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Perspective

Nutrition-Related Peptides and Bone Homeostasis

Ian R Reid,! Jillian Cornish,! and Paul A Baldock?

INTRODUCTION

THE SKELETON SERVES two main functions. First, it has a
structural role, to support, protect, and facilitate the
function of the soft tissues. Second, it is a mineral reservoir,
which can be drawn on when dietary intake is inadequate to
meet the body’s needs. Optimal function in each of these
roles requires regulation of skeletal mass and function in
relation to the demands being placed on it. From the struc-
tural perspective, the size and strength of the skeleton
should be proportional to the mass of soft tissue that it
supports, so that the skeleton is structurally adequate with-
out being larger or heavier than necessary. To function as
an effective mineral reservoir, there must be a mechanism
by which mineral release from the skeleton can occur dur-
ing times of privation and its replacement be affected when
there is dietary abundance. Both the structural and reservoir
roles of the skeleton suggest that skeletal homeostasis should
be regulated by factors that reflect soft tissue mass on the one
hand and nutritional status on the other. Because soft tissue
mass and nutrition are themselves linked, there is the possi-
bility of a complex interaction of regulatory factors that act
across these two dimensions. Recent research indicates that
this is the case, and this Perspective will review our current
understanding of this relatively new area of bone science.

SOFT TISSUES, BMD, AND FRACTURE RISK

Soft tissue mass is, to some extent, a reflection of nutri-
tional status, and there is now abundant evidence that soft
tissue mass is related to both BMD and fracture risk.®" For
instance, the correlation of areal BMD with weight is 0.4—
0.5. Vertebral fracture prevalence was closely related to
mean body mass index across the countries involved in the
European Vertebral Osteoporosis Study (EVOS) study
(r = -0.66),” and body weight is also a key determinant of
the risk of hip fractures.® The cross-sectional relationship
between BMD and soft tissue mass can also be seen pro-
spectively, in that changes in body weight correlate with
changes in bone mass.®

NUTRITION AND BONE TURNOVER

Nutritional status also impacts on bone, and protein con-
sumption is an important predictor of lower limb bone mass
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in elderly women.® Nutritional supplementation (1224 g
protein, 12-24 g fat, and 37-74 g carbohydrate together with
vitamins, minerals, and trace elements daily) in elderly
women over a period of 1 year reduced serum osteoprote-
gerin and serum C-terminal telopeptide of type I collagen
by ~30% and increased bone alkaline phosphatase and os-
teocalcin.® Similarly, the infusion of an intravenous nutri-
tion preparation (glucose, lipid, and amino acids in ratios of
55:30:15 by energy) increased protein turnover in bone by
66% in the following 4 h.”” Congruent findings have come
from studies in starvation. Grinspoon et al.® studied nor-
mal young women during a 4-day fast and found a halving
of bone formation markers. Thle and Loucks” provided
young women with energy-restricted diets for 5 days and
showed a reduction in bone formation that was related to
the degree of energy restriction. Bone resorption is in-
versely related to BMI in normal postmenopausal women
(r = =0.57)."9 This is a dynamic relationship: 25% weight
loss increasing hydroxyproline excretion by 50% " and
10% weight loss producing comparable changes in deoxy-
pyridinoline excretion.(!> These important relationships
pose the question of what mechanisms underlie them. Fac-
tors related to either soft tissue mass or to the ingestion of
nutrients are prime candidates to account for these effects.

PEPTIDE RESPONSIVE TO ADIPOSITY

Adipocyte factors

Leptin: Leptin is the most widely recognized hormonal
product of the adipocyte. It regulates appetite and repro-
ductive function through its hypothalamic receptors, and it
is now clear that it also has direct and indirect actions on
bone.""*'* The signaling form of the leptin receptor is ex-
pressed in osteoblasts and chondrocytes,'>'® and leptin
promotes proliferation and differentiation in a variety of
osteoblast models in vitro."'*"® It has similar stimulatory
effects on chondrocytes both in vitro and in vivo.'%!? Lep-
tin also directly regulates osteoclast development, reducing
production of RANK and RANKL and increasing osteo-
protegerin,®>*" with a resultant inhibition of osteoclasto-
genesis.'” Leptin deficiency is associated with profound
obesity, reduced linear growth, reduced cortical bone mass,
and increased trabecular bone in the spine but reduced
trabecular bone in the femora, where huge adipocytes oc-
cupy much of the marrow space.®® Leptin replacement

!Department of Medicine, University of Auckland, Auckland, New Zealand; ?Garvan Institute of Medical Research, Sydney, Australia.

