convoluted
biological systems—vesicular transport and signal
transduction. Whereas more than 60 molecular play-
ers have been implicated in this orchestral perfor-
mance, it has been difficult to distinguish between

mainly passive participants vs. those that are clearly
driving the process. The maze-like nature of the en-
dosomal system makes it almost impossible to dis-
sect the anatomical nature of what appears to be a
medley of many overlapping and rapidly changing
transitions. A major limitation is technology. It is clear
that further progress in teasing apart the GLUT4
code will require the development and application of
novel and advanced technologies that can discrimi-
nate one molecule from another in the living cell and
to superimpose this upon a system in which the mo-
lecular environment can be carefully manipulated.
Many are now taking on this challenge. (Molecular
Endocrinology 22: 226–233, 2008)

IN TYPE II DIABETES, glucose uptake into muscle and
fat is impaired, and this is a major consequence of

insulin resistance (1). When combined with defective
pancreatic insulin secretion, this results in a major dys-
regulation in blood glucose (1). The transport of glucose
into muscle and fat tissue is the rate-limiting step for
glucose utilization, and so defining the molecular nature
of this process represents an important goal in diabetes
research (2). In mammals, the facilitative glucose trans-
porter GLUT4 is of particular relevance to insulin action
because its expression is confined to insulin-sensitive
cell types such as muscle, fat, and cardiac tissue (3–5).
The regulated entry of glucose into fat and muscle cells
in response to insulin or contraction is mediated by the

translocation of GLUT4 from intracellular membranes to
the plasma membrane (6, 7). To initiate this process,
insulin triggers several signaling cascades leading to the
physiological effects of insulin. A key component of the
insulin signaling cascade is the activation of phosphati-
dylinositol 3-kinase (PI3-kinase) and its downstream ki-
nases such as Akt (8). Akt is known to mediate many of
the physiological effects of insulin including GLUT4
translocation by phosphorylating downstream sub-
strates (9).

To begin to tease apart the molecular regulation of
glucose transport by insulin, a more comprehensive
description of the GLUT4 trafficking itinerary will be
necessary. For simplicity, this can be described in six
discrete steps as shown in Fig. 1: 1) Biogenesis of
GLUT4 storage vesicles (GSVs)—much data has now
shown that the majority of intracellular GLUT4 is found
in small 50-nm vesicles referred to as GSVs (10–15). 2)
Transport—elements of the cytoskeleton including mi-
crotubules and actin have been implicated in the
movement of GSVs to the cell cortex (16–19). 3) Teth-
ering—a low-affinity interaction between GSVs and
the plasma membrane mediated by a tethering com-
plex (20, 21). 4) Docking—assembly of the trans
SNARE (soluble N-ethylmalemide-sensitive factor at-
tachment receptor) complex, which is the final com-
mitted step before fusion of the GSVs with the plasma
membrane (PM) (22). 5) Fusion—rapidly follows where
the lipid bi-layers of the GSV and the PM merge.
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6) Endocytosis—once incorporated into the surface
membrane, GLUT4 can be efficiently retrieved via en-
docytosis, and this involves at least in part a clathrin-
dependent mechanism (23–26). Many reviews have
covered several aspects of GLUT4 trafficking and in-
sulin signaling (2, 27–30), so here we will first discuss
what GSVs are and how they are formed and in a
second part how insulin may regulate tethering, dock-
ing, and fusion of GSVs with the plasma membrane.

PART I—GSVs: STATIC VS. DYNAMIC SORTING

Where Is GLUT4?

