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Abstract
It is well established that childless women and women having children later in life are at an
increased risk of developing breast cancer. In particular, women having a first child before 20
years of age have a 50% reduction in lifetime breast cancer risk when compared with women who
do not have children. This protective effect is specific for estrogen receptor positive breast cancer.
Nevertheless, it remains unclear how parity decreases breast cancer risk. Possible mechanisms
of action include changes to the hormonal profile of parous women, a more differentiated and so
less susceptible mammary gland or changes within specific epithelial cell subpopulations. In this
review, we discuss the epidemiological evidence for the protective effects of parity on breast
cancer. We also explore the mechanisms by which parity protects, with a particular emphasis on
the role of stem cells and the interactions between stem cells and estrogen.
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Introduction

The only factor known to consistently decrease lifetime

breast cancer risk regardless of ethnicity is early

childbirth (MacMahon et al. 1970, Henderson et al.

1974, Kelsey et al. 1993). Women who have undergone

a first full-term pregnancy/birth (FFTB) before 20 years

of age have a 50% reduced lifetime risk of developing

breast cancer when compared with nulliparous women

(MacMahon et al. 1970), whereas first full-term births

over 35 years of age lead to an increased risk of

developing breast cancer (Trichopoulos et al. 1983).

However, the protective effect of pregnancy is not

immediate. When compared with nulliparous women,

uniparous women have an elevated risk of breast cancer

soon after delivery, which only declines some years

later. This increased risk is most pronounced in women

who are aged 30 years or older at the time of their first

delivery (Janerich & Hoff 1982, Lambe et al. 1994,

Lambe et al. 1998, Schedin 2006). On average, the

transient increase lasts w10 years (Albrektsen et al.

2005) but is also dependent on age, being postponed an

additional 10 years in women with FFTB after 30 years

of age (Rosner et al. 1994). These parity-specific effects

on breast cancer risk are limited to hormone-responsive

breast cancer as highlighted in a recent meta-analysis.

Ma et al. (2006) showed that, across eight separate
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clinical studies, parity-beneficial effects were

confined to estrogen receptor positive/progesterone

receptor positive (ERC/PRC) breast cancer not

ER negative/PR negative (ERK/PRK) breast cancer.

Retrospective epidemiological studies have defined

the contributions of parity, age at FFTB, and breastfeed-

ing in breast cancer protection (MacMahon et al. 1970,

Ursin et al. 2004); yet despite having this knowledge for

more than three decades, the exact mechanisms involved

remain unknown. Defining the role of parity-induced

protection could lead to development of adjuvant

therapies that specifically target the cellular processes

underlying hormone-responsive breast cancer. In this

review, we discuss the various mechanisms by which

protection may be mediated including an altered

hormonal milieu, increased differentiative phenotype of

the gland, a protective change specifically in mammary

stem cells or a change in estrogen responsiveness. We

begin with a brief overview of mammary gland growth

and development. Thiswill cover both human and rodent

mammary gland development. It is important to consider

both systems, as although epidemiological and histo-

pathological studies have examined the protective effects

of pregnancy and breast cancer in humans, mechanistic

studies and manipulations are only feasible in rodent

models. Although there are some differences between

development of the human breast and rodent mammary
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gland there are also strong similarities, which enable

results to be compared between the two systems.
Mammary development in the human
and rodent

The mammary epithelium has two main postnatal

developmental stages in both humans and rodents.

During puberty, the ductal elongation phase establishes

a network of ducts which spread out from the nipple,

driven by specialized growth structures at the tips of

the elongating ducts, the terminal end buds (TEBs).

These have been mainly described in rodents

(Williams & Daniel 1983) although in humans similar

structures have been observed (Anbazhagan et al.

1998). The TEBs consist of two morphologically

distinct cell types, an inner layer of body cells and an

outer layer of cap cells, which give rise to the luminal

and basal cell layers respectively, of the subtending

duct (Sapino et al. 1993, Srinivasan et al. 2003). It is

also clear that somewhere within the TEBs there is a

stem cell activity, most likely located within the cap

cells, such that they also give rise to the body cells as

well as the basal cell layer (Kenney et al. 2001). From

the ductal network develops the future milk-producing

structures of the gland. These are termed alveolar buds
Figure 1 Development of the rodent mammary gland. (A) In the earl
lactiferous duct that branches into 3–5 secondary ducts. The termin
the mammary stem cells. (B) The mature virgin gland consists of a b
buds (AB) have now developed. These later form the milk-producing
begins from the nipple region and extends distally. The TEBs have re
called terminal ducts (TD). (C) At pregnancy there is extensive epi
from alveolar buds. (D) Following pregnancy the gland is remodele
subsequent phagocytosis. The gland resembles the virgin; however
tends to be higher, indicating greater differentiation.

908
in the virgin rodent mammary gland and terminal

ductal lobuloalveolar units (TDLUs) in the human

breast (Cardiff & Wellings 1999, Smalley & Ashworth

2003). TDLUs consist of clusters of secretory alveoli –

like bunches of grapes – whereas in the rodent the ABs

are more evenly dispersed along the ducts. The extent

of formation of ABs in the virgin rodent gland varies

from strain to strain. In humans, TDLUs are always

found in the virgin breast although they become more

elaborate in response to pregnancy. Pregnancy is the

second postnatal developmental stage seen in the

mammary epithelium and its main feature is expansion

and differentiation of the ABs/TDLUs under hormonal

influence (Fendrick et al. 1998, Russo & Russo 1998).

The mature ABs are termed lobular alveoli (LA).

Notably, TDLUs are also the site of origin of most

human breast cancers (Wellings 1980a,b, Russo et al.

1982). Following weaning of the young, the LA/TDLU

structures regress in a process called involution. The

involuted mammary gland retains some of the vestiges

of the preceding pregnancy and in both mice and

humans is clearly more differentiated when compared

with its virgin counterpart (Russo et al. 1982, Cardiff &

Wellings 1999). The proliferation–lactation–involu-

tion cycle, which the mammary tissue passes through

with each pregnancy is described in Fig. 1.
y weeks of postnatal life, the mammary gland consists of a single
al end buds (TEB) form the growing tips of the ducts and contain
ranching ductal system within which the majority of the alveolar
structures of the gland. Their differentiation during development
gressed, leaving smaller terminal structures at the ends of ducts
thelial cell proliferation and lobuloalveolar (LA) structures form
d, largely through apoptosis of the epithelial structures and
, the number of alveolar structures and degree of side branching
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The adult ductal and alveolar mammary epithelium

in both humans and rodents consists of two basic cell

layers – an inner (adjacent to the lumen) luminal

epithelial layer and an outer (adjacent to the basement

membrane and breast stroma) basal myoepithelial

layer. Luminal cells line the inside of the ducts and

form the differentiated milk-secreting cells in the

LA/TDLUs. The basal layer is mainly composed of

myoepithelial cells, which contract in response to

oxytocin released during lactation to force milk down

the ducts to the nipple. The basal cell layer also

contains the stem cell compartment which maintains

the epithelium (Shackleton et al. 2006, Sleeman et al.

2006, Stingl et al. 2006, Shipitsin et al. 2007).

Besides the developmental and biological similarities

between the human breast and rodent mammary gland,

there are also similarities between mouse and human

breast cancer. These have been extensively reviewed

previously (Wellings et al. 1975, Wellings 1980a,b,

Cardiff 1996) and will not be discussed in detail here.

However, for the purposes of this review, it is sufficient

to note that 7,12-dimethylbenz[a]anthracene (DMBA)

or N-methyl-N-nitrosourea (NMU)-induced tumors of

rodents are hormone responsive and, as with humans,

parity has a protective effect against tumorigenesis

(Russo et al. 1990). Moreover, in rodents as in humans,

the protective mechanism is greatest in younger

individuals (MacMahon et al. 1970, 1982, Russo et al.

1982, Russo & Russo 1987a, Yuan et al. 1988,

Kelsey et al. 1993). Rodent models provide, therefore,

a good system to model the protective effect of

pregnancy on breast cancer and to investigate its

underlying causes.
Hormonal control of mammary
development

The factors that regulate embryonic mammary gland

development have been reviewed recently (Parmar &

Cunha 2004, Hens & Wysolmerski 2005). In brief, the

Wnt signaling pathway, fibroblast growth factor

signaling pathway, the Msx1/2 homeobox transcription

factors, and parathyroid hormone-related protein play

major roles in embryonic development and initial

ductal growth (van Genderen et al. 1994, Satokata

et al. 2000, Foley et al. 2001, Mailleux et al. 2002).

However, the initial branching morphogenesis of the

embryonic mammary gland is hormone independent,

as mice that are deficient in either ER (a or b), the
prolactin (PRL) receptor, the growth hormone (GH)

receptor, or the PR have no obvious embryonic

mammary phenotype (Hennighausen & Robinson

2001, Hovey et al. 2002).
www.endocrinology-journals.org
Postpubertal ductal branching begins under the

control of estrogens acting in concert with GH

and insulin-like growth factor-I (IGF-I). Pubertal

mammary development is impaired in mice lacking

GH receptor (Gallego et al. 2001), IGF-I (Kleinberg

et al. 2000), ERa (Curtis Hewitt et al. 2000) or

aromatase (responsible for estrogen biosynthesis;

Fisher et al. 1998). Similarly, in the absence of ovarian

function in humans, there is complete absence of breast

development. This can be restored by estrogen

treatment. In contrast, pubertal mammary development

was normal in mice lacking ERb, PR, or the PRL

receptor (Curtis Hewitt et al. 2000). A role for

progesterone, however, was revealed in mice deficient

for the two PR isoforms, PR-A and PR-B (Lydon et al.

