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Genetic Effects on Bone Loss in Peri- and Postmenopausal Women:
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ABSTRACT: This longitudinal twin study was designed to assess the heritability of bone loss in peri- and
postmenopausal women. A sample of 724 female twins was studied. Baseline and repeat BMD measurements
were performed. Results of genetic model-fitting analysis indicated genetic effects on bone loss account for
~40% of the between-individual variation in bone loss at the lumbar spine, forearm, and whole body.

Introduction: BMD and bone loss are important predictors of fracture risk. Although the heritability of peak
BMD is well documented, it is not clear whether bone loss is also under genetic regulation. This study was
designed to assess the heritability of bone loss in peri- and postmenopausal women.

Materials and Methods: A sample of 724 female twins (177 monozygotic [MZ] and 185 dizygotic [DZ] pairs),
45-82 yr of age, was studied. Each individual had baseline BMD measurements at the lumbar spine, hip,
forearm, and total body by DXA and at least one repeat measure, on average 4.9 yr later. Change in BMD
(ABMD) was expressed as percent of gain or loss per year. Intraclass correlation coefficients for ABMD were
calculated for MZ and DZ pairs. Genetic model-fitting analysis was conducted to partition the total variance
of ABMD into three components: genetic (G), common environment (C), and specific environment, including
measurement error (E). The index of heritability was estimated as the ratio of genetic variance over total
variance.

Results: The mean annual ABMD was —0.37 + 1.43% (SD) per year at the lumbar spine, —0.27 + 1.32% at the
total hip, —0.77 + 1.66% at the total forearm, —0.36 + 1.56% at the femoral neck, and —0.16 = 0.81% at the
whole body. Intraclass correlation coefficients were significantly higher in MZ than in DZ twins for all studied
parameters, except at the hip sites. Results of genetic model-fitting analysis indicated that the indices of
heritability for ABMD were 0.38, 0.49, and 0.44 for the lumbar spine, total forearm, and whole body, respec-
tively. However, the genetic effect on ABMD at all hip sites was not significant.

Conclusions: These data suggest that, although genetic effects on bone loss with aging are less pronounced
than on peak bone mass, they still account for ~40% of the between-individual variation in bone loss for the
lumbar spine, total forearm, and whole body in peri- and postmenopausal women. These findings are relevant
for studies aimed at identification of genes that are involved in the regulation of bone loss.
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INTRODUCTION low-trauma fractures.® Bone loss is highly variable among
individuals, with the typical SD being between 2- and 3-fold
higher than the mean rate of loss.®™ BMD at any given
age is determined by the relative contributions of peak
bone mass achieved and subsequent bone loss. It has been
suggested that the relative contributions of peak bone mass
and bone loss to BMD at 70 yr of age are equal.”” This
implies that BMD in older women is significantly influ-
enced by the rate of bone loss and bone turnover with
advancing age. In support of this hypothesis, a cross-
sectional twin study specifically selected for older female
subjects (mean age, 68 yr) estimated additive genetic effects
The authors state that they have no conflicts of interest. accounted for 75% of residual variation in spine and hip

OSTEOPOROSIS 1S A common multifactorial disorder of
reduced bone mass associated with microarchitectural
deterioration of bone tissue leading to bone loss and in-
creased bone fragility. The major consequence of bone loss
is fracture. Typical osteoporotic fractures involve the proxi-
mal femur, thoraco-lumbar vertebral bodies, and distal
forearm, although many bones may be affected.(!

Low BMD is considered the hallmark of osteoporosis.
BMD measurements are valuable predictors of the risk of
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BMD after adjusting for environmental factors including
smoking and alcohol intake."'®”

Although the heritability of peak BMD is well docu-
mented by family"'™'? and twin®*2® studies, there is
less clear evidence that the variation in bone loss is under
genetic regulation.®” A number of twin studies have at-
tempted to dissect the genetic effect on rate of bone
loss.®%% However, overall only a few prospective studies
on heritability of bone loss have been reported in hu-
mans.713% No evidence of a genetic contribution to loss
of BMD at the midshaft of the radius was found by Chris-
tian et al.®" in 25 monozygotic (MZ) and 21 dizygotic
(DZ) older twin men (mean age, 63 yr) followed over a
16-yr period. However, although the length of the study
period was sufficient to detect significant bone loss, the
sample size was small, and the skeletal site measured is not
a typical site of osteoporotic fracture in men or women.
Moreover, in a study of older female twins, there was no
significant heritability of BMD at the distal forearm, sug-
gesting that environment could be more powerful than ge-
netic effects at this site with aging.!” Indeed, although the
study of Christian et al. found significant within-pair corre-
lations in both identical (MZ) and nonidentical (DZ) twins
at the midshaft of the radius (intraclass correlations of 0.62
and 0.48, respectively), bone loss correlated with environ-
mental factors such as smoking and alcohol intake and,
after adjustment for these covariates, it was concluded that
changes in BMD were more influenced by factors shared
within twin pairs rather than genetic factors.*" There were
other limitations to this study apart from the small sample
size. Although the period of follow-up was long (16 yr),
bone loss at the midshaft site was low (0.45%/yr), with an
overall loss of 6.9%, one half the rate reported in post-
menopausal women at the same site.®> In contrast, an-
other small twin study observed genetic influences on
change in BMD at the spine and hip in 21 MZ and 19 DZ
twin pairs measured over a mean 3-yr period.®® However,
the period of study was relatively short, ranging from only
1-5 yr, the subjects were a mixture of men and premeno-
pausal and postmenopausal women who were largely not
losing bone, and the age range was wide, extending from 25
to 65 yr. With regard to longitudinal family studies, a study
of 18 extended Mexican families estimated heritability in
those 176 subjects >45 yr of age who had serial BMD scans
to be 0.39 for the hip, 0.46 for the spine, and 0.45 at the
radius.*”

Thus, there are no current studies in the literature that
adequately address the important question of whether the
rate of bone loss is heritable at skeletal sites where osteo-
porotic fractures are common. This study was designed to
assess the heritability of bone loss in peri- and postmeno-
pausal women, a population in which bone loss is more
readily measured.

MATERIALS AND METHODS
Subjects

Study subjects were female twin pairs with multiple visits,
recruited as part of the Sydney Twin Study, which has been
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running at the Department of Rheumatology of Royal
North Shore Hospital, and the Twin and Sisters Study at the
Royal Melbourne Hospital. The twins were recruited
through the Australian National Health and Medical Re-
search Council (NHMRC) Twin Registry and from local
media campaigns. Twins were invited to participate in a
study into the genetic and environmental determinants of
various diseases including osteoarthritis, cardiovascular dis-
ease, asthma, and osteoporosis. The hospitals’ Human Re-
search Ethics Committees approved the study. After pro-
viding written informed consent, each twin was interviewed
separately in accordance with a standard questionnaire to
collect demographic, lifestyle, and medical history data, in-
cluding an assessment of lifetime exercise history, lifelong
smoking and alcohol history, and dietary history (including
calcium intake).®® Except for hormone replacement
therapy (HRT), twins who used medications or who had
medical conditions that could interfere with bone metabo-
lism were excluded from the analysis. HRT use was re-
corded and included as a covariate in the analyses. HRT use
was coded as 0 (never used or use <6 m) or 1 (use =6 mo).
Zygosity was determined from the twins’ self-report using
questions from a validated questionnaire.®” DNA finger-
printing was used to determine zygosity in twin pairs in
whom their zygosity was either unknown or disputed.

BMD measurements

Baseline characteristics included age, height (m), weight
(kg), BMI (kg/m?), and menopausal status for women.
Whole body, lumbar spine, hip, and forearm DXA scans
were performed on Hologic QDR4500W (fan beam) and
QDR 1000 (pencil beam) machines (Hologic, Waltham,
MA, USA). Twins within each pair were always scanned
using the same densitometer. BMD of lumbar spine (L,—
L,), total hip, forearm, and whole body were obtained from
DXA scans using standard protocols as previously de-
scribed.®#3% Total forearm BMD was determined as an
area weighted mean of the three forearm sites, ultradistal,
mid-distal, and one third distal regions of interest (ROI),
derived from the standard protocol forearm analysis and
also examined individually. Change in BMD (ABMD) was
expressed as percent gain or loss per year.

Statistical analysis

The resemblance of BMD change within a twin pair was
assessed by the intraclass correlation coefficient for MZ and
DZ twin pairs separately. In this method, the total variation
(about the mean) of a trait was partitioned into two sources:
between-pairs (B) and within-pairs (W). The intraclass cor-
relation was estimated as the difference between the two
sources over their sum [(B — W)(B + W)]. Under the hy-
pothesis of no genetic effect, it is expected that the corre-
lation coefficient in MZ pairs is the same as in DZ pairs. To
test this hypothesis, the modified Fisher’s z-transformation
procedure“® was used.

To estimate the heritability (proportion of variance of a
trait attributable to genetic factors), we analyzed the data
according to the classical twin model.“*" In this model, the
variance of a variable trait is partitioned into genetic and
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TWIN 1

TWIN 2

FIG.1. Pathdiagram for MZ and DZ twins measured on a single
phenotype. Each phenotype (P1, P2) is caused by a linear com-
bination of latent additive genetic (A), dominant genetic (D),
common environmental (C), and unique environmental (E) vari-
ables. Each latent variable is standardized (i.e., has mean of zero
and a variance of one), and the path coefficients of each latent
variable on the observed phenotypes are estimated (i.e., a, d, ¢, €).
From biometrical genetics theory, the additive genetic correlation
between pairs (a) is 1 for MZ twins and 0.5 for DZ twins. The
correlation between dominance variance components (b) is 1 for
MZ twins and 0.25 for DZ twins. The correlation between com-
mon environmental effects is one for MZ and DZ twins by defi-
nition.

environmental components. The genetic variance may be
caused by additive (A) or dominant (D) genetic influences.
The environmental variance may be caused by environmen-
tal factors shared by twins (common environment (C) and
to the nonshared environmental factors (E). Shared envi-
ronmental effects and dominant genetic effects cannot be
assessed simultaneously because they are completely con-
founded in the classical twin models. Additive genetic fac-
tors are the effects of genes taken singly and added over
multiple loci, whereas dominant genetic factors represent
genetic interaction between loci. The classical twin model
assumes that additive genetic factors and dominant genetic
factors are perfectly correlated in MZ pairs, whereas DZ
pairs, like ordinary siblings, share only one half of the ad-
ditive genetic effects and one quarter of the dominant ge-
netic effects (Fig. 1). The model also assumes that shared
environmental effects are perfectly correlated in both MZ
and DZ twins; that the effects of assortive mating, epistasis,
and the genotype—environmental interaction and/or corre-
lation are negligible; and that shared environmental influ-
ences are similar for MZ and DZ twins.

The influences of A, D, C, and E on the phenotype are
represented by the parameters a, d, ¢, and e, respectively,
which are equivalent to the standardized regression coeffi-
cients (Fig. 1). The amount of variance caused by each
source is the square of these parameters. To estimate a, d,
¢, and e, for each variable trait, the data were summarized
into 2 x 2 variance-covariance matrices. The matrices were
subject to analysis specified by five possible models incor-
porating different combinations of these factors: E, CE,
AE, ACE, and ADE. The maximum likelihood method
was used to estimate model parameters. Selection of the
best model was based on the difference between likelihood
ratio x> goodness-of-fit tests. The index of heritability was
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obtained as the square of the parameter a from the most
parsimonious model. In both correlation and heritability
analyses, the trait (i.e., BMD change) was adjusted for po-
tential confounders such as age, HRT use (coded as 0 for
never use or use <6 mo) or 1 (for use =6 mo), smoking,
alcohol intake, and physical activity. In the adjusted analy-
sis, the above factors were considered as covariates in the
statistical model. In a further separate analysis, all subjects
who had ever used HRT for =6 mo were excluded.