495



496

reverses the adipocyte phenotype and increases BMC by
>30%.4> However, leptin action in the central nervous
system also impacts on bone. Intracerebroventricular infu-
sion of leptin causes bone loss in leptin-deficient and wild-
type mice through inhibition of bone formation' and pos-
sibly stimulation of bone resorption.®# Studies using
blockade of the sympathetic nervous system indicate that
this neural pathway mediates leptin’s effect on bone, acting
through the B-adrenoreceptor on the osteoblast.*> Parti-
tioning of leptin effects into central and peripheral mecha-
nisms is complicated by interactions between hypothalamic
leptin levels and peripheral adipose mass. Central adminis-
tration of leptin causes rapid loss of adipocytes from pe-
ripheral stores, thereby reducing serum leptin levels.¢27
Thus, some of the effects of central administration of this
peptide may be mediated by its reduced peripheral secre-
tion.

The integration of leptin’s direct and indirect effects on
the skeleton can be assessed by administering it systemi-
cally. In animals, such studies consistently show an im-
provement in bone formation, skeletal mass, or
strength,(1>16212® although the opposite was seen when
leptin was overexpressed in the murine liver.®” Thus, in
most circumstances, the peripheral actions of leptin are
dominant, and those of endogenous leptin are likely to be
even more so because leptin is produced in bone marrow
adipocytes and other bone cells,®” thus exposing bone to
relatively higher concentrations of leptin than occurs with
systemic administration. This differential is even more
marked in obesity, which is associated with reduced transfer
of leptin across the blood-brain barrier.®" Ultimately, this
dominance is attested to by the consistent positive relation-
ship between fat mass and BMD—if the central effects of
leptin were dominant, there would be an inverse relation-
ship.() Possibly the central effect of leptin has a role in
skeletal protection during periods of privation, when falling
leptin concentrations might increase bone formation.*?

Descriptions of the bone effects of leptin in humans are
limited. Faroogqi et al.®*® provided leptin replacement to a
9-year-old girl and observed weight loss accompanied by
bone gain. Recently, eight women with hypothalamic
amenorrhea received leptin treatment for up to 3
months.* Leptin significantly increased levels of estradiol,
free triiodothyronine, free thyroxine, IGF-I, IGF-binding
protein 3, bone alkaline phosphatase, and osteocalcin,
showing the many indirect mechanisms by which this hor-
mone can impact on the skeleton. Circulating leptin con-
centrations are inversely related to bone resorption in post-
menopausal women, after adjustment for fat mass.”
These results, again, suggest that the final integration of
leptin actions on the skeleton is positive.

Adiponectin: In 1995, another adipocyte-specific secreted
peptide was identified, now usually referred to as adiponec-
tin. Adiponectin increases insulin sensitivity, and its circu-
lating levels are reduced in obesity and diabetes.**>") It
may act directly on bone, because adiponectin receptors are
found on osteoblasts,*® and these cells also secrete adipo-
nectin, so autocrine regulation is a possibility. In endothe-
lial cells, adiponectin inhibits NF-«B signaling,®” the path-
way regulating osteoclastogenesis in pre-osteoclasts.
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Inhibition of osteoclastogenesis, osteoclast activity, and in
vivo bone resorption have now been shown, together with
positive effects on osteoblast differentiation in vitro and
increases in bone mass in mice in vivo.“*” However, adipo-
nectin is able to bind a variety of growth factors," which
would tend to oppose these anabolic effects. Because of its
profound effects on insulin resistance, there will be an in-
terplay of actions, the final outcome of which is not pre-
dictable at this time.

The associations of adiponectin with BMD have now
been studied by several groups. Huang et al.** found an
inverse association (r = —0.52) between adiponectin and
total body BMD in adolescent women, which was no longer
apparent after adjustment for fat mass and Tanner stage.
Lenchik et al.“*® found a similar association in adult men
and women, which remained significant after adjustment
for fat mass. As with leptin, these cross-sectional analyses
have only a limited capacity to dissect out the effects of
these highly intercorrelated variables.

Resistin: Resistin is also a product of the adipocyte. This
peptide was discovered as a result of a search for genes that
are downregulated by thiazolidinedione antidiabetic
drugs.“Y We have shown that resistin modestly increases
the proliferation of osteoblasts in both cell and organ cul-
ture systems (J Cornish, unpublished observations, 2005). It
also increases the formation of osteoclasts in bone marrow
culture and their activity in organ culture. Whether these
counterbalancing effects lead to any change in bone mass is
not known at present.