1995), which failed to undergo side branching and

alveolar development during pregnancy. Studies

assessing PR protein localization and tissue recombi-

nation experiments indicate that epithelial rather than

stromal PR stimulates lobuloalveolar development,

although stromal PR-B may play a role in ductal

branching (Humphreys et al. 1997, Brisken et al.

1998). The epidermal growth factor receptor

(Egfr) is also involved in branching as shown by the

ability of exogenous Egfr ligands to rescue ductal

development in both ovariectomized (Coleman et al.

1988) and ERa-deficient mice (Kenney et al. 2003).

Moreover, exogenous estradiol elicits Egfr activation

in ovariectomized mice (Sebastian et al. 1998),

suggesting that Egfr promotes mammary branching

downstream of ERa. One ligand in particular,

amphiregulin, appears to be particularly important as

it is upregulated at puberty and is absolutely required

for mammary development (Luetteke et al. 1999,

Ciarloni et al. 2007).
Parity and the protection against ERC
PRC breast cancers

Approximately 70% of human breast cancers express

the ER and are hormone dependent (Masood 1992).

This has been exploited in the development of

antiestrogens such as tamoxifen and aromatase

inhibitors, commonly used as adjuvant therapies for

breast cancer. Epidemiological studies which have used

both ER and PR to define hormone receptor status have

provided evidence that parity specifically protects

against ERC PRC breast cancers (Potter et al. 1995,

Yoo et al. 1997, Huang et al. 2000, Britton et al. 2002,

Cotterchio et al. 2003). For example, the IowaWomen’s

Health Study found no association with the risk of

ERC/PRK breast cancers, but did show a decreased

risk of ERC/PRC breast cancers with a higher degree
909
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of parity. Interestingly, parity has been associated with

an increased risk of developing ERK/PRK breast

cancer (Potter et al. 1995) although an assessment of

the population-based case control Women’s CARE

Study (Marchbanks et al. 2002) showed that, while

parity (as defined by pregnancies with a duration of

more than 6 months) was associated with a decreased

risk of ERC/PRC breast cancers, it had no effect on

ERK/PRK tumors. The Women’s CARE Study also

found that among parouswomen, older age at FFTBwas

associated with an increased risk of ERC/PRC breast

cancer (Ursin et al. 2005).

A recent meta-analysis of these two studies and

seven others investigated parity and age at FFTB

among ERC/PRC and ERK/PRK breast cancers

(Ma et al. 2006). This included two cohort studies,

five population-based case control studies, and two

hospital-based case control studies (Potter et al. 1995,

Yoo et al. 1997, Huang et al. 2000, Britton et al. 2002,

Cotterchio et al. 2003, McCredie et al. 2003, Colditz

et al. 2004, Rusiecki et al. 2005, Ursin et al. 2005) For

these studies, 65% of the cases had used available ER

and PR data. This data were used to confirm that the

protective effect of parity was confined to ERC/PRC
breast cancers. Each birth reduced the risk of breast

cancer by 11%. The protective effect was maintained

within the ERC/PRC group even when the analyses

were stratified by age. Furthermore, women in the

oldest age at FFTB group were on average at 27%

greater risk of developing ERC/PRC breast cancers

when compared with the youngest age group. There

was no such effect on ERK/PRK tumor incidence.

In contrast, two studies have suggested that parity

does not impart protection against the development of

ERC/PRC breast cancer. Britton et al. (2002), using

data from the Women’s Interview Study of Health

(Brinton et al. 1995), showed that nulliparity was not

associated with an increase in ERC/PRC breast

cancers, but rather an increased risk for all tumor

types except ERK/PRC breast cancers. Similarly,

McCredie et al. (2003) found no significant difference

in the incidence of ERC/PRC or ERK/PRK breast

cancers according to parity. However, both of these

studies were performed in women who were premeno-

pausal when diagnosed (age limits 20–44 and !40

respectively) and ERC/PRC tumors tend to predomi-

nate in postmenopausal women.

Overall, the evidence strongly suggests that parity

protects specifically against the development of

sporadic ERC/PRC breast cancers. Does this protec-

tion extend to familial breast cancer? It was originally

thought that parity increased the risk of breast cancer

development in BRCA mutation carriers (Jernstrom
910
et al. 1999) or had no effect (Hartge et al. 2002,

Tryggvadottir et al. 2003). However, recent studies

(Cullinane et al. 2005, McLaughlin et al. 2007) using

larger sample sizes and reporting separately on BRCA1

and two carriers, rather than on familial versus

sporadic breast cancers, showed that parity did protect

against breast cancer development in BRCA1 carriers

(odds ratioZ0.5). However, parity did not protect

BRCA2 carriers, and in fact imparted a nonsignificant

increased risk, which rose w15% for each additional

pregnancy. In this group of women, three or more full-

term births significantly increased their risk of breast

cancer (odds ratioZ2–3). Interestingly, this was

largely attributed to the 70% increase in the 2 year

period immediately following pregnancy and was

specific to the development of early breast cancers

(age !40 years). Considering the data on sporadic

breast cancers, these results from the familial setting

seem to be counterintuitive, as BRCA1 breast cancers

tend to be ERK and BRCA2 tumors tend to be ERC
(Loman et al. 1998, Foulkes et al. 2004, Musolino et al.

2007). However, it is known that oophorectomy

protects against breast cancer development in

BRCA1 carriers (Rebbeck et al. 1999, Kauff et al.

2002, Eisen et al. 2005) so it is likely that there is an

indirect (or ER-independent) effect of hormones on the

development of these tumors, an effect which can be

modulated by parity. The BRCA2 data are harder to

explain. The cumulative increasing risk of pregnancy-

associated breast cancer in parous BRCA2 carriers

could be related to the possibility that mutations arising

during the remodeling process following pregnancy

accumulate in the context of impaired DNA repair in

BRCA2-null cells. BRCA1/2 mutation carriers,

already at a 40 and 20% respective increased risk of

developing breast cancer (Ford et al. 1994, Risch et al.

2001), may benefit from more intensive surveillance

following childbirth.
The requirement for a full-term pregnancy

If parity protects against breast cancer development,

does the pregnancy need to end in full-term delivery, or

is the initial differentiation of epithelial cells during

pregnancy sufficient? The relationship between mis-

carriage, pregnancy termination, and breast cancer risk

has been the subject of extensive research beginning in

the late 1950s. Until the mid-1990s, the evidence was

inconsistent. Findings from some studies suggested that

there was no increase in risk of breast cancer among

womenwho had undergone a termination, while findings

from other studies suggested there was an increased risk

(Pike et al. 1981, Daling et al. 1994, 1996). For most of
www.endocrinology-journals.org



Figure 2 An ‘at a glance’ summary of the proposed
mechanisms of parity-induced protection against breast cancer.
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these studies, only small numbers of women

were included and data were collected retrospectively,

after the diagnosis of breast cancer. Women with breast

cancer are more likely to report terminations

when compared with their control counterparts

(Lindefors-Harris et al. 1991, Jones & Forrest 1992),

so the results from these case control studies should be

interpreted with caution. More recent studies have

examined large numbers of women, and collected data

prospectively.Medical history information was gathered

from medical records rather than from self-reports.

These studies consistently showed no association

between induced terminations and an elevated breast

cancer risk (Michels &Willett 1996, Melbye et al. 1997,

Tang et al. 2000, Goldacre et al. 2001, Erlandsson et al.

2003, Michels et al. 2007). However, the studies also

demonstrated that an interrupted pregnancy was not

sufficient for a protective effect.

Two rodent models have been used to explore in more

detail the requirement for a full-term pregnancy for

parity-specific protection against breast cancer (Sinha

et al. 1988, Russo et al. 1992). In the beginning of these

studies, pregnancy interrupted prior to full term

(21–22 days) and was able to partially protect against

carcinogen-induced mammary tumor development.

Sinha and colleagues showed that virgin mice treated

with the chemical carcinogen DMBA developed tumors

with an incidence of 70–88%. Age-matched animals that

had completed a full-term pregnancy showed only 14%

incidence.When pregnancy was interrupted at day 5, 10,

or 15, breast cancer incidence was 48, 50, and 45%

respectively. Thus, an interrupted pregnancy gave partial

protection when compared with parous controls. In the

second smaller study, pregnancy interrupted at day

12 failed to confer protection against breast cancer.

Tumor development occurred in 70% of mice when

compared with 79% in age-matched virgins (AMV).

The differences between these studiesmay simply be due

to the size of the study cohorts used, and hence

differences in statistical power between them. Further-

more, the interval between the end of hormone

stimulation and carcinogen treatment was different in

the two studies (21 and 15 days respectively), whichmay

suggest that the interval between involution onset and

carcinogen exposure is important.

It is intriguing that as pregnancy progressed in the

better-powered rodent model an increasing protective

effect was seen, whereas in humans an interrupted

pregnancy was not sufficient for protection. This

suggests that there are late pregnancy events in the

human that occur in a progressive fashion throughout

the rodent pregnancy, which may be a key in

understanding the underlying mechanism of
www.endocrinology-journals.org
protection. Additional studies to define the time course

of pregnancy-induced protection in rodents are

required as well as highly detailed studies of the

comparative biology of the human and rodent during

pregnancy to address this issue.
Mechanisms of parity-specific protection

Currently, there are four main schools of thought

concerning how pregnancy-dependent breast cancer

protection arises, although these theories do have

common aspects (Fig. 2). First, protection may occur

through parity-specific changes in levels of circulating

hormones such as estradiol, PRL, and GH. Each of

these has been associated with breast cancer risk

(Emerman et al. 1985, Henderson & Feigelson 2000).

Second, the extensive LA/TDLU development that

occurs during pregnancy may result in epithelial cell

differentiation that is maintained in those epithelial

cells that remain after involution – ‘maturing’ of the

gland in response to first pregnancy. The parous

mammary gland may, therefore, contain epithelial

cells with a more differentiated, and less proliferative

character which are less susceptible to transformation.

Third, there may be a specific effect of parity on

mammary stem cells. Adult tissue-specific stem cells

serve to replenish lost/damaged cells and in general

maintain tissue integrity (Smalley & Ashworth 2003).

Although our understanding of the identity and

regulation of mammary stem cells and their relation-

ship to the breast cancer stem cells is still limited, it is

feasible that pregnancy may lead to a decrease in

mammary stem cell numbers, and so a decrease in the

pool of potentially transformation susceptible

epithelial precursors. Finally, given that parity protects

specifically against ERC tumors, and the association

with estrogen exposure and breast cancer risk, it is

possible that parity protection may also be mediated

via changes in the estrogen responsiveness of the

mammary gland. These may take the form of changes
911
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in the response of hormone-sensing cells to estrogen or

of changes in paracrine interactions between hormone-

sensing and stem cells. These paracrine interactions

may themselves be direct or indirect and are mediated

via cells in the stem cell niche. We will now discuss

each of these four potential mechanisms in detail, with

particular emphasis on the role of stem cells and

estrogen responsiveness, as the paracrine nature of the

regulation of mammary stem cells is an important

emerging theme.
Altered hormonal profile

Results of mammary fat pad transplantation studies

have indicated that the hormonal environment medi-

ates protection. When isolated epithelial cells from

mammary glands of virgin mice exposed to DMBA

were transplanted into parous mice, the mammary

glands showed reduced tumor development when

compared with virgin mice transplanted with the

same cells (Abrams et al. 1998). To define the

hormones responsible, human epidemiological studies

and rodent models have been investigated. Pregnancy

exposes the body to a unique hormone profile including

prolonged elevation of progesterone, the lactogenic

hormone PRL, and placental lactogen, increasing titers

of estrogens and altered glucocorticoid secretion and

sensitivity (Numan 1994). Whether this leads to

permanent changes in the hormonal profiles of parous

women when compared with their nulliparous counter-

parts is not clear. The limited data available from

women and the problems of assessing different

hormones at different stages of the reproductive cycle

makes it difficult to define a specific protective

hormone profile. Parous women are reported to have

reduced serum levels of PRL (Kwa et al. 1981, Musey

et al. 1987, Eliassen et al. 2007), but permanent

changes in estradiol (E2) levels are not as reproducible

(Bernstein et al. 1985, Musey et al. 1987, Ingram et al.

1990, Dorgan et al. 1995). E2 levels are decreased in

some studies (Bernstein et al. 1985, Dorgan et al.

1995) and unchanged levels in others (Musey et al.

1987, Ingram et al. 1990), is likely a function of the

time and day of sampling in relation to the menstrual

cycle and the age of the women assessed.

Despite the clear role of estrogen in inducing the

parity-inducedprotection in rodents (Guzman et al. 1999,

Rajkumar et al. 2001), as with humans, there is no

consistent data in rodents to suggest that the permanent

changes in either estrogen or progesterone mediate

protection. The evidence for changes in PRL levels is

also unclear (Thordarson et al. 1995), although PRL
912
treatment in mice has been shown to greatly increase

mammary tumors and PRL-suppressing drugs reduce

tumorigenesis (Welsch & Nagasawa 1977). Parous

rodents dohavedecreasedGH levels (Bridges&Hammer

1992, Bridges et al. 1993, Thordarson et al. 1995).

It has been shown that suppression of GH secretion

causes regression of chemically induced mammary

cancers (Rose et al. 1983) and that nulliparous

GH-deficient rats are as refractory to mammary tumor-

igenesis as parous rats (Guzman et al. 1999, Swanson &

Unterman 2002).
Differentiation and gene expression changes in

the parous gland

The terminal differentiation hypothesis of breast cancer

prevention predicts that the loss (through differen-

tiation) of a population of susceptible cells and a

general increase in the differentiation status of the

gland following pregnancy results in protection from

tumorigenic changes (Russo & Russo 1987a, 1997).

Russo et al. have proposed that the differentiation state

of the human breast may be defined by the degree of

complexity of the secretory lobules. They categorize

the lobules as types 1, 2, and 3 in the order of

increasing complexity (defined as the number of

clusters of ductules per lobule). They have suggested

that type 1 and 2 lobules predominate in the nulliparous

breast and the type 3 lobules (with up to 80 ductules per

lobule) develop at pregnancy and are the most

abundant in the breasts of parous women (Russo &

Russo 1987b, de Waard & Trichopoulos 1988, Russo

et al. 1992, Kelsey et al. 1993). It was also suggested

that breasts from parous women with breast cancer

were less differentiated, with levels of lobules type 1

and 2 similar to those of nulliparous women (Russo

et al. 1990). However, given the difficulties of

obtaining breast tissue in large enough numbers both

before pregnancy and after post-weaning involution in

the same women, these observations are interesting but

not yet definitive.

Several gene expression array studies have been

performed on nulliparous and nonpregnant parous

mammary glands to identify functional changes within

the gland. These have confirmed that the parous gland

is more differentiated and less proliferative than its

virgin counterpart and begin to suggest key molecular

signatures. Ginger et al. (2001) used suppression

subtractive hybridization to identify genes that are

persistently upregulated in the glands of estrogen- and

progesterone-treated Wistar-Furth rats when compared

with AMV. They observed differences in several
www.endocrinology-journals.org
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distinct gene categories including markers of

mammary differentiation, metabolism and homeostasis

of the gland (metabolic enzymes and transport

molecules), cell–cell contact and the extracellular

matrix as well as regulatory factors (such as signaling

molecules and transcription factors). D’Cruz et al.

(2002) performed gene expression microarray analysis

on whole mammary glands isolated from virgin and

parous mice. Their study showed that parity-induced

persistent downregulation of multiple genes encoding

epithelial growth factors and led to an upregulation of

the genes encoding the growth inhibitory molecule

transforming growth factor b3 (Tgfb3) as well as many

of its downstream targets. In addition, they observed an

increase in the differentiation state of the mammary

gland, as demonstrated by increases in genes encoding

milk proteins such as whey acidic protein, caseins, and

adipocyte differentiation-related protein. Changes in

the types of hematopoietic cell resident within the

gland were also evident. There were significant

increases in genes encoding B-cell-associated

immunoglobulins, macrophage-specific genes, and

T-cell-activating protein, which interacts with macro-

phages to induce inflammatory responses (Ashkar et al.

2000). Using several different rat strains this same

group identified a core 70 gene parity-induced

expression signature, conserved across strains (Blakely

et al. 2006). This included increased expression of

genes involved in mammary differentiation such as the

milk proteins and, as observed previously, a change in

the immune profile suggestive of an increase in plasma

cells, macrophages, and T-cells. A decrease in

several growth factor-related genes and a decrease in

the GH/IGF axis was also noted.

While these gene expression studies are consistent

with processes occurring within the mammary gland at

this time, they are complicated by the fact that whole

mammary glands, containing heterogeneous cell

populations, were assessed. This means that only

average changes in gene expression can be assessed.

Small parity-associated changes in gene expression

may be masked by larger changes in cell proportions

(such as changes in the relative numbers of luminal

epithelial cells when compared with basal/myoepi-

thelial cells or stromal cells). Another problem with the

previous studies is that both were performed in animals

after 21–28 days of involution. As we have discussed

above in humans, there is actually an initial increase in

breast cancer risk associated with parity (Schedin

2006), which followed some 6–10 years later by a

decrease in breast cancer risk and it is not clear whether

the time point at which the animal studies were carried

out models the early increased or the later decreased
www.endocrinology-journals.org
human risk period. In many cases, such studies may

actually reflect a period during which the gland is

undergoing involution and remodeling, rather than

changes in the ‘resting’ uniparous gland, when

compared with virgin tissue. Involution of the

mammary gland is a complex process of controlled

apoptosis and tissue remodeling. Significant immune

responses occur during involution, including a primary

neutrophil activation and secondary macrophage

activation, a local acute-phase response and a late

B-lymphocyte response (Stein et al. 2004). Stein and

colleagues revealed a subset of genes which were

induced during involution and remained elevated at

involution day 20 when compared with nulliparous

controls, with most other genes returning to pre-

pregnancy levels. These genes were all immuno-

globulin-related genes and collectively indicated

a sustained B-cell response. The presence of such

a strong immune profile in the previous gene

expression studies on parity (Ginger et al. 2001,

D’Cruz et al. 2002, Blakely et al. 2006) suggests that

these experiments may have been performed when the

gland is still involuting and do not truly reflect parity-

specific changes that protect against breast cancer.