RESULTS

The characteristics of the 724 peri- and postmenopausal
female twins who participated in the study are presented in
Tables 1 and 2. There were 177 MZ and 185 DZ pairs.
There were no significant differences between MZ and DZ
twins in age, baseline BMD, or dietary calcium intake or
exercise (data not shown). There were significant differ-
ences in height and body mass index, which were adjusted
for in the analysis. The age of the twins ranged from 45 to
82 yr at the initial visit (mean age, 56.2 + 8.0 [SD] yr). The
average time between two BMD measurements was 4.9 yr
(range, 1-10 yr). At baseline, there were 121 perimeno-
pausal and 603 postmenopausal female twins. Of the 121
perimenopausal women, 86 became postmenopausal during
the study. The mean time since menopause ranged from 0
to 35 yr (mean time, 9.4 + 7.4 yr). During follow-up, the
mean percent overall BMD loss was —1.46 + 4.93 at the
lumbar spine, —1.30 + 4.35 at the total hip, —1.61 + 4.90 at
the femoral neck, —2.98 + 4.07 at the total forearm, and
—0.77 + 3.34 for the whole body. There was no significant
difference in ABMD between MZ and DZ twins. Bone loss
was greater in twins 40-60 yr of age than those >60 yr of age
at most sites (data not shown). The most rapid bone loss
was observed for the total forearm (—0.77 + 1.66%/yr) and
the slowest rate of change was present in whole body BMD
(-0.16 + 0.81%/yr). There were no statistically significant
differences in the annual rates of loss between the ultradis-
tal, mid-distal, or one-third distal ROIs of the forearm, de-
spite the higher baseline BMD at the one-third distal region
(Table 2). ABMD was weakly correlated with baseline
BMD at most sites (r = —0.140, —0.135, and -0.135 for
lumbar spine, femoral neck, and whole body, respectively).
There were no statistically significant correlations between
baseline BMD and rate of bone loss at the total or regional
forearm measurements. Two hundred four women took
HRT for between 6 and 12 mo, with 255 women taking
HRT for >12 mo. Women taking HRT for >12 mo showed
significantly (p < 0.05) slower rates of bone loss (-0.89 +
5.06 at the lumbar spine, —0.42 + 4.29 at the total hip,
-1.13 + 4.94 at the femoral neck, —2.71 + 4.82 at the fore-
arm, and —0.37 + 3.37 at the whole body) compared with
those who had never taken it (-1.76 + 4.31 at the lumbar
spine, —1.79 + 4.31 at the total hip, —1.89 + 4.87 at the
femoral neck, —3.14 + 3.57 at the forearm, and —0.98 + 3.30
for the whole body).

The results of intraclass correlation analysis for MZ and
DZ twins are presented in Figs. 2A-2C. The correlations
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TABLE 1. BASELINE ANTHROPOMETRIC AND LIFESTYLE CHARACTERISTICS OF TWINS

MZ twins DZ twins
N (mean = SD) N (mean = SD)

Age (yr) 354 562 +8 370 56.1+8
Time between scans (yr) 354 525+221 370 4.57 +2.24*
Weight (kg) 354 64.88 +10.93 370 67.61 + 12.99*
Height (cm) 354 160.09 + 6.82 370 160.57 + 6.25
BMI (kg/m?) 354 25.35+4.16 370 26.21 + 4.76*
Menopausal status 53 68

Perimenopausal 301 302

Postmenopausal

Status changed during the study 41 45
Time since menopause (yr; range) 354 9.50 + 7.68 (0-28.8) 370 9.37 £ 7.80 (0-35.5)
Hormone replacement therapy

Never taken or <6 mo 132 133

Ever taken for =6 mo 222 237

*p < 0.05.

TABLE 2. BASELINE BMD MEASUREMENTS AND RATE OF BONE LOsS

MZ twins DZ twins
N (mean + SD) N (mean + SD)
Baseline BMD (g/cm?)
Lumbar spine (L,-L,) 354 0.98 £ 0.16 370 0.98 £ 0.16
Total hip 352 0.89 +0.12 370 0.90 +0.14
Femoral neck 352 0.75+0.12 370 0.76 £ 0.12
Total forearm 354 0.53 + 0.06 369 0.53 + 0.06
Ulna/radius ultradistal ROI 174 0.54 + 0.06 188 0.53 + 0.06
Ulna/radius mid-distal ROI 174 0.57 = 0.06 188 0.56 + 0.06
Ulna/radius one-third distal ROI 174 0.66 + 0.06 188 0.65 + 0.07
Whole body 352 1.07 +0.11 360 1.07 +£0.12
Average overall change in BMD (%)
Lumbar spine (L,-L,) 354 -1.69 £5.11 370 -1.23+4.73
Total hip 352 -1.43 £4.68 370 -1.19 £ 4.01
Femoral neck 352 -1.86 £ 5.01 370 -1.38 £4.80
Total forearm 347 -3.27 + 4.65 365 -2.72 £3.40
Ulna/radius ultradistal ROI 174 -2.89 +3.57 188 -2.38 +3.12
Ulna/radius mid-distal ROI 174 -2.85+3.55 188 -2.82 +7.80
Ulna/radius one-third distal ROI 174 -2.02 +3.97 188 -2.47 +£7.95
Whole body 324 -0.80 +3.59 295 -0.73 £3.04
Average annual change in BMD (%/yr)
Lumbar spine (L,-L,) 354 -0.40 £ 1.41 370 -035+1.44
Total hip 352 -021+141 370 -033+1.22
Femoral neck 352 -0.38 £1.45 370 -0.34 £ 1.67
Total forearm 347 -0.82 £2.19 365 -0.72 £ 0.91
Ulna/radius ultradistal ROI 174 —0.66 + 3.55 188 -0.72 £ 0.97
Ulna/radius mid-distal ROI 174 -0.65 + 0.81 188 -0.81 +1.77
Ulna/radius one-third distal ROI 174 -0.64 +0.92 188 -0.70 £ 1.82
Whole body 324 —-0.16 £ 0.80 295 -0.17 £ 0.82
* p < 0.05.

were higher in MZ pairs than in DZ pairs for all measured
parameters, consistent with significant genetic influence on
these traits. However, no significant intraclass correlations
were found for annual changes in any of the hip BMD
measurement sites.

The results of the twin model analyses are presented in
Table 3. The maximum likelihood method was used to es-

timate model parameters. Selection of the best model was
based on the difference between likelihood ratio x> good-
ness-of-fit tests. For lumbar spine, total forearm, and whole
body, AE models gave the best fit. The indices of herita-
bility (A) were 38%, 49%, and 44% for annual changes in
lumbar spine, total forearm, and whole body ABMD, re-
spectively, when all twins were included. The twin analyses
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FIG. 2. Intraclass correlations for annual
change in (A) lumbar spine BMD, (B) total
forearm BMD, and (C) whole body BMD.

DISCUSSION

of the regional subsites of forearm ABMD showed that AE
models were also the best fit for all ROIs with indices of
heritability (A) of 43%, 75%, and 51% for ultradistal, mid-
distal, and one-third distal ROIs, respectively. Adjustment
for hormone therapy use by including it as a covariate did
not significantly alter these results (Table 3). When HRT
users for =6 mo were excluded from the analysis, only lum-
bar spine heritability remained significant, but the power
was much reduced at the forearm and whole body sites in
this analysis (Table 3).

The results of this study suggest that, although genetic
effects on bone loss with aging are less pronounced than
those on peak bone mass, they account for ~40% of the
between-individual variation in bone loss at the lumbar
spine, forearm, and whole body in peri- and postmeno-
pausal women.

Susceptibility to osteoporosis is largely genetically deter-
mined, and it is likely that many genes are involved, each
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TABLE 3. STANDARDIZED PARAMETER ESTIMATES FOR HRT-USER INCLUSIVE AND EXCLUSIVE MODELS

Adjusted for HRT

Not adjusted for HRT

E estimate
(95% CI)
0.551 (0.448-0.675)

0.510 (0.415-0.626)

A estimate
(95% CI)
0.376 (0.036-0.552)
0.490 (0.188-0.585)
0.431 (0.127-0.590)
0.754 (0.492-0.854)
0.541 (0.153-0.763)
0.447 (0.165-0.553)

E estimate
(95% CI)
0.553 (0.449-0.678)
0.513 (0.416-0.628)

0.571 (0.412-0.766)

A estimate
(95% CI)
0.384 (0.043-0.551)

Average percent per year

Lumbar spine

All twins >45 yr of age including

0.487 (0.211-0.584)

Total forearm

HRT users: 362 twin pairs (177
MZ pairs and 185 DZ pairs)

0.569 (0.410-0.764)

0.429 (0.128-0.588)
0.752 (0.490-0.853)

Ulna/radius ultradistal ROI
Ulna/radius mid-distal ROI

0.246 (0.146-0.508)
0.459 (0.237-0.845)
0.553 (0.447-0.676)

0.248 (0.147-0.511)

0.494 (0.252-0.879)

0.506 (0.115-0.748)
0.442 (0.171-0.549)

Ulna/radius one-third distal ROI

Whole body

0.559 (0.451-0.682)

0.420 (0.308-0.576)

0.501 (0.089-0.693)

Lumbar spine

No HRT users: 186 twin pairs (91

MZ pairs and 95 DZ pairs)