Pancreatic hormones

Hyperinsulinemia occurs in obesity because of resistance
in the liver and skeletal muscle to the hypoglycemic effects
of insulin. Amylin and preptin are cosecreted with insulin
from the B cells of the pancreatic islets, so these three hor-
mones could act in concert to produce bone anabolism.

Insulin: Insulin is mitogenic to osteoblasts in vitro and
increases bone formation in vivo when administered lo-
cally.®*> These effects are mediated by insulin receptors in
osteoblasts and possibly by IGF-I receptors also. BMD is
directly related to circulating insulin concentrations®®+”)
and is inversely related to insulin sensitivity.“*® Hyperinsu-
linemia can also impact on bone indirectly, because it re-
sults in androgen and estrogen overproduction in the ovary
and reduced production of sex hormone binding globulin in
the liver, resulting in increased free concentrations of sex
hormones. As a result, high BMD is a consistent finding
across a wide range of hyperinsulinemic states, including
type 2 diabetes, polycystic ovary syndrome, and congenital
generalized lipodystrophy. In contrast, BMD tends to be
reduced in insulin deficiency (i.e., type 1 diabetes).

Amylin: Amylin is a 37 amino acid peptide that belongs
to the calcitonin family. It has evolutionary links with insu-
lin and is cosecreted with it. Amylin directly stimulates os-
teoblast proliferation in vitro*® and acts like calcitonin to
reduce osteoclast development and activity, and thus, bone
resorption.®® Systemic administration of amylin has posi-
tive effects on bone mass in both mice®" and rats.*
The related peptide, adrenomedullin, is also anabolic to the
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FIG. 1. Possible mechanisms by which fat mass may influence
bone cell function, and thus, bone mass, independent of the effects
of feeding. SHBG, sex hormone binding globulin. Reprinted with
permission from IR Reid.
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osteoblast® and secreted from the pancreatic islets,>

although its secretion has not been shown to be related to
adiposity. Recently, we have shown that the proliferative
effects of adrenomedullin and amylin are dependent on the
presence of the IGF-I receptor,®® implying a common
mechanism of action for several of the factors discussed in
this review.

Preptin: Preptin, a 34 amino acid peptide hormone that
increases glucose-mediated insulin secretion, has recently
been isolated from the same secretory vesicles that contain
insulin and amylin.©”’ Preptin corresponds to Asp®’-Leu'"?
of pro-IGF-2 (pro-IGF2). It is anabolic to osteoblasts in cell
and organ culture but does not influence osteoclast activity.
In vivo, its local administration increases bone formation
and bone area in adult male mice.®® The anabolic activity
of preptin on bone is likely to contribute to the develop-
ment of osteosclerosis in some patients with hepatitis C,
because immuno-activity of pro-IGF2-(89-101) is increased
in this condition.®® In contrast, excess of other forms of
pro-IGF2 that do not contain the preptin sequence are not
associated with increased bone mass.©*

The possible interaction of these factors is shown in
Fig. 1.

PEPTIDES RESPONSIVE TO FEEDING

It has been known for many years that oral glucose load-
ing is followed by a transient suppression in serum calcium.
Our own unpublished data showed that this is partially a
result of decreases in serum albumin, presumably repre-
senting hemodilution related to the osmotic changes that
accompany the absorption of a glucose load. However, ion-
ized calcium also decreases, and there is an increase in uri-
nary calcium excretion.®” These changes are likely to be
contributed to by reduced PTH secretion,®*°" increased
circulating concentrations of amylin (which has a calciuric
action through the renal calcitonin receptor®>®®), and in-
creased calcitonin secretion.®® There is also evidence of
reduced bone resorption after feeding of fat, protein, or
glucose in humans.®>=*” This could also be mediated by
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changes in PTH, amylin, and calcitonin, but there are other
potential players. These nutrients stimulate secretion of the
incretin hormones, glucagon-like peptides (GLP) 1 and 2
and glucose-dependent insulinotropic polypeptide (GIP),
which act to enhance postprandial insulin secretion. Paren-
teral administration of GLP-2 produces a dose-dependent
reduction in serum C-terminal telopeptide of type I colla-
gen,®® and GLP-2 administration over a 5-week period
decreased bone resorption and increased BMD in a small
uncontrolled study.®® GLP-1 and GIP do not acutely in-
fluence bone resorption,®® but GIP stimulates osteoblast
proliferation and can attenuate postovarectomy bone
loss.(®%7"

In addition to these mixed-meal effects, it is well estab-
lished that ingestion of calcium has acute and chronic ef-
fects on bone metabolