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B cells and the BAFF/APRIL axis: fast-forward on autoimmunity

and signaling

Fabienne Mackay, Pablo A Silveira and Robert Brink

B-cell activation factor from the tumor necrosis factor family
(BAFF) is a key survival factor during B-cell maturation — a
delicate immune checkpoint for B cells. Excessive BAFF
production at this stage corrupts B-cell tolerance and leads to
autoimmunity. Elevated serum BAFF levels have been detected
in some patients suffering from various autoimmune
conditions. The positive outcomes of currently ongoing clinical
trials using BAFF-neutralising agents confirm that this factor
plays a major pathological role in rheumatoid arthritis and in
systemic lupus erythematosus. Almost a decade after its
discovery, BAFF continues to occupy the main stage in
Immunology, with more than one hundred BAFF-related
articles published per year. In recent years, our understanding
of cell signaling and autoimmune mechanisms in this system
have seen major advances, refining new possibilities for
therapeutic intervention.
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Introduction

The immune system is characterised by a set of sophisti-
cated mechanisms, not only aimed at protecting individ-
uals from infections and cancer development but also
designed to maintain immune tolerance by elimination
of potentially harmful self-reactive lymphocytes. Immune
tolerance is often achieved through a very subtle balance
between life and death, only allowing the survival, devel-
opment and activation of safe and protective immune cells.
The B-cell activating factor from the tumor necrosis factor
(TNF) superfamily (BAFF, also known as BLyS) has
emerged as a crucial factor that modulates B-cell tolerance
and homeostasis. Yet, interpretation of specific functions of
BAFF remains complex owing to the presence of three
receptors, two of which are shared with another ligand — a
proliferation-inducing ligand (APRIL). Many reviews and
commentaries have been written on BAFF and APRIL

[1-10,11°%,12], but this field is rapidly evolving and is in
constant need of update. This review will particularly focus
on some recent findings related to signaling in response to
BAFF/APRIL activation and progress made in under-
standing the harmful autoimmune and malignant events
unleashed in response to excessive BAFF production.

BAFF, APRIL and their receptors

BAFF and APRIL are members of the TNF family
(reviewed in [12]). Like many TNF ligands, BAFF is a
type Il transmembrane protein [13] but it can also be
secreted as a soluble homotrimeric or polymeric form
after cleavage from the cell membrane (Figure 1).
APRIL, by contrast, is cleaved in the Golgi before release
and only exists as a secreted soluble form [14]. ABAFF isa
splice variant of BAFF that is not released from the
membrane; it acts as a negative regulator of BAFF func-
tion by forming multimers with the full-length version of
the protein [15,16] (Figure 1). Heterotrimers of APRIL
and BAFF [17] and a biologically active TWEAK-APRIL
fusion protein, named TWE-PRIL [18], have also been
identified (Figure 1).

Both BAFF and APRIL are expressed by monocytes,
macrophages and dendritic cells (DCs) and at lower levels
by T cells [12,19,20,21]. Human follicular DCs are also a
source of BAFF [22]. Recent work revealed that non-
lymphoid cell types also produce BAFF, for example
airway [23] and salivary gland epithelial cells [24], fibro-
blast-like synoviocytes [25], astrocytes [26°], vascular cell
adhesion molecule 1-positive stromal bone marrow cells
[27] and osteoclasts, of which the latter also express
APRIL [28]. Several cytokines such as type interferon
(IFN)a, IFNv, interleukin-10, granulocyte colony-stimu-
lating factor and CDA40 ligand (CD40L) as well as lipo-
polysaccharide (via the production of reactive oxygens
[29]) and peptidoglycans can activate BAFF/APRIL pro-
duction by macrophages, neutrophils and DCs [1].