This has been one of the major questions capturing the
imagination of GLUT4 biologists. Early electron mi-
croscopy studies were perhaps the most informative
showing an enrichment of GLUT4 in tubulo-vesicular
elements scattered throughout the cytoplasm of the
adipocyte or enriched near t-tubules in muscle with an
additional localization in endosomes and the trans-
Golgi network (TGN) (10, 31). In addition to increasing
surface levels of GLUT4, insulin also increased the
amount of GLUT4 in endosomes, providing the first
indication that the major effect of insulin is on exocy-
tosis and that in the presence of insulin GLUT4 con-
tinuously cycles through the endosomal system (10).
The juxtaposition of GLUT4 within the endosomal/
TGN system has presented a major obstacle in defin-
ing the nature of this intracellular GLUT4 compart-
ment. Firstly, the endosomal/TGN system is complex
comprising multiple subcompartments (10, 11). Sec-
ondly, the degree of overlap between GLUT4 and en-
dosomal/TGN markers varies considerably in different
cell types. For example, in adipose tissue from rodents
as little as 13% of GLUT4 is found in the TGN area (10),
whereas 50% is found in this region in 3T3-L1 adipo-
cytes (32). Several observations support the existence
of a unique population of intracellular insulin-respon-

sive vesicles or GSVs: 1) Chemical ablation of the
endosomal compartment with transferrin (Tf)-horse-
radish peroxidase (HRP) has only a modest effect on
insulin-stimulated GLUT4 trafficking to the plasma
membrane (33); 2) Electron microscopy studies have
shown that peripheral tubulo-vesicular structures are
the major insulin-responsive GLUT4 compartment in
adipocytes (11, 12); 3) Careful analysis of insulin re-
sponsiveness of a variety of proteins found in intracel-
lular GLUT4 compartments has identified only a hand-
ful of proteins that behave in an analogous manner to
GLUT4 including insulin-responsive aminopeptidase
(IRAP) (34, 35) and vesicle-associated membrane pro-
tein (VAMP2) (36, 37); and 4) Biochemical fractionation
studies showing that the majority of intracellular
GLUT4 containing membranes can be separated from
those containing endosomal and TGN markers (13–
15). The existence of this separate population of reg-
ulatable GLUT4 vesicles or GSVs raises two important
issues: how are they formed and how do they traffic in
the absence and presence of insulin?

How Are GSVs Formed?

In general, the formation of vesicles is catalyzed by a
budding stage where coat proteins are recruited to the
donor membrane via interactions with Arf GTPases
and adaptor proteins, which in turn interact with cargo
on the donor membrane (38–40). GSVs may form ei-
ther from endosomes or from parts of the TGN or both.
GSV biogenesis has been studied in two ways: by
examining either the entry of newly synthesized
GLUT4 into this compartment or the re-entry of GLUT4
from the cell surface back into GSVs. One assumes
that the biogenesis machinery should be the same in
both cases because GSVs are renewable (41). In the
case of the former, investigations have examined the
time necessary for GLUT4 to acquire insulin respon-
siveness after electroporation of a green fluorescent
protein (GFP)-tagged GLUT4 construct into adipo-
cytes. In 3T3-L1 cells, this process was found to be
slow [6–9 h (Ref. 42)], whereas in rat adipocytes it was
faster [!3.5 h (Ref. 25)]. This discrepancy warrants
further investigation (42). Despite these limitations, a
role for Golgi localizing ! adaptin ear homology do-
main, ARF binding (GGAs) in GLUT4 sorting from the
TGN to GSVs has been described (42). This is intrigu-
ing because GGAs bind to ubiquitinated cargo, so it
will be exciting to determine whether GLUT4 and IRAP
are ubiquitinated (43). Curiously, however, GGAs also
play a role in sorting membrane proteins such as the
mannose 6-phosphate receptor (MPR) to the lyso-
some (44). Because the MPR is not found in GSVs (36),
this requires an additional sorting step in addition to
the GGA-dependent step to distinguish between sort-
ing to GSVs vs. lysosomes. As a possible explanation
for this additional sorting step, it has been shown that
sortillin, an MPR-like protein, may play an important
role in GLUT4 trafficking by binding to lumenal do-
mains in GSV cargo proteins such as GLUT4 and IRAP

Fig. 1. The GLUT4 Trafficking Itinerary
GLUT4 trafficking can be dissected into six discreet steps as

shown: budding [biogenesis of GLUT4 storage vesicles (GSVs)],
transport, tethering, docking, fusion and endocytosis.
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(45). This is surprising, however, because substitution
of the IRAP lumenal domain with that of the trans-
ferrin receptor, a protein not transported to GSVs,
does not perturb the insulin-responsive sorting of
IRAP (46). Moreover, a GLUT4/GLUT1 chimera con-
taining the cytosolic domains of GLUT4 and the
lumenal domains of GLUT1 traffics like GLUT4 but
not GLUT1 (47).

McGraw and colleagues (48) have studied the traffick-
ing of GLUT4 from the PM after insulin stimulation. They
have carefully mapped the time-course by which GLUT4
escapes ablation with Tf-HRP, thus measuring the sort-
ing of GLUT4 out of endosomes. Using this approach,
they find that 40–50% of GLUT4 is localized to endo-
somes in 3T3-L1 adipocytes under basal conditions.
Based on these findings, it has been argued that GSVs
are formed from endosomes and that GLUT4 transits
from endosomes to GSVs with a t1/2 of 20 min (48). One
potential limitation of these studies is that the fate of
GLUT4 after its exit from endosomes was not analyzed.
This may be important because it has been reported that
GLUT4 rapidly transits through endosomes to a subdo-
main of the TGN also containing the t-SNAREs Syntaxins
6 and 16 (49, 50). Because the Tf receptor does not
follow this route (49, 50), this would also register as a
non-ablatable compartment in the studies of McGraw
and colleagues. It is curious that the TGN is absent from
the McGraw model of GLUT4 trafficking because many
studies (50–52) have shown an important role for the
TGN in GSV biogenesis. A central feature of the McGraw
model as described below is that a large proportion of
GLUT4 ("50%) is found in endosomes at steady state.
However, this observation is based on the use of the
Tf-HRP ablation technique. In view of the enzymatic na-
ture of this technique, if one molecule of Tf-HRP were to
be mis-sorted into a postendosomal compartment, a
likely outcome based on the nature of endosomal protein
sorting, all molecules found in this compartment would
be ablated and register as part of the endosomal recy-
cling system. Because GLUT4 is likely concentrated at
this step, this may vastly overestimate the amount of
GLUT4 in the recycling endosomal system under basal
conditions. A further caveat concerns the integrity of the
cells used for experimentation. A considerable propor-
tion of GLUT4 is targeted to endosomes in preadipo-
cytes (53). However, as these cells differentiate into ma-
ture adipocytes, GLUT4 is withdrawn from endosomes
into a more specialized compartment, presumably GSVs
(15, 53). It is noteworthy that Karylowski et al. (48) use a
model system involving trypsinization of mature adipo-
cytes followed by electroporation, after which the cells
are reseeded and studied 2–3 d later. Morphologically,
these cells do not represent mature adipocytes due to
the conspicuous absence of lipid droplets (48). Hence,
whereas this model system may be useful for studying
certain aspects of GLUT4 trafficking, we urge caution in
using such a system for detailed modeling of GLUT4
sorting between endosomes and postendosomal
compartments.

How Do GSVs Traffic in the Absence and
Presence of Insulin?

One of the conundrums in the field concerns the fate
of GSVs once formed. GLUT4 could be retained in
either a static or a dynamic pool (Fig. 2). The static
model proposes that GLUT4 may be retained intracel-
lularly by an interaction between GSVs and retention
machinery such as TUG (tether, containing a UBX
domain, for GLUT4) (54), p115 (55), or by restricting
the access of GSVs to the vesicle tethering/docking/
fusion apparatus at the cell surface. In the dynamic
model, GLUT4 is constantly cycling between two in-
tracellular compartments such as the endosome and
the TGN. A dynamic pool could be either endosome
derived or comprise a dynamic cycle between TGN
and endosomes (Fig. 2, B and C). Distinguishing be-
tween these models is important because it will po-
tentially define at which steps acute GLUT4 translo-
cation is regulated. In the static model, regulatory
factors likely act at the anchor or the vesicle docking/
fusion machinery. In the dynamic model, however,
vesicle formation or intracellular vesicle fusion may be
important regulatory nodes. McGraw and colleagues
(48) have used the model system described above to
analyze the kinetics of GLUT4 recycling in adipocytes
and report that GLUT4 is rapidly internalized from the
cell surface into endosomes from where it exits into
GSVs with a t1/2 of 20 min. They also find that the
entire cellular cohort of GLUT4 (Fig. 2A) recycles via
the adipocyte plasma membrane in the basal state
with a t1/2 of 230 min. The only way to rationalize this

Fig. 2. Dynamic vs. Static Models of Intracellular GLUT4
Retention

A, In GLUT4 recycling experiments the intracellular GLUT4 is
seen as one pool. B, McGraw and colleagues (48) favor a model
in which GLUT4 recycles between endosomes and GSVs in the
basal state. C, An alternative dynamic model in which GSVs are
an intermediate of GLUT4 cycling between TGN and endo-
somes (Endo). D, Static model in which GSVs form a stable pool
for GLUT4 that is only released into the plasma membrane/
endosome cycle in the presence of insulin (ins).
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slow recycling rate in lieu of the high ("50%) propor-
tion of GLUT4 in endosomes at steady state is to
invoke an additional sorting step whereby GLUT4 in
GSVs continuously cycles back to endosomes in the
absence of insulin (otherwise, the endosomal com-
partment would be rapidly depleted of GLUT4). How-
ever, because GLUT4 is known to recycle from endo-
somes back to the cell surface very rapidly (t1/2 " 10
min) (48), this model seems unlikely; otherwise the
50% of GLUT4 in endosomes should freely exchange
with the plasma membrane even in the absence of
insulin, and this does not appear to be the case even
in the studies of Karylowski et al. Hence, again this
emphasizes the likelihood that the HRP ablation
method overestimates endosomal GLUT4. We do not
feel that one can exclude an intracellular cycle for
GLUT4, and indeed we have suggested that GLUT4
cycles between GSVs and the TGN (2), the important
difference being that this cycle would aid the intracellular
sequestration of GLUT4 rather than expose GLUT4 in-
appropriately to the endosomal recycling system.

An essential difference between the static and dy-
namic models is that the former, although not excluding
an intracellular cycle between GSVs and the TGN, pre-
dicts that GLUT4 does not readily exchange with the PM
in the absence of insulin, whereas in the latter model it
will. McGraw and colleagues (48) report that the entire
GLUT4 pool exchanges with the PM with t1/2 of 230 min,
whereas Govers and colleagues (53) have shown that
this is not the case. One possibility is that the high basal
recycling reported by Karylowski et al. (48) and Martin et
al. (56) reflects the state of the cells used in their system
(see above), combined with the fact that in their system
they don’t actually measure the amount of GLUT4 that
recycles as a percentage of the total GLUT4 expressed
in the cell. This could be important because Govers et al.
(53) report that there is a silent nonrecycling pool of
GLUT4 that, if unrecognized, will lead to a significant
over estimate in GLUT4 recycling. These discrepancies
emphasize the need to develop further assays to study
the formation of GSVs and GLUT4 recycling in insulin-
sensitive cells. Such systems would optimally measure
the recycling of endogenous GLUT4 molecules ex-
pressed in their native environment. In addition, further
assays enabling analysis of the dynamic movement of
GLUT4 both close to the surface and deep within the cell
will be required to resolve the possible existence of in-
tracellular futile cycles.

Regulation of GLUT4 Trafficking by GSV-
Associated Proteins

The rab GTPase-activating protein (rabGAP) AS160
(Akt-substrate of 160 kDa or TBC1D4) associates with
GLUT4 vesicles via its interaction with the IRAP cyto-
solic tail (36, 57). AS160 is phosphorylated after insulin
stimulation by Akt or other kinases at six sites, with
only four of these sites being insulin responsive (58).
Expression of an AS160 mutant (AS160–4P), in which
these four phosphorylation sites have been mutated,

in adipocytes inhibits insulin-stimulated GLUT4 trans-
location (58, 59). This inhibitory effect was overcome
by mutagenizing a critical arginine residue in the pu-
tative GAP domain (58, 59). These studies indicate that
insulin-regulated phosphorylation of AS160 may
somehow modify its GAP activity, and this step plays
an important role in GLUT4 trafficking. Insulin-stimu-
lated phosphorylation of AS160 induces 14-3-3 bind-
ing, which is critical for the insulin-regulated function
of AS160 in GLUT4 trafficking (57). This role may in-
volve either binding of AS160 to GSVs or regulation of
AS160’s GAP activity. A model for AS160 function has
emerged from these data such that in the unstimulated
state AS160 maintains a Rab in its GDP-bound inac-
tive state, thereby preventing GLUT4 translocation.
Phosphorylation of AS160 catalyzes 14-3-3 binding
and this likely deactivates the GAP activity of AS160
facilitating activation of the Rab protein involved in
GSV translocation. Clearly, identification of the Rab
controlled by AS160 is a major goal for the future.
Rabs 2, 8, 10, and 14 have been identified on immu-
noisolated GLUT4 vesicles (36, 60), and in vitro GAP
assays reveal that the GAP domain of AS160 displays
activity toward Rabs 2A, 8A, 10, and 14 (60). A very
recent study has implicated a role for Rab10 in GLUT4
trafficking in adipocytes (61), but further study is re-
quired to verify where this Rab acts, if insulin indeed
increases its GTP loading and if AS160 displays GAP
activity toward other Rab GTPases in vivo. Neverthe-
less, Rab10 is of interest because amino acid se-
quence alignment of Rabs 10, 11, and 14 indicate that
Rabs 14 and 11 are much more closely related to each
other than to Rab10, indicating a potentially unique
role for Rab10 in GLUT4 trafficking. Intriguingly, Rab10
is one of the closest mammalian homologs of the yeast
Sec4 protein (62). Sec4p regulates assembly of the
tethering complex known as the exocyst (63), which is
of interest because the exocyst has been implicated in
insulin-regulated GLUT4 trafficking in adipocytes (21).
Hence, Rab10 may function in an analogous manner in
mammalian cells to mediate interactions between GSVs
and the exocyst complex at the plasma membrane.

PART II—HOW DOES INSULIN REGULATE GLUT4
TRANSLOCATION AT THE CELL SURFACE?

Tethering

The initial encounter between a vesicle and a target
membrane is thought to involve tethering. Tethering is
mediated by multisubunit tethering complexes such as
the exocyst complex at the cell surface (64). The pur-
pose of the tethering stage is possibly to allow a
degree of regulation of vesicle transport before the
commitment of a vesicle to fusion and to ensure the
specificity of the fusion reaction. The exocyst complex
was first identified in yeast and consists of Sec3p,
Sec5p, Sec6p, Sec8p, Sec10p, Sec15p, Exo70p, and
Exo84p (65). In yeast, overexpression of the t-SNARE
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Sso1p and Sso2p can overcome the effects of muta-
tions in the exocyst complex (66). The Rab GTPase
Sec4p associates with the exocyst (63) and to the
t-SNARE Sec9p [synaptosomal-associated protein
(SNAP) 25 homolog] (67), thus providing a possible link
between tethering and docking. Other GTPases such
as Rho1, Rho3, Cdc42, and RalA have also been
linked to the exocyst complex (68). Mammalian ho-
mologs of all exocyst subunits have been identified,
and the complex has been implicated in various cell
surface trafficking pathways (69), including insulin-
stimulated GLUT4 translocation (20, 21). Moreover,
components of the exocyst complex associate with
the adipocyte plasma membrane in an insulin-respon-
sive manner (21). Regulation of the exocyst compo-
nents in response to insulin-stimulation was proposed
to occur via activation of the Rho-like GTPase, TC10
(20, 21). By analogy with studies in yeast, it will also be
important to determine the contribution of other GT-
Pases, such as CDC42 and Ral, to exocyst function
and insulin action.

Docking and Fusion

In the docking stage, SNARE proteins on both the GSV
and the plasma membrane interact to generate a ter-
nary complex of coiled-coil domains, which is ex-
tremely stable (70). VAMP2 has been shown to take
part in a number of exocytic fusion events including
GLUT4 vesicle fusion (11, 22, 37), aquaporin vesicle
fusion (71), and synaptic vesicle fusion with the plasma
membrane (72). VAMP2 has been shown to bind the
t-SNAREs Syntaxin 1 and Syntaxin 4 in cooperation
with the corresponding SNAP proteins SNAP-25 and
SNAP-23, respectively (72). To mediate ternary com-
plex formation and fusion, the VAMP2 sequence is
dominated by a SNARE motif that can interact with
t-SNAREs at the plasma membrane (72). Inhibition of
VAMP2 function using either botulinum toxin (B, D, F,
and G) or tetanus toxin inhibits GLUT4 vesicle fusion
(73–75). In muscle and fat tissue, insulin stimulation
induces the movement of VAMP2 to the plasma mem-
brane with similar kinetics to GLUT4 (36). Regulation of
the fusion step at the plasma membrane is further
modified by interactions between Syntaxin-4 and the
Sec1-family member Munc18c (76, 77).

A picture is now emerging whereby a major effect of
insulin is to modify one of the steps in GLUT4 trafficking
either at or very close to the plasma membrane. To
address this issue, it was essential to develop tech-
niques that could resolve discrete steps of GLUT4 traf-
ficking in more detail. Total internal reflection fluores-
cence (TIRF) microscopy is a tool that allows fluorescent
events occurring within 150 nm of the plasma membrane
to be examined at high resolution, such as the fusion of
a vesicle containing GLUT4-GFP (78–80). TIRF micros-
copy relies on generation of an evanescent wave that
forms at a point where the excitation laser beam hits the
interface between the glass coverslip and the aquatic
phase of the sample at an angle that is greater than the

critical angle at which all the light is reflected (81). By
applying this technology to GFP-tagged GLUT4 ex-
pressed in adipocytes and using image analysis software
capable of single particle analysis, it has been possible
for the first time in two recent studies to visualize the
movement of individual GLUT4 vesicles into the TIRF
zone, tethering/docking of the vesicles, and their subse-
quent fusion (78, 80). These studies have shown that the
GSV dwell time for the tethering/docking step was mod-
erately decreased by insulin (78). In concert with a major
effect of insulin distal to the tethering/docking step, the
rate of GSV fusion frequency was increased in insulin-
treated cells (78, 80). Intriguingly, the study by Bai et al.
(78) showed that the majority of tethered/docked vesi-
cles subsequently undocked from the membrane and
only a minority of vesicles subsequently fused. In addi-
tion, this study also showed that tethering/docking was
regulated by PI3-kinase and AS160 (78). The importance
of these data is that they open the way for detailed molec-
ular studies in the future. For example, the consequences of
disrupting exocyst vs. SNARE function on the various pa-
rameters described above will provide new insights into this
process and help to sharpen the focus of future efforts
aimed at dissecting the major point of action of insulin and
possibly other agonists such as exercise. In addition, by
combining this approach with even further advances such
as FRET, it should be feasible to monitor the assembly of
polypeptide complexes in living cells so that we can begin
to dissect, for example, which aspect of SNARE function
might be regulated by insulin.

Signaling Events at the Cell Surface

Akt is often regarded as the most important substrate in the
insulin signaling pathway because many physiological ef-
fects of insulin stimulation are mediated by Akt kinase ac-
tivity (8). There are three Akt isoforms, but only the Akt2
isoform has been shown to be necessary for insulin-stim-
ulated GLUT4 translocation and glucose uptake in muscle
and fat tissue by small interfering RNA-mediated knock-
down (82, 83). In addition, expression of constitutively ac-
tive Akt is sufficient to induce GLUT4 translocation to the
same extent as insulin in adipocytes (59). Furthermore, Akt2
knockout mice have impaired muscle and fat glucose up-
take (84). Although these studies provide compelling argu-
ments that Akt is both necessary and sufficient for insulin-
stimulated GLUT4 translocation, they are all limited by their
reliance upon long-term ablation or exposure to the Akt
signal. Such an environment may lead to numerous adap-
tive or indirect effects, hence generating a problem in the
interpretation of the results.

There are a number of studies indicating that the key
Akt-regulated step in glucose transport is at the plasma
membrane (see above). Treatment of insulin-stimulated
3T3-L1 adipocytes with the PI3-kinase inhibitor LY294002
or wortmannin causes the accumulation of GLUT4-con-
taining vesicles just underneath the plasma membrane (85,
86). In adipocytes derived from Munc18c#/# mice (85),
translocation of GLUT4 was no longer wortmannin sensi-
tive, indicating that somehow Munc18c is involved in the
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PI3-kinase-dependent fusion step. A cold temperature
block likewise blocked Akt activation and GLUT4 docking
and fusion, but not movement of GSVs to the cell surface
(87). An in vitro fusion assay developed by Koumanov et al.
(88) has shown that GSV fusion with the PM was Akt de-
pendent. Recently, a paper by Gonzales and McGraw (83)
argued that fusion was Akt independent; however, this
study did not measure docking and fusion directly, making
the conclusion of these studies less substantial. TIRF mi-
croscopy studies have also shown that at least the tether-
ing/docking step is PI3-kinase dependent and AS160 de-
pendent but did not exclude a role for each of these
molecules in GSV fusion (78). These studies suggest that
there are other Akt substrates at the plasma membrane that
play a role in GLUT4 vesicle fusion at steps distal to vesicle
tethering. The list of Akt substrates is continuing to grow,
and the known substrates of Akt clearly indicate the diver-
sity of processes that are controlled by Akt and that could
contribute to GLUT4 fusion at the PM. Substrates that are
likely candidates to confer the full GLUT4 translocation
response should localize to the plasma membrane at some
point. Further studies looking at insulin-regulated Akt sub-
strates at the plasma membrane using techniques such as
quantitative mass spectrometry-based phosphoprotein
analysis will be important for identifying the key molecules
involved in GLUT4 fusion at the plasma membrane.

CONCLUSIONS

Despite considerable progress in our understanding of reg-
ulated GLUT4 trafficking the search for the Holy Grail con-
tinues. Novel technologies such as TIRF microscopy, in
vitro fusion assays, mass spectrometry, and small interfer-
ing RNA have provided important clues. These clues point
to an important role for the Ser/Thr-kinase Akt and its
downstream targets. Each clue, however, presents new
mysteries. AS160 is clearly one key symbol, but how does
it act and what does it do? TIRF microscopy suggests that
the search should now re-focus on the PM at the point
beyond where GSVs encounter this structure in a flirtatious
manner but at the stage preceding the fusion reaction itself.
Indeed, this is perhaps the most nebulous aspect of the
GLUT4 code because there are many clues yet to be found.
In neurons and other cells, the docking reaction is managed
by a host of auxiliary factors including synaptotagmin,
Munc13, motor proteins, and rab effectors. We suggest
that identification of such molecules involved in GLUT4
trafficking will bring us one step closer to breaking the code.
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