Only one study has been performed assessing the

gene expression profiles of breast tissue from parous

when compared with nulliparous women. Russo et al.

assessed gene expression changes in reduction

mammoplasties in postmenopausal women (Balogh

et al. 2006). They observed that epithelial cells from

parous women had increased innate immune response

proteins, namely T-cell receptor protein, IL22R, and

MHC class 1 HLA. DNA repair proteins and chromatin

remodeling proteins such as Sox2, P300, and

suppressor of Ty3 were also upregulated. While

limited in size (parous, nZ5; nulliparous, nZ2) and

by the fact that such studies cannot be carried out in the

same individuals both prior to and after pregnancy,

their study is strengthened by their cell-specific

analysis (epithelial and stromal cells) and timing of

tissue collection (in postmenopausal women, where the

protective effect is apparent; Schedin 2006).

Cumulatively these studies suggest that the parous

mammary gland is more differentiated than the virgin.

However, differentiation of the mammary gland per se

may not mediate the protective effect of pregnancy.

The compound perphenazine causes acute release of

PRL from the anterior pituitary (Ben-David 1968) and

results in proliferation and differentiation of the

mammary cells to a near lactational state. Rats treated

with estradiol plus progesterone displayed a 96%

reduction in mammary cancers when compared with

controls whereas those rats that were treated with
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perphenazine showed a similar incidence to age-

matched controls, although with a slight decrease in

tumor number per animal (Guzman et al. 1999).

Therefore, complete differentiation of the mammary

gland could not protect against tumor formation, but

estradiol and progesterone treatment could. This has

been confirmed by recent studies in which exogenous

estradiol plus progesterone had a protective effect

without inducing full lobuloalveolar differentiation

(Sivaraman et al. 1998). Similarly 5 days of pregnancy

in a rodent model was able to provide a partial

reduction in breast cancer risk (see above; Sinha et al.

1988) despite the minimal DNA synthesis and

morphological differentiation of the gland at this

early stage (Grubbs et al. 1988, Medina et al. 2001).

Likewise, a study assessing the ability of estrogen to

mimic parity showed that lower doses of estrogen

which did not confer complete differentiation were just

as effective as higher doses at preventing carcino-

genesis (Rajkumar et al. 2001).
Changes to the mammary stem cell population

Several lines of evidence suggest that mammary stem

cells are targets for tumorigenesis. First, stem cells are

thought to be long lived and are, therefore, able to

accumulate the multiple mutations required for tumor

formation. To counter this, they are likely to have

developed specific protective mechanisms, such as a

preference for undergoing apoptosis rather than DNA

repair in response to DNA damage (Roos et al. 2007)

and selectively retaining their template DNA during

cell division (Smalley & Ashworth 2003, Booth &

Smith 2006, Cairns 2006, Shinin et al. 2006). This last

mechanism is predicted to keep replication-related

mutations to a minimum and would explain why breast

cancer incidences are not higher than they are as well

as the ability of developmental insults (radiation

exposure and hormonal treatments) to affect disease

states later in life. Selective template DNA strand

segregation is based on nonrandom, age dependent

template segregation, which has been demonstrated in

several systems however (Cuzin & Jacob 1965, Lark &

Bird 1965, Lark et al. 1966), is not uniformly accepted

(Lansdorp 2007, Rando 2007). Second, stem cells are

thought to have a high proliferative potential and

therefore an increased ability to drive tumor growth;

however, in most cases, the actual proliferative

compartment is likely to be the transit amplifying

population derived from the stem cell, rather than the

multipotent progenitors themselves. Third, mammary

stem cells possess self-renewal capacity, which is also
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a hallmark of tumor cells. Finally, epidemiological

studies suggest that the breast is at particular risk from

acquiring deleterious genetic changes before or during

puberty, which is thought to be a period of stem cell

expansion. Stem cells have the ability to undergo both

asymmetric and symmetric cell division. In asym-

metric stem cell division, one of the two progeny is

identical to the initial stem cell (resulting in self-

renewal of the parental stem cell), while the other

becomes a committed progenitor cell and ultimately

generates all the differentiated cell types formed in the

tissue. However, during puberty, stem cell numbers

must be expanded to provide the tissue with its

required adult complement of stem cells. This occurs

through symmetric division resulting in the production

of two identical daughter stem cells (Kimble 1981,

Morrison et al. 1995). During this period of symmetric

cell divisions, any DNA damage that occurs (or has

previously occurred) to a stem cell will become fixed in

the expanded stem cell compartment and retained for

long periods of time, in contrast to mutations occurring

in short-lived transit amplifying or terminally differ-

entiated cells. Therefore, mutagenic insults or protec-

tive factors specifically operating before or during

puberty are likely to have profound consequences for

breast cancer later in life. The epidemiological

evidence supports this. Young women (!20 years of

age) exposed to radiation during the Hiroshima and

Nagasaki atomic bombs were the age group most likely

to develop breast cancer in later years with a 13-fold

excess relative risk for early onset (!35 years) breast

cancer and twofold for later onset breast cancer (O35

years; Tokunaga et al. 1994, Land et al. 2003). If the age

at exposure is further subdivided into 0–4, 5–9, 10–14,

and 15–19 years then the excess relative risk tends to be

higher at 0–4 and 10–14; however, there were slight

increases at the intervening ages, so no clear variation is

seen below 20 years (Land et al. 2003). Similarly, breast

cancer is the most common second primary neoplasm

among survivors of Hodgkin’s disease in childhood and

adolescence who have been treated with chest irradi-

ation (Aisenberg et al. 1997, Horwich & Swerdlow

2004) with an estimated risk of 15–33% of developing

the disease by 25 years of follow-up. Protective factors

(like a diet high in soy protein; Wu et al. 2002) are also

likely to have a higher impact during adolescence, when

the stem cell population is expanding. A population-

based, case–control study of breast cancer among

Chinese, Japanese, and Filipino women in Los Angeles

found that after adjustment for age, specific Asian

ethnicity, education, migration history, and menstrual

and reproductive factors, women who reported high soy

intake during adolescence showed a significantly lower
www.endocrinology-journals.org
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risk of breast cancer. This effect was greater than the

effect for women with a high soy intake only in

adulthood (Wu et al. 2002). Collectively, these studies

suggest that at stages of mammary development

associated with specification of mammary stem cells

(prepubertal) and stem cell expansion and differen-

tiation (pubertal/adolescence), the gland is more

sensitive to known cancer causing agents than later

in life.

However, although there is evidence that stem cells

are targets for tumorigenesis, a direct effect of

pregnancy, either conferring resistance to transfor-

mation in mammary stem cells, or reducing stem cell

numbers, and thereby reducing the target cell popu-

lation for transformation, remains to be demonstrated.

Only recently have cell surface markers such as CD24

and either CD49f or CD29 become available to allow

the isolation of mammary epithelial cell sub-

populations highly enriched for in vivo stem cell

activity in the mouse (Shackleton et al. 2006, Sleeman

et al. 2006, 2007, Stingl et al. 2006). Similar strategies

have been employed for identifying stem cells in the

normal human breast (Shipitsin et al. 2007) and will

now enable the comparison of stem cell-enriched

populations in the breast of nulliparous and parous

women. The fact that many genes with cell cycle

functions consistent with a role in stem cell division are

regulated by estrogen (Table 1) would suggest that

estrogenic regulation of stem cells during pregnancy is

plausible. Mammary stem cells are ERa-negative
(Asselin-Labat et al. 2006, Sleeman et al. 2007), so

if this was true then it would need to be mediated by

ERa-independent pathways (possibly via growth

factor-related crosstalk or GPR, G-protein coupled

receptors) or via paracrine signaling intermediates.
Table 1 Genes with possible roles in stem cell cycling which are re

Gene Role in stem cell kinetics

Sox2 Marker of neuroepithelial stem cells

Sox30 Marker of testicular germ cells

Odz Implicated in hedgehog pathway (structural homolog of

BarH Controls decisions of neuronal fate

JunB Controls number of hematopoietic stem cells

TGFb Regulates cell cycle entry, regeneration and formation

telomerase

Notch 2 Controls cell fate decisions by influencing cell proliferat

tiation, and apoptosis

Wnt5a Involved in maintenance of stem cells via non-canonica

Sfrp2 Negative regulator of Wnt signaling

Cdc42 A Rho GTPase, which regulates the PAR complex (con

polarity, junction formation, and asymmetric division)
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Parity induces changes in estrogen

responsiveness of the mammary gland

Nearly all aspects of mammary gland development are

under hormonal control. Estrogens are thought to

mediate various stages of mammary development and

breast cancer risk has long been associated with

estrogen exposure, although the change in risk depends

on the age, dose, and duration of exposure (Table 2). If

women were exposed in utero to elevated estrogen they

showed increased breast cancer incidence later in life

(Rothman et al. 1980, Thompson & Janerich 1990,

Ekbom et al. 1992, Braun et al. 1995, Weiss et al.

1997), while the more restricted levels associated with

preeclampsia may lead to decreased incidence (Braun

et al. 1995). Women exposed to the environmental

estrogen diethylstilbestrol (DES) also display

increased incidence of breast cancer (Hatch et al.

1998, Palmer et al. 2002). The younger a woman’s age

at menarche the higher her breast cancer risk (Helmrich

et al. 1983, Brinton et al. 1988, Kvale & Heuch 1988,

Hsieh et al. 1990), which may be related to the

increased levels of estrogen experienced directly

following menarche (MacMahon et al. 1982, Apter

et al. 1989) or to the earlier exposure to the regular

ovulatory cycles of hormones. Similarly, the older a

woman is at the time of menopause the higher her risk

of breast cancer, the risk increasing 17% for each 5

year delay (Hsieh et al. 1990). Epidemiologic studies

in dogs have shown that if oophorectomy is performed

before the first estrus cycle then the relative risk for

breast cancer is 0.005 (Schneider et al. 1969). The risk

of developing breast cancer is therefore very low

without exposure to ovarian hormones.

Besides duration of exposure, estrogen-dependent

breast cancer risk may also be mediated by changes in
gulated by estrogen

Effect of

parity/estrogen Refs

Upregulated Balogh et al. (2006)

Upregulated Balogh et al. (2006)

notch) Decreased Balogh et al. (2006)

Increased Balogh et al. (2006)

Increased Balogh et al. (2006)

of niches, and Increased D’Cruz et al. (2002)

ion, differen- Decreased by Genistein Su et al. (2007)

l Wnt pathway Decreased by Genistein Su et al. (2007)

Increased by Genistein Su et al. (2007)

trols apical Increased by estrogen Ginger et al. (2001)
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Table 2 Effect of timing of estrogen treatment and breast cancer risk

Treatment Effect on breast cancer Refs

Humans

Female twins exposed to elevated intrau-

terine estrogen

Increased incidence as adults Ekbom et al. (1992), Braun et al. (1995),

Weiss et al. (1997)

Women prenatally exposed to increased

estrogens (older mothers have increased

circulating estrogen at pregnancy)

Increased incidence as adults Rothman et al. (1980), Thompson &

Janerich (1990)

Women prenatally exposed to DES Increased incidence as adults Hatch et al. (1998), Palmer et al. (2002)

Women prenatally exposed to restricted

placental estrogen (pre-eclampsia)

Decreased incidence as adults Braun et al. (1995)

Pregnancy levels of estrogen early

adulthood

Decreased incidence of ERC cancers Ursin et al. (2005), Ma et al. (2006)

Rodents

Prenatal/neonatal treatmentwithDES (rats) Increased incidence as adults Rothschild et al. (1987)

E2 to newborn female mice infected with

mammary tumor virus

Increased incidence Mori et al. (1976)

Neonatal treatment with DES (mice) Increased sensitivity to hormones and

carcinogens later in life

Bern et al. (1992)

E2 injections d1–d30, or d2–d5 Inhibited tumor development in adults Shellabarger & Soo (1973), Nagasawa

et al. (1974), Yoshida & Fukunishi (1978)

DES exposure at mid-gestation (mice) Decreased incidence as adults Nagasawa et al. (1980)

Pregnancy or treatment with pregnancy

levels of estrogen early in adulthood

Decreased incidence of ERC cancers Russo & Russo (1980), Sinha et al. (1988),

Rajkumar et al. (2001)

DES, diethylstilbestrol; E2, estradiol.
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the estrogen responsiveness of the gland following

parity. We will now discuss changes in the respon-

siveness of the mammary gland to estrogen as a

mechanism mediating parity protection against breast

cancer. We will start by introducing the different

pathways of estrogen action and discuss the levels of

ERs throughout mammary development.

The mechanism of estrogen – ER action

The mechanisms of estrogen action have been

reviewed extensively (Kushner et al. 2000, Shang

et al. 2000, McDonnell & Norris 2002, Bjornstrom &

Sjoberg 2005, Moriarty et al. 2006). The majority of

the effects of estrogens are mediated via two distinct,

yet similar intracellular receptors, ERa and ERb. In the
classical mode of action, estrogen-ER binds to estrogen

response elements (EREs) in target promoters and

causes up- or downregulation of gene transcription.

However, estrogen-ER complexes can alter transcrip-

tion of genes using response elements other than EREs

(AP-1 and SP-1), where DNA-bound transcription

factors (Fos/Jun) tether the activated ER to DNA.

Growth factors can also activate intracellular kinase

pathways leading to phosphorylation and activation of

ER. This phosphorylation occurs via one of the many

cellular kinases at a specific position within the

activation function region of ER (reviewed in Lu &

Giguère 2001).
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In addition to these genomic pathways, a number of

other effects of estrogens are so rapid that they cannot

depend on the activation of RNA and protein synthesis.

These actions are known as non-genomic pathways.

One potential example of this is estrogen activation of

a membrane-associated binding site, GPR30, which is

linked to intracellular signal transduction pathways.

Estrogen stimulation of GPR30 results in transactiva-

tion of the EGFR, via G-protein activation (Filardo

et al. 2000, Filardo 2002, Maggiolini et al. 2004)

explaining observations, which suggested interactions

between estrogen and epidermal growth factor

(DiAugustine et al. 1988, Yarden et al. 1996). While

membrane-mediated estrogen action is not universally

accepted, the potential importance of this pathway has

been recently highlighted by studies showing that it

may promote endocrine-insensitive breast cancer cell

growth (Hutcheson et al. 2003).

ERa and ERb do not regulate gene expression alone

but require the action of co-regulatory proteins

(McKenna et al. 1999). Binding of agonists (such as

estradiol and DES) to ER induces a conformational

change in the receptor that permits coactivator

recruitment (Heery et al. 1997, Feng et al. 1998),

while anti-estrogens (such as tamoxifen and raloxi-

fene) do not allow binding of coactivators (Shiau et al.

1998). Several reviews have recently described

the expression, function, and clinical relevance of
www.endocrinology-journals.org
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co-regulators in breast cancer and tamoxifen resistance

(Smith & O’Malley 2004, Hall & McDonnell 2005,

Girault et al. 2006). Coactivators such as AIB1 have

been shown to be amplified and overexpressed in

breast cancer cell lines and breast cancer biopsies.

They also appear important in tamoxifen resistance,

which occurs in 30–50% of treated ERa-positive breast
cancer patients (Group 1998, Girault et al. 2003,

Osborne et al. 2003).

Finally, in addition to full-length ER-mediated effects

there are more than 20 different variants of human ERa
(Poola et al. 2000) occurring in normal and neoplastic

breasts (Poola&Speirs 2001) and at least 10 humanERb
variants (Poola et al. 2002) have been reported. Splice

variants for both ERs have also been identified in rodents

(Chu & Fuller 1997, Lu et al. 1998, Kos et al. 2000).

Studies are ongoing todetermine the clinical significance

of expression of ER variants (Ko et al. 2002, Secreto

et al. 2007).

ER activity is, therefore, dependent not only on the

receptor isoforms, their relative levels of expression,

and the presence of splice variants, but also on ligand-

dependent or independent activation and the comp-

lement of co-regulatory molecules present. This

complex regulation is likely to be why different

doses of estrogen can have distinct effects in different

tissues. The levels of estrogen experienced at

pregnancy are some 10–100 times higher than those

normally experienced in reproductive life (Shaikh

1971, Watson et al. 1975, Moore et al. 1978, Adeyemo

& Jeyakumar 1993, Guzman et al. 1999, Offner et al.

2000) and may elicit completely different effects than

the lower levels normally present during development.

The complexity of the estrogen dose–response is

exemplified in a recent study assessing the response

of the mammary gland and uterus of ovariectomized

mice to increasing concentrations of estrogen. Using

both gene/protein expression and tissue architecture as

end points, Vandenberg et al. (2006) showed that the

uterus responded increasingly strong to increasing

doses of estrogen (a sigmoidal dose–response curve)

for both gene expression and tissue architecture.