Values are squared standardized coeftficients.
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having a small effect.“ BMD after early adulthood is de-
termined by peak bone mass and subsequent bone loss.”
Cross-sectional studies in twins®®?* and families"'~'%1®)
have shown that peak bone mass is largely influenced by
genetic factors. A cross-sectional design, however, cannot
directly assess the magnitude of heritability of bone loss.
Although BMD may be affected by many genes at different
skeletal sites and in different age groups, it is likely that the
magnitude of individual genetic effects differs in different
populations and in different environmental settings.*? The
San Antonio family osteoporosis study on Mexican-
American extended families showed results for heritability
of bone loss in the spine and forearm similar to ours, but
they also observed significant heritability at the hip.!'” Our
study is the first large longitudinal twin genetic epidemio-
logical study to directly quantify the genetic versus environ-
mental components of bone loss variance in peri- and post-
menopausal women. Previous twin studies that have
measured longitudinal changes in BMD were much smaller
studies in men or younger subjects, and the findings were
not consistent.®13 A longitudinal study of sisters also
found a significant genetic influence on change in femoral
neck BMD,®® but the study subjects were premenopausal
(mean age, 35.3 yr), and it was unclear whether this effect
persisted across the menopause. The reason for these ap-
parent differences between studies at the hip site remains
unclear, but greater environmental effects at the hip may
decrease the power to show genetic effects at that site.
The benefits of defining the genes causing bone loss and
subsequent osteoporotic fractures include identification of
individuals who are at greater risk and a better understand-
ing of the disease pathophysiology, which will facilitate the
search for novel therapeutic and preventative targets.
Whether genetic tests can actually predict those at risk for
developing osteoporosis is uncertain. In theory, if all of the
genes that cause the disease can be identified, and their
interaction with each other and with environmental factors
is understood, heritability figures from twin and family
studies suggest that this information will be useful in pre-
dicting those who are at risk. However, the depth of our
knowledge currently falls far short of this goal. Genes that
have been implicated, to date, in osteoporosis make only
minor contributions individually to BMD and fracture risk,
and are not yet of great clinical value. Because osteoporosis
is a polygenic disease, predictive tests are likely to involve
the typing of several genes, and tests for single genes are
less likely to be of clinical significance in most people.
Our study has several strengths and limitations. The
mean annual BMD loss in our study was lower than re-
ported in some previous longitudinal studies.(®543-4%)
However, high rates of bone loss have mainly been ob-
served in the elderly, and our observed rates of loss are
similar to other studies of peri- and postmenopausal
women. " Moreover, rates of bone loss may be influ-
enced by multiple factors including age, body composition,
and environmental factors. A relative large percentage of
our twins had exposure of >6 mo to estrogen therapy, but
adjusting for hormone use did not affect the results. More-
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over, when the analysis was confined to the twins who had
never used HRT, a significant effect of heritability on bone
loss was still evident in the lumbar spine. Because baseline
BMD is used to calculate rate of loss, bone loss rate can
never be truly independent of baseline BMD.*” Although
this phenomenon may account for the observation of faster
bone loss in women with higher BMD, the effect of baseline
BMD seems to be small.“*® In a reanalysis, controlling for
baseline BMD, of 75 women followed for 9.5 yr, Recker at
al.®*® estimated that 67% of postmenopausal BMD varia-
tion was attributable to premenopausal BMD, whereas
29% was attributable to the bone loss rate. Our figure of
~40% heritability of bone loss would not be inconsistent
with that analysis. Our study sample is 10-fold larger than
previous longitudinal twin studies and of satisfactory dura-
tion (mean 5-yr follow-up), which should diminish the ef-
fects of measurement error related to small changes in
BMD over time. Inferring a genetic etiology by contrasting
MZ and DZ twins rests on the assumption that the twins
share a common family environment to the same extent.
This assumption may not hold for a number of environmen-
tal variables that might affect bone loss such as exercise and
smoking.*” However, the effects of these covariates are
likely to be modest.

In conclusion, our data suggest that, although genetic
effects on bone loss with aging are less pronounced than on
peak bone mass, they account for ~40% of the between-
individual variation in bone loss at the lumbar spine, total
forearm, and whole body in peri- and postmenopausal
women. These findings provide a rational basis for the iden-
tification of genes that are involved in the regulation of
bone loss.
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