T'he three BAFF receptors (Figure 1) — TACI (transmem-
brane activator and calcium modulator and cyclophilin
ligand interactor, also known as TNFRSF13b), BCMA
(B-cell maturation antigen, also known as TNFRSF17)
and BAFF-R (BAFF receptor, also known as BR3 and
"TNFRSF13c) — are expressed on B cells [12]. BCMA is
preferentially expressed on plasma cells, plasmablasts and
tonsillar germinal center B cells [30-33]. BAFF-R is also
expressed on activated T cells and regulatory T cells [11].
Intracellular T'ACI is present in human macrophages and

migrates to the cell surface upon activation [34]. BAFF
binds specifically to BAFF-R and shares TACI and BCMA
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Interaction and expression of ligands and receptors in the BAFF/APRIL system. The top part of the figure shows the different types of ligands.

From left to right: forms of BAFF/APRIL heterotrimers [17], a heterotrimer with ABAFF with red road signs indicating the impossibility of this ligand
to be cleaved and have biological activity [15,16], APRIL cleaved from the Golgi then released as soluble ligand [10], the TWE-PRIL fusion protein
[18], and BAFF homotrimers with a red arrow to indicate potential cleavage into a soluble ligand [12]. A short variant form of APRIL is represented

(right) [35°]. Cell types that produce BAFF or APRIL are indicated in light blue boxes with an arrow. In the bottom part of the figure, receptors
are represented from left to right: heparin sulfate proteoglycans (HSPG), TACI, BCMA and BAFF-R [11°°]. Black solid arrows represent strong
interactions, green solid arrows represent weak interactions, and broken lines represent interactions that have not been directly demonstrated.
Below each receptor is a box that indicates cell types expressing these receptors.

with APRIL [2,12]. However, a recent study demonstrated
that a short variant form of APRIL can bind to BAFF-R
with low affinity [35°]. In addition, APRIL binds to pro-
teoglycan structures expressed on lymphoid and non-lym-
phoid cells [11°°]. However, whether proteoglycans play a
role in concentrating APRIL on the cell surface or trigger-
ing signals remains unknown.

Physiological functions of the BAFF/APRIL
system

The first indication of the normal function of BAFF came
from iz vitro assays showing the specific survival of

maturing transitional type 2 (12) splenic B cells in
cultures supplemented with BAFF, suggesting a role
for this protein as a survival factor during maturation of
B cells in the spleen [12]. This model was confirmed
when B-cell maturation in BAFF-deficient animals was
found to be impaired beyond the immature transitional
type I (T1) stage that lies immediately before the T2
stage [12]. This was a crucial finding revealing that, in
addition to a functional B-cell receptor (BCR), immature
B cells need other BAFF-mediated survival signals to
fully mature. Current evidence shows that all known
BAFF receptors are expressed on B cells at differing
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levels depending on their maturation and/or activation
state [36-39]. For instance, the level of TACI is low in T'1
B cells but is high in T2 and marginal zone (MZ) B cells
[33,40]. Furthermore, BCR ligation up-regulates BAFF-R
expression on B cells [39,41], which promotes increased
sensitivity to BAFF-mediated survival signals as B cells
mature.

The role of APRIL is more elusive as conflicting results
emerged from two independently generated APRIL ™/~
mouse models: one showed no obvious phenotype [40]
whereas the other showed impaired switching to IgA,
bigger germinal centers and increased numbers of effec-
tor T cells [42].

BAFF-R is the key receptor that triggers BAFF-mediated
survival, as mice deficient in this receptor display a
phenotype similar to that of BAFF-null mice [1,8,12].
BCMA-deficient mice are born with no major immune
defect apart from impaired survival of some plasma cells
in the bone marrow [8]. TACI, by contrast, emerged as a
negative regulator of B-cell activation and expansion, as
numbers of B cells are increased in TACI-deficient mice,
B cells are hyper-responsive, and animals eventually
develop systemic lupus erythematosus (SLE)-like dis-
orders and lymphoid cancers [8,43—45]. Moreover, T-
independent type II antibody responses are impaired
in these mice [44]. Whether TACI plays the same role
in humans is now a matter of debate because TACI
mutations in humans have been associated with immu-
nodeficiency such as common variable immunodeficiency
[46°].