However, while the mammary gland showed higher

levels of gene expression (Msx2, Wnt4, and PR) in

response to increasing concentrations of estrogen

(a sigmoidal dose–response curve), tissue architecture

followed a polynomial dose–response. Low to moder-

ate doses of estrogen induced TEB formation and

ductal elongation, while higher doses inhibited these

processes. In studies which examined mammary

carcinogenesis in response to estrogen treatment,

continuous administration of supraphysiological

doses of estrogen led to a high percentage of mammary
www.endocrinology-journals.org
adenocarcinomas (Young & Hallowes 1973), while

low doses given over long periods induced fibroade-

nomas (Geschickter et al. 1934). This might suggest

that the epithelial and stromal compartments are

differentially responsive to estrogen, although it is

important to note that these studies were not performed

in parallel. It has also been shown that heightened

sensitivity to the mitogenic effects of estrogen occurs

in MCF7 breast cancer cells after a period of estrogen

withdrawal (Masamura et al. 1995) and in the normal

mammary epithelial cells of long-term ovariectomized

mice (Raafat et al. 1999). These data suggest that the

high levels of estrogen experienced by the breast at

pregnancy may result in an altered response to

estrogen, which could result in permanent changes

that persist after pregnancy when high hormone levels

are no longer present.

ER levels during mammary development

The mammary gland shows altered responsiveness to

estrogen at different developmental stages (Haslam &

Shyamala 1980, Haslam 1989). In the mouse, ERa is

first expressed postnatally at 3 days of age, in 8% of

epithelial cells and 4% of stromal cells. In the

epithelium at this stage, it is observed only in basal

ductal cells (Haslam & Nummy 1992). However, the

receptors are nonresponsive at this stage as compe-

tence to proliferate in response to estrogen starts only

at 3 weeks, and the ability of estrogen to increase PR

expression starts at 7 weeks (Haslam & Shyamala

1980, Haslam 1989). It is important to note that PR is

used as an indicator of intact estrogen action, and in all

the studies mentioned hereafter the PR subtype has not

been defined by the investigator. As discussed later, the

specificity of the induction of PR subtypes can now be

explored, as subtype-specific antibodies have been

developed (Mote et al. 2001). By 7 days of age, ERa
has increased twofold in epithelial cells and is now

located in both basal and luminal cells. During the next

5 weeks of development, the ERa expression in

epithelial cells remains relatively constant; however,

the proportion of ERa-positive stromal cells increases

to 16%. Variations in the reported percentage of ERa-
positive cells exists in the literature (Haslam &

Shyamala 1980, Haslam 1989, Haslam & Nummy

1992, Saji et al. 2000, Shyamala et al. 2002); however,

a general expression pattern with age is evident

(Table 3). Within the TEBs, the cap cells are ERa-
negative and only the inner body cells stain positively

(Zeps et al. 1998). The majority of ERa cells occurred

in clusters, rather than being evenly dispersed among

negative cells. At 7–10 weeks of age, the percentage of
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Table 3 Estrogen receptor localization within the breast during reproductive life

D3-7 Pre-puberty Adult Pregnancy Lactation Post-lactation

ERaa Low 15–40%b 20% Low High Low

ERba Unknown 60% Unknown High High High ERb1, ERb2

ERabc 25% Few cells High Little

PR status Negative Positive High Low High

Downstream

effects

No proliferation No proliferation Cyclic proliferation Rapid growth Gland is insensi-

tive to E2

No proliferation

remodeling

Data compiled from results within studies by Haslam & Nummy (1992), Haslam & Shyamala (1980), Haslam (1989), Shyamala et al.
(2002) and Saji et al. (2000).
aResults from single stained staining.
bResults differ depending on study.
cResults from double immunofluorescence.
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ERa cells in such clusters is significantly increased,

when compared with younger ages (Haslam & Nummy

1992). This indicates either division of preexisting

ERa cells, directly stimulated by estrogen acting on the

classical receptor pathway, or differentiation of ERa
cells from ERK stem/progenitor cells, stimulated

through paracrine interactions.

The largest developmental study of ER expression

levels in women to date was carried out by Bartow

(1998) using autopsy material. In the early neonatal

period, ERa was detected and localized to the nuclei of

luminal cells of the duct. ERa-positive cells were

present in all ductal areas, but appeared to cluster at

budding points. At this stage no PR was present;

however, TGFa-positive epithelial cells were noted.

Breast tissue at 2 and 4 months of age had no detectable

ERa, no PR, and weak if any staining for TGFa. Up to

7 years of age, immunohistochemistry showed only

faint staining for nuclear ERa. In prepubescent girls,

ERa protein was absent but PR was observed. In

pubescent girls, low numbers of epithelial cells

expressing ERa and abundant PR staining were seen.

In adult women, some ERa staining was observed in

the follicular phase and some PR, but no ERa was

observed in the luteal phase, despite PR still being

expressed. ERa was absent throughout pregnancy. In

the postmenopausal breast, when circulating estrogen

levels are low, there was marked involution of the

TDLU and levels of ERa mRNA were low, but ERa
and PR protein was common in luminal epithelial cells

(Bartow 1998). A few smaller studies also exist which

provide both supporting and conflicting observations

(Petersen et al. 1987, Jacquemier et al. 1990, Ricketts

et al. 1991, Williams et al. 1991, Clarke et al. 1997,

Keeling et al. 2000), but it is difficult to draw general

conclusions across these studies on the ERa expression

pattern in the normal human breast due to differences

in methodologies (Shimada et al. 1985, Ricketts et al.
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1991). However, it seems clear that 6–15% of normal

human breast epithelial cells stain positively for ERa.
ERa-positive cells are predominately nestled within

ERK epithelial cells and consistent with findings in

mice, the percentage of contiguous ERa-positive cells
increases with age and cancerous progression (Shoker

et al. 1999).

ERb has not been as extensively analyzed in humans

as the classical ERa; however, two studies assessing its
expression in normal human breast sections do exist.

Speirs et al. (2002) showed widespread expression

throughout the breast using a monoclonal ERb
antibody on reduction mammoplasty samples, but

Shaw et al. (2002) reported more varied results, with

1–75% of epithelial cells staining positively for ERb.
While it is generally accepted that ERa is the most

important subtype for determining estrogen action in

the breast, a more detailed developmental study of ERb
expression to confirm its expression pattern is

necessary to help determine its role and functional

interactions with ERa. This may be important as recent

gene expression arrays and clinical data have shown

that ERb exhibits growth inhibitory effects in ERa-
positive breast tumor cells. Moreover, expression

profiles of tumors clustered as a function of ERb
expression. Those with high ERb downstream gene

expression profiles had significantly higher probability

of disease free survival when compared with low ERb
profiles (Lin et al. 2007). We believe that while not as

important as ERa for predicting clinical outcome, ERb
may provide additional clues to deciphering parity-

induced protection via estrogen.

Most of the protein tissue localization studies in

rodents have examined only ERa. However, one

detailed comparative analysis of ERa and ERb
throughout mouse mammary development has been

carried out (Saji et al. 2000). This study showed that

prepubertally, when estrogen does not induce
www.endocrinology-journals.org
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proliferation in the epithelium (Haslam 1989), both

ERa and ERb are present within the mammary gland,

with co-expressing cells accounting for 25% of

epithelial cell nuclei. At pregnancy, when estrogen

causes rapid growth and maturation of the mammary

gland and PR levels are high, ERb is present in the

majority of epithelial cells and ERa is scarce. Only a

few cells express both receptors. During lactation,

when the breast is insensitive to estradiol and PR levels

are low, both ERa and ERb are high and a high level of

coexpression exists. Following lactation, ERa levels

are extremely low and there is little colocalization of

the two receptors (Table 3).

Unfortunately, while knockout mice have clearly

demonstrated the role of ERa in promoting mammary

epithelial proliferation and mammary ductal growth

(reviewed in (Couse & Korach 1999), the data for

ERbK/K animals have been less clear. Prepubertal

ERbK/K females appear to have a normal mammary

histology (Krege et al. 1998) with unaffected ductal

outgrowth of the mammary gland anlage. However,

because corpora lutea are rare in these animals, in

contrast to their wild type littermates, little progesterone

is produced in the ovaries and ERbK/K mammary

glands fail to develop ductal side branches and alveoli

after puberty. Progesterone administration restores side

branching leaving mammary glands morphologically

indistinguishable from those of their wild type

littermates (Palmieri et al. 2002). Forster (Forster

et al. 2002) examined the possibility that ERb is

required for terminal differentiation of the mammary

gland. Histomorphological comparison of ERbK/K

lactating glands with wild type controls revealed that

ERbwas essential for the complete differentiation of the

gland during pregnancy and lactation. ERbK/K mice

had incomplete penetration of the fat pad by the

epithelial tissue, an increase in lumen size, a reduction

in the number of alveoli, a reduction in the content of

secretory epithelium, and a reduction in the width of the

basement membrane. These mice also showed a

reduction in expression of collagen in the extracellular

matrix and in E-cadherin, integrin a2, occludin,

connexin-32, and smooth muscle actin, markers of

differentiation in the different mammary epithelial

populations. Proliferation levels (assessed by Ki67

staining) were also increased in the adult gland (Forster

et al. 2002). Cumulatively, these changes suggest that

the mammary gland of lactating ERbK/K mice is less

well differentiated than that of wild type mice. If ERb
does function to promote mammary epithelial differen-

tiation then it could have a key role in mediating

the protective effects of parity against breast cancer

in mice.
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Progesterone as a downstream target

ERa is expressed in 75% of primary breast cancers and

over 50% of these also express PR (McGuire 1978).

When PR was identified as an ERa-regulated gene, it

was hypothesized that it would indicate an intact ER

(Milgrom et al. 1973, Leavitt et al. 1977) and so

predict the tumors that were more responsive to

endocrine therapies (Horwitz & McGuire 1975). This

has been supported by retrospective studies showing

that patients whose tumors contain both the ERa
and the PR have the greatest probability of responding

to tamoxifen therapy and have a better prognosis

than those whose tumors do not contain steroid

receptors (Osborne et al. 1980, Gross et al. 1984,

Ravdin et al. 1992, Elledge et al. 2000). More recent

clinical advances have also suggested that PR

expression can be used to define the clinical relevance

of aromatase inhibitors rather than tamoxifen as first

line therapy.

As with the studies on the ER, the focus has been one

of the subtypes of the PR. Two PRs exists (PRA and

PRB), which are transcribed using alternate promoters

of the same gene (Conneely et al. 2003). While

structurally similar, the PRs have different functions.

PRB is a strong transactivator whereas PRA is a

transrepressor and can specifically inhibit both ERa
and PRB (Meyer et al. 1992). Studies assessing PR

protein expression within the mammary gland have

shown that across mammals, PRA is abundantly

expressed throughout development with PRB pre-

dominating during pregnancy. This is consistent with

the expression of PRB in alveolar epithelial cells.

Studies assessing their temporal and cell-specific

expression patterns in the mammary gland are

confusing due to the proportion of studies carried out

before reagents capable of distinguishing the two

isoforms became available (Mote et al. 2001) as eluded

to earlier. Some confusion has also arisen in terms of

PR regulation in mouse and human, due to the more

dispersed alveolar architecture of the virgin mouse

gland. However, once this is taken into account, it is

evident that PR subtype protein expression levels are

comparable in both species (Kariagina et al. 2007).

Whether the PR isoform ratio has any bearing on

response to endocrine therapy remains to be

determined. However, it is clear that increased PRA

is associated with poor prognosis, presumably via its

repression of ER, while elevated levels of PRB are

positively correlated with a more differentiated tumor

phenotype and negatively correlated with high levels

of HER2 expression/amplification (Bamberger et al.

2000, Mote et al. 2002).
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Parity-specific changes in estrogen responsiveness

It is difficult to draw general conclusions about the

effects of parity on the estrogen sensitivity of the

mammary gland as existing studies have used different

experimental regimes (varying ages of subjects and

type and length of treatment) and different analysis end

points (immunohistochemical analysis of ER/EGFR,

gene expression, or hormonal response) or analysis

times (following involution, during subsequent

pregnancies, or during later life). However, cumu-

latively, the data suggest that the parous mammary

gland may have altered levels of estrogen signal

transducing machinery when compared with the

nulliparous gland. Whether this results in an overall

increased or decreased sensitivity to estrogen is still

unclear (Table 4). ERa and Egfr expression levels were

significantly reduced in mammary glands of parous rats

when compared with age-matched nulliparous animals

(Thordarson et al. 1995). Parous rats have fewer ERa-
positive cells (Yang et al. 1999). However, to our

knowledge, the levels of ERa in virgin versus parous

breasts in humans have not been definitively assessed.

Consistent with a decrease in ERa the levels of PRA-

positive epithelial cells are decreased in parous rats

suggestive of decreased ER-mediated estrogen action

and PRBC cells are increased consistent with

increased differentiation (Aupperlee et al. 2005).

Expression of ERa and ERb splice variants 1 and 2

were shown to be greater in luminal cells of multi-

parous rodents on D9 of pregnancy in a comparison of

nulliparous and uniparous groups. In addition, ERb1

and 2 mRNA expressions were upregulated in multi-

parous rats. In the interlobular stroma ERa and ERb
were increased in multiparous animals (Kass et al.

2004). GPR30, the cell surface receptor, which may

crosstalk with Egfr in the nonclassical estrogen-

responsive pathway, was increased in parous tissue

when compared with nulliparous controls (Balogh

et al. 2006). Furthermore, JunB, which is involved in

AP1-mediated estrogen action, was increased in parous

stroma, while the co-regulator p300/CBP was

increased in parous epithelial tissues (Balogh et al.

2006). It is not clear from these studies that, however,

whether changes in ER (or GPR30) expression are due

to changes in numbers of ER/GPR30 expressing cells

or to changes in levels of ER receptors within the same

cell populations. Whether the effects on ER levels are

differentially affected by single versus multiple

pregnancies is also not clear.

In assessing the role of estrogen responsiveness in

parity-induced protection, it is also important to note

that the expression of Tgfb, has been consistently
920
shown to increase in parous mammary glands (D’Cruz

et al. 2002, Blakely et al. 2006). Tgf b1 blocks

the proliferation of ERa-positive mammary epithelial

cells (Ewan et al. 2005). Studies in mice with

differential Tgfb1 levels have confirmed this relation-

ship (Kulkarni et al. 1993, Pierce et al. 1993), with

Tgfb1 depletion (assessed in TGFb1C/K, which have

10–30% of wild type levels) promoting proliferation in

ERa-positive cells, and MMTV-Tgfb1 transgenic mice

showing decreased colocalization of ERa and KI67

(Ewan et al. 2005). A parity-induced increase in TGFb
is consistent with the decreased level of ERa-positive
epithelial cells observed in parous women (Russo et al.

1999) and the decrease in proliferating ERa-positive
epithelial cells in parous rats (Sivaraman et al. 1998,

Yang et al. 1999).

Parity appears to change the estrogen responsiveness

of the breast at several different levels: ER expression,

changes to the growth factor regulation of ER

expressing cells, as well as changes in downstream

estrogen transducing machinery such a GPRs and

coactivators. Despite this, the nature of the changes and

their biological basis remain poorly defined and this

limits our understanding of the physiological

consequences.
Stem cells and estrogen regulation

As discussed above, the epidemiological evidence

suggests that the breast is at particular risk from

environmental mutagens at or just prior to a time at

which the stem cell population is likely to be most

actively expanding. It is also established that estrogen is

required for mammary epithelial development, that

exposure to estrogen alters breast cancer risk depending

on the time of exposure and that the response is likely to

be determined by levels of expression of different ER

isoforms and co-receptors. We now explore the

relationship between stemcells, ER, estrogen, and parity.

For a more detailed discussion of mammary stem cells,

see previous reviews (Smalley &Ashworth 2003, Dontu

et al. 2005, Visvader & Lindeman 2006, Wicha 2006).

Recently, the prospective isolation of adult virgin

mouse mammary epithelial populations highly enriched

for stem cell activity has been reported (Shackleton et al.

2006, Sleeman et al. 2006, 2007, Stingl et al. 2006).

Single cells from these populations can be successfully

transplanted into mammary fat pads, regenerating the

glandular tissue and self-renewing (as shown by their

ability to be serially transplanted; Shackleton et al. 2006,

Stingl et al. 2006). The basal cell population, rather than

the luminal cell population, appears enriched for stem

cell activity in the adult virgin mouse. As ERa is known
www.endocrinology-journals.org



Table 4 Parity-induced changes in estrogen responsiveness

Refs Treatment Technique ER/EGF/cofactors Analysis

Thordarson et al. (1995) Mated at 7 week Radioreceptor assay Decreased cytoplasmic ER in parous Proestrus 17 weeks

15 d lactation Decreased nuclear EGFR in parous

35 d involution

Kass et al. (2004) Age of mating unknown IHC Luminal ERa increased in multiparous D9 of pregnancy

21 d lactation ERa and b increased in inter-alveolar stroma in multi-

parous

14 d involution Decrease in PRC luminal cells in multiparous

Assessed at 11–12 months No differences in myoepithelial ER

RT-PCR ERb1 and ERb2 mRNA increased in multiparous only

Yang et al. (1999) Mated 15 weeks IHC Trend for ERa to be decreased in parous 60 weeks

15 d lactation Normal regions of tumor bearing

mammary gland

PR decreased

NMU at 24 week

NMU at 10 weeks Trend for ERa to be decreased in parous 47 weeks

Mated at 15 weeks PR not changed

Bridges & Byrnes (2006) Age at mating unknown Ability of EB to Nulliparous more responsive at low doses of EB,

multiparous more responsive to superphysiological

doses

1–2 d after EB

21 d lactation 16% reduction plasma E2 in primiparous

14 d involution

14 d recovery then EB

Balogh et al. (2006)a FFTB !24 years Gene expression microarray p300/CBP, GPR30 increased in parous epithelial cells, 55–60 years

No data on lactation assessed at

menopause

JunB increased and PFTK1 decreased in parous stroma

D’Cruz et al. (2002) Mated at 4 weeks Gene expression microarray Areg and IGF-I decreased in parous 14 weeks

21 d lactation Increase in Tgf-3 and cyclin D1

28 d involution

Ginger et al. (2001) 42 d at E/P treatment (for 21 days) Subtractive suppressive

hybridization

S1-5/T16 (EGF-like protein) alteredb 13 weeks

28 d rest period

aThis study is performed in humans.
bDirection of change not mentioned in report. EB, estradiol benzoate; EGFR, epidermal growth factor receptor; E/P, estrogen/progesterone; ER, estrogen receptor; E2, estradiol; FFTB,
first full-term pregnancy; GPR, G-protein coupled receptor;
IGF-I, insulin-like growth factor; IHC, immunohistochemistry; NMU, N-methyl-N-nitrosourea; PR, progesterone receptor; PRL, prolactin; PFTK1, PFTAIRE protein kinase 1; RT-PCR,
reverse transcription-polymerase chain reaction.
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to be found specifically within the luminal epithelial

cells, this would suggest that themammary stem cells are

ERa-negative. This was directly demonstrated by

Asselin-Labat et al. (2006), who assessed the ERa, PR,
and Egfr levels in sorted single cells by qPCR and

immunohistochemistry. They found that it was the

luminal population of epithelial cells that was enriched

forERandPR, rather than the stemcell-enriched fraction.

They did, however, find that that the stem cell-enriched

population was Egfr-positive (Asselin-Labat et al. 2006).

The presence of Egfr in the stem cell-enriched mouse

mammary basal epithelial cells is consistent with

profiling studies showing that it is overexpressed in

breast cancer with a basal-like subtype (Ansquer et al.

2005, Hu et al. 2006, Livasy et al. 2006), which is

the cancer subtype most likely to be directly derived

from normal breast stem cells (Yehiely et al. 2006).

Furthermore, prospective isolation and transplantation of

mammary epithelial basal cells, ERa-negative luminal

cells, and ERa-positive luminal cells confirmed that the

ERC luminal population has little or no transplantation

capacity, whereas the basal population was enriched for

stem cell activity (Sleeman et al. 2007). Therefore,

estrogen is unlikely to directly stimulate stem cells and is

likely to be operating via a paracrine mechanism. The

paracrine relationship between ERC cells and stem cells

may also explain howestrogen can promote thegrowth of

ERK tumors in a xenograft mouse model of pregnancy-

associated breast cancer (Gupta et al. 2007) and why

oophorectomy can be protective against ERK breast

cancers (Nissen-Meyer 1964a,b, Group 1992a,b).

Paracrine stimulation of mammary stem cell function

was directly demonstratedby transplantation ofwild type

mammary epithelial cells and marked mammary

epithelial cells from ERa knockout mice. The marked

cellswere only able to contribute to epithelial outgrowths

when the two populations were co-transplanted, demon-

strating that the stem cells from the ERa knockout mice

required a signal from the ERawild type cells (Mallepell

et al. 2006). This signal was identified as the EGF family

ligand amphiregulin (Areg). It may be acting directly on

the mammary stem cells themselves, as mammary

epithelial cells with in vivo stem cell activity express

Egfr (Asselin-Labat et al. 2006) or indirectly via Egfr in

the stroma and a second set of paracrine messengers,

which then signal from stroma to the stem cell

compartment (Sebastian et al. 1998, Wiesen et al.

1999, Sternlicht et al. 2005). Areg has been known for

some time to be important for early mammary gland

development. Genetic disruption of Areg in mice caused

dramatic defects in ductal outgrowth (Luetteke et al.

1999). Areg is expressed by the cap cells of the TEBs as

well as myoepithelial and luminal cells of prepubescent
922
mice and is also seen in the stroma adjacent to migrating

TEBs in pubertal mice (Kenney et al. 1995). Areg has

been shown to mirror the ability of estrogen to rescue

ductal growth and TEB development in ovariectomized

mice (Kenney et al. 1995) and is induced 50-fold upon

estrogen stimulation in these mice. The requirement for

Areg seems to be restricted to pubertal duct formation

and growth as estrogen was unable to stimulate ductal

growth and TEB formation in the absence of Areg

(Kenney et al. 2003, Ciarloni et al. 2007) but side

branching and alveolar formation could proceed

normally. This suggests that at different stages of

development, the actions of estrogen are mediated via

alternate downstream pathways and paracrine signals.

Interestingly, Areg has been consistently shown to be

decreased in the parous mammary gland (D’Cruz et al.

2002, Blakely et al. 2006). Whether or not this is a

potential causative mechanism in parity-dependent

breast cancer protection, considering that Areg only

appears important for the ductal outgrowth stage, or

simply another marker of increased differentiation

remains to be determined.

Another signal likely to be involved in the paracrine

regulation of stem cell activity is Tgfb. Stem cell

behaviors such as cell cycle entry, regeneration, and

formation of niches have been suggested to involve

regulation by Tgfb1 (Booth et al. 2000, Dao et al. 2002).

Telomerase activity, postulated as a characteristic of

stem cells, is also regulated by Tgfb1 (Rama et al. 2001,

Yang et al. 2001). Interestingly, constitutive activation of

TGFb1 in the mammary gland led to decreased serial

transplantation capacity, hypothesized to be a result of

premature stem cell senescence (Boulanger & Smith

2001) and when administered via slow release pellets

caused end bud regression in mice (Silberstein & Daniel

1987). This ligand has also been shown to have

concentration-dependent effects on ductal development

in other systems (Montesano et al. 2007). TGFb3 and its
transcriptional targets were upregulated in parous glands

(D’Cruz et al. 2002) and it is therefore possible that the

parity directly results in a decrease in stem cell numbers

as a result of TGFb upregulation, although this needs to

be directly tested.

Although adult mouse mammary stem cells are

ERK, and the majority of ERC cells do not

colocalize with markers of cell proliferation (Clarke

et al. 1997, Russo et al. 1998), there is direct evidence

that some ERC cells (w2% of the ERC fraction) in

the mammary gland are dividing, and can take up a

DNA label and pass it on to daughter cells (Smith

2005, Booth & Smith 2006), at least during the

pubertal ductal expansion phase. This suggests that a

subfraction of ERC cells in the mouse mammary
www.endocrinology-journals.org
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gland form a progenitor population and are not

terminally differentiated. ERC progenitors may also

occur in the human breast. Clarke and colleagues

identified stem cells as a function of their ability to

retain a radioactive DNA label (3H-dT) and then

colocalized putative mammary stem cell markers

(p21CIP1 and Msi1) as well as ERa. This demonstrated

that a population of cells enriched for the putative

stem cell markers, p21CIP1 and Msi-1, were

also steroid receptor-positive (Clarke et al. 2005).

This led the authors to suggest that, within the human

breast, scattered steroid receptor-positive cells are

stem/progenitor cells that self-renew through asym-

metric cell division and generate patches of transit

amplifying and differentiated cells (Clarke et al.

2005). In contrast to these findings, immunohisto-

chemical studies have shown that ERa and PR are

found within the luminal epithelial, but not the basal

myoepithelial or stromal, cells of the human breast

(Petersen et al. 1987) and recent data analyzing

separated epithelial populations from breast cancers

and the normal breast support the notion of a basal

stem cell population (Shipitsin et al. 2007). Therefore,

as with the mouse studies, it may be that a sub-fraction

of ERC luminal cells in the human breast have

progenitor activity without being true stem cells.

Progenitor cells are likely to have limited self-renewal

capacity and may also be targets for tumorigenic

change. Luminal ERC progenitors may, therefore, be

direct targets for the protective changes in the

response of the breast to estrogen as a result of

pregnancy, quite apart from indirect effects on basal

stem cells.
Concluding comments

Parity protects women against the development of

hormonally responsive breast cancer, and the earlier

the first full-term birth occurs, the greater the

protection. Mouse models have shown that estrogen

is the driving force behind this protection although

several possible mechanisms are suggested to underlie

this. The parous mammary gland appears more

differentiated when compared with its virgin counter-

part, and this is supported by altered gene expression

profiles. Whether the increased differentiation of the

gland per se induces protection is questioned by studies

showing that differentiation of the gland by agents

other than estrogen, do not confer protection against

cancer development. Unique hormonal changes occur

at pregnancy and may lead to permanent changes in the

hormonal milieu of parous women. In particular, the

altered levels of Prl and GH in parous individuals
www.endocrinology-journals.org
observed in some studies fits with the roles of these

hormones in normal mammary growth and cancer

development. However, studies at specific time points

within the reproductive cycle, and at a time point

where protection is evident, are required in order to

ascertain whether a parous hormone profile actually

exists. In keeping with the link between lifetime

estrogen exposure and breast cancer risk, parity-

induced protection may also be mediated via changes

in the estrogen responsiveness of the gland. Emerging

studies suggest that the levels of the estrogen

transducing machinery in cells such as ERs, growth

factors, growth factor receptors, as well as GPRs, are

altered in parous glands. The significance of these

changes is still unclear. Analysis in individuals who

have resumed cycling, at various time points within the

reproductive cycle, is required and would be aided if

multiple levels of the estrogen pathway were assessed

simultaneously. A role for stem cells in parity-induced

protection against breast cancer is less clear, but would

be consistent with the proposed role of mammary stem

cells in cancer susceptibility and development.

Without definitive mechanistic studies, however, a

link between parity protection and stem cells is

speculative, but plausible. Overall, estrogen seems

key to understanding parity-induced protection, but

whether the mechanism is through permanent gene

expression changes, changes in the way estrogen is

sensed or changes in the way stem cells respond to it,

remains to be determined.
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