Finally, BAFF expression plays an important role in enfor-
cing B-cell self-tolerance [47]. In particular, the physio-
logical expression of BAFF at limiting levels combined
with the impaired ability of certain autoreactive B cells to
respond to BAFF survival signals results in the elimination
of such specificities from the normal B-cell repertoire
before they become mature long-lived cells [48-50].
The corollary of this is that upregulation of BAFF expres-
sion 772 vivo can result in the rescue of self-reactive B cells
from elimination [49]. This effect explains, at least in part,
the greatly increased levels of autoantibody production and
associated autoimmune manifestations observed in trans-
genic mice that overexpress BAFF [51,52]. The link
between BAFF and B cell mediated autoimmune disease
is explored in more detail below.

Role of BAFF and APRIL in B-cell
autoimmunity

Elevated levels of soluble BAFF have been observed in
sera and target organs of mouse models that develop SLE
[53], collagen-induced arthritis [54] or chemically induced
autoimmunity [55]. Similarly, high levels of BAFF were
found in sera and target organs of a sub-group of human
patients (~20-50%) that have different autoimmune
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diseases. In many studies, BAFF levels correlated with
disease activity and/or titres of pathogenic autoantibodies
(Table 1). APRIL and BAFF/APRIL heterotrimers were
also reported to be elevated in sera and target organs of
autoimmune disease patients (Table 1). This evidence
presents a strong case for the pathogenic role of excess
BAFF and APRIL in autoimmune diseases. Unique poly-
morphisms in the BAFF gene that can regulate BAFF
expression have been identified in mice and humans
[56,57]. However, there is little evidence of BAFF poly-
morphisms being associated with any autoimmune dis-
eases [56-58]. Thus, dysregulated expression of BAFF in
autoimmune-prone individuals is likely to be determined
by other genetic or environmental factors that regulate the
responsiveness of BAFF-producing cells. By contrast, poly-
morphisms in the APRII. gene have shown an association to
SLE in Japanese patients, implicating it as a susceptibility
gene [59].

The pathogenic contribution of BAFF to autoimmune
disease is also evident by the therapeutic benefit gained
by its neutralization. SLE-prone mice treated with
TACI-Ig or BAFF-R-Ig fusion proteins developed less
and/or delayed proteinuria, resulting in prolonged survi-
val [53,60,61,62°]. BAFF-R-Ig and TACI-Ig were
equally effective at depleting mature follicular and MZ
B cells, but did not affect numbers of immature or B-1 B
cells. Both treatments also reduced numbers of activated
and memory T-cell subsets. The similar disease outcome
in TACI-Ig- and BAFF-R-Ig-treated mice meant that
the therapeutic component of these constructs could
mainly be attributed to neutralizing BAFF. Several
studies have suggested that the protective efficacy of
TACI-Ig and BAFF-R-Ig occurs through an autoanti-
body-independent mechanism [53,60,61,62°]. As autoreac-
tive 'T' cells can mediate glomerular damage independent
of autoantibodies [63], TACI-Ig and BAFF-R-Ig might
therefore achieve protection by eliminating follicular and
MZ B cells that are acting as pathogenic antigen-present-
ing cells [64]. A recent study of BAFF-null SLE-prone
mice suggested that the protective mechanism of BAFF
neutralization might not necessarily be autoantibody-inde-
pendent, because autoantibody titres in these animals were
not reduced but were skewed towards Ig isotypes inept at
causing glomerular pathology [65°].

BAFF antagonists also conferred protection in murine
models of rheumatoid arthritis [12,66], multiple sclerosis
[67] and Graves’ disease [68], broadening their appeal as a
therapeutics for human diseases. Blocking BAFF might
provide distinct advantages over B-cell depletion therapy
that targets CD20 (i.e. rituximab) [69]. First, BAFF recep-
tors and CD20 overlap in many B-cell subsets but they
differ in certain populations such as plasma cells, which
express BCMA but not CD20. Second, another concern of
rituximab is a side-effect leading to elevated serum BAFF
levels [70]. Therefore, upon ceasing treatment, newly
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Table 1

Pathological role of BAFF and APRIL in various diseases

Disease Observations in sub-group of patients Source of excess BAFF/APRIL References

Autoimmune/allergic diseases

Systemic lupus erythematosus Increased levels of BAFF, APRIL and BAFF/APRIL heterotrimers T cells, DCs and probably [69]
in sera. Correlation with anti-dsDNA autoantibodies and disease = macrophages
activity.

Sjogren’s syndrome Increased levels of BAFF and APRIL found in sera and in salivary T cells, macrophages and [1]
glands. Correlation with anti-Ro/La autoantibodies, rheumatoid epithelial cells
factor and total IgG.

Rheumatoid arthritis Increased levels of BAFF, APRIL and BAFF/APRIL heterotrimers  Macrophages, DCs and [1,103,104]
found in sera and joint synovial fluid. Correlations with anti-GPI neutrophils
antibodies (APRIL) and rhematoid factor (BAFF).

Multiple sclerosis Increased levels of BAFF and APRIL found in spinal fluid and in  Astrocytes and monocytes [26,105]
neurological lesions.

Wegner’s granulomatosis Increased serum levels of BAFF. ? [106]

Bullous pemphigoid Increased serum levels of BAFF. ? [107]

Myasthenia gravis Elevated levels of BAFF in the thymic medulla may support Macrophages, DCs, [108]
pathogenic B cells present in the thymus. lymphocytes and epithelial cells

Asthma Excess serum levels of BAFF in IgE- and non-IgE-associated ? [109]
disease. Correlated with severity of asthmatic symptoms.

Infectious disease

Epstein-Barr virus (EBV) EBV-encoded LMP1 induces abnormal expression BAFF and B cells [110]
APRIL by B cells, which might confer susceptibility to cancer.

Human immunodeficiency virus Elevated BAFF levels in infected patients. Associated with anti- Myeloid cells [111]
phospholipid autoantibodies.

Hepatitis C infection Elevated BAFF in sera. Associated with HCV-related SLE, ? [112]

arthralgia and vasculitis.
Cancer
Hodgkin’s lymphoma

Non-Hodgkin’s lymphoma

Elevated BAFF and APRIL in tumour environment. Binds to TACI
and BCMA on malignant B cells, conferring increased survival.
Elevated BAFF in tumour environment and sera. Binds to TACI
and BAFF-R on malignant B cells, conferring increased survival.

Cancerous B cells and immune [78]
infiltrate

Cancerous B cells and
macrophages

[81,84]

Higher BAFF levels correlate with aggressiveness of tumour and

poor disease outcome.
B-cell chronic lymphocytic
leukaemia
Waldenstrom’s
macroglobulinaemia

Elevated BAFF and APRIL in tumour environment and sera. Binds Cancerous B cells and nurse- [5]
to TACI and BAFF-R on malignant B cells, increasing survival.
Elevated BAFF in sera and bone marrow environment of tumour.
Binds primarily to BAFF-R and TACI on tumour, enhancing

like cells
Cancerous B cells [79]

survival. BAFF induces IgM production by tumour.

Multiple myeloma

with bad prognosis.

Excess BAFF and APRIL in sera and bone marrow environment of Cancerous B cells, monocytes, [85,86,113]
tumour. Binds primarily to BCMA and TACI on tumour cells,
enhancing survival. Low TACI expression by cancer associated

neutrophils, stromal cells and
osteoclasts

generated immature cells could be exposed to high levels
of BAFF, causing a resurgence of autoimmunity. This
could, in theory, be averted by targeting BAFF. BAFF-
R-Ig and a monoclonal antibody specific for human BAFF
(LymphoStat-B, which is also known as Belimumab) [71]
are currently being tested for therapy. In monkeys and
humans, both reagents exhibited little adverse toxicity and
are effective at neutralizing BAFF, resulting in depletion
of mature peripheral B-cell subsets [71-74]. Recently
completed phase II clinical trials of LymphoStat-B in
rheumatoid arthritis and SLE patients have shown
encouraging results [75] (http://www.hgsi.com/products/
L.SB.html).

BAFF and APRIL in B-cell malignancy
Direct evidence for the role of BAFF and APRIL in B-cell
malignancies was demonstrated in mouse models that

transgenically overexpressed these molecules. Thus, an
increased incidence of B-cell lymphomas was observed in
each case [76,77]. In humans, excess BAFF and APRIL
have been detected in sera and tumour microenviron-
ments of patients that have various mature B-lineage
malignancies (Table 1), most recently in Waldenstrom
macroglobulinemia and Hodgkin’s lymphoma [78,79].
Many malignant B-cell types express abnormally high
levels of BAFF and APRIL (Table 1) compared with their
non-transformed counterparts. Other cells that inhabit or
infiltrate tumour microenvironments can also contribute
to excessive levels BAFF and APRIL (Table 1). Binding
of BAFF or APRIL to their respective receptors signifi-
cantly increases the survival and proliferation of all malig-
nant B-cell types in culture [78-87]. Conversely,
treatment with APRIL and/or BAFF antagonists [83—
85] prevented growth and increased apoptosis of tumour
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cells, sparking great interest in such reagents for innova-
tive treatment of B-cell malignancies.

Signaling BAFF-mediated B-cell survival

A major focus of recent investigations has been to eluci-
date the signaling pathways that mediate the pro-survival
signaling of BAFF-R on mature B cells. Activation of the
alternative nuclear factor kappa B (NF-kB) pathway
(processing of NF-kB2 and the nuclear translocation of
p52/RelB heterodimers; Figure 2) is a major outcome of
BAFF-R stimulation [60,88]. Recent evidence indicates
that BAFF-R triggers this pathway by preventing the
constitutive proteosome-mediated degradation of the
serine/threonine kinase NIK (NF-kB-inducing kinase)
— a process that depends on the binding of NIK to
TRAF3 (TNF receptor associated factor 3) [89]. Acti-
vated BAFF-R recruits TRAF3 and triggers its degra-
dation, thus allowing NIK protein to accumulate and
increase NF-kB2 processing (Figure 2). Consistent with
this model, B-cell lines that lack TRAF3 show greatly
elevated levels of NIK and NF-kB2 processing [90°]. A

Figure 2
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similar phenotype is seen in B cells that lack TRAF2 [91],
suggesting that TRAF2 and TRAF3 perform co-operat-
ive but non-redundant roles in controlling the alternative
NF-«kB pathway (Figure 2).

BAFF is a weak activator of the classical NF-kB pathway
in B cells. Although most of the nuclear translocation of
p50/RelA DNA-binding activity triggered by BAFF
requires T'ACI [92], evidence does exist for low level
activation of the classical pathway via BAFF-R [92,93°].
The kinetics of this response are much slower than those
observed for strong activators of this pathway such as
TNF and CD40, raising the possibility that BAFF-R
might utilize NIK to activate the classical as well as
the alternative NF-kB pathway [94] (Figure 2).

The demonstration that mature NF-kB2-deficient B
cells fail to survive in mixed bone marrow chimeras
[95] confirms that activation of the alternative NF-kB
pathway through BAFF-R is essential for the survival
of primary B cells. Although the impaired maturation of
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NF-kB2-deficient B cells complicates the identification
of essential downstream targets, recent evidence suggests
that upregulation of the anti-apoptotic kinase Pim2 by
alternative pathway activation and subsequent phos-
phorylation and inhibition of the pro-apoptotic protein
Bad are involved [92].

The importance of classical NF-kB activation for mature
B-cell survival is indicated by the recent demonstration
that B-lineage-specific inactivation of NEMO (NF-«kB
essential modulator; a component of the I-kB kinase
complex essential for activation of the classical NF-kB
pathway; Figure 2) results in the specific depletion of
mature B cells [93°]. However, because the BCR is
essential for mature B-cell survival and is known to be
an activator of the classical NF-kB pathway (Figure 2),
the extent to which BAFF-R-mediated activation of this
pathway is required for mature B-cell survival is difficult
to determine. NEMO-deficient B cells express signifi-
cantly reduced levels of both RelB and NF-kB2 [93°],
raising the possibility that impaired activation of the
alternative NF-kB pathway might at least partly explain
the failure of mature NEMO-deficient B cells to survive.
Receptor-independent activation of the classical NF-kB
pathway by a constitutively active form of [-kB kinase 2
rescues the maturation and survival of BAFF-R-deficient
B cells [93°]. However, because this strategy removes the
normal requirement for BAFF-R-mediated activation of
the alternative NF-kB pathway, the normal role of BAFF-
R-mediated activation of the classical NF-kB pathway in
mature B-cell survival still remains uncertain.

Many reports have suggested that signaling of B-cell
survival by BAFF is dependent on NF-kB-mediated
upregulation of anti-apoptotic bcl-2 family proteins. This
remains controversial [35°,96], and several recent studies
indicate that the situation might be more complex. For
instance, inhibition of the nuclear translocation of the pro-
apoptotic protein kinase Cd appears to be an important
component of BAFF-mediated pro-survival signaling
[97]. This process could depend on NF-kB activation
[93°], but the mechanism by which it is activated by
BAFF-R remains unknown (Figure 2).

Another potential mediator of BAFF-mediated survival
signals is the serine/threonine kinase Akt. Akt activity
counteracts apoptosis at least in part by maintaining a
positive bioenergetic balance through the promotion of
glucose uptake and glycolysis [98]. BAFF not only trig-
gers Akt phosphorylation in primary B cells [96,99°°] but
also upregulates the expression of a panel of glycolytic
enzymes [99°°] and promotes metabolism of glucose and
other nutrients [96]. Although protein kinase CB and
PI3K are required for BAFF-mediated Akt activation
[99°°], the biochemical link from BAFF-R is once again
unknown. Indeed, apart from TRAF3, the only signaling
molecule known to be recruited to BAFF-R is the adaptor

protein Actl [100]. Like TRAF3, this protein acts as a
negative regulator of BAFF-mediated B-cell survival, but
its mechanism of action remains unclear (Figure 2). Elu-
cidation of the connections between BAFF-R and its
downstream targets remains a significant challenge in
our understanding of how BAFF promotes the survival
of mature primary B cells.

Whereas BAFF-mediated survival signals are thought to
be important in sustaining the growth of B lymphomas,
recent evidence suggests that the signaling pathways
involved might differ considerably compared with those
in primary B cells. Thus, APRIL as well as BAFF prevent
the apoptosis of a pre-B lymphoma cell line [101], myel-
oma [86], Hodgkin’s lymphoma [78] and CLL (chronic
lymphocytic leukemia) cells [102]. In the latter case,
survival signals depended on TACI- and/or BCMA-
mediated activation of the classical NF-kB pathway
and did not require BAFF-R-mediated activation of
the alternative pathway [102], thus emphasizing the
contrast with mature primary B cells.

Conclusions

The BAFF/APRIL system was identified almost a decade
ago and its impact upon both basic and clinical research
has been profound. The identification of BAFF as the
elusive factor that B cells compete for to survive has
provided a framework for understanding B-cell homeo-
stasis and self-tolerance. The ability of BAFF/APRIL to
promote both autoimmunity and B lymphoma are clear,
and the initial results of therapies that target these mol-
ecules are promising. Nevertheless, much remains to be
learnt. The precise biological roles of TACI and APRIL,
in particular, have yet to be fully elucidated. Also, despite
the recent insights into the signaling pathways down-
stream of BAFF-R, many gaps exist including the means
by which these pathways link to BAFF-R. Signaling by
TACI and BCMA is also largely obscure, but is likely to
be important with respect to B lymphoma survival. As we
enter the second decade of the BAFF/APRIL era the
clucidation of these areas offers much excitement to
researchers and holds promise for the development of
sophisticated new strategies for therapeutic intervention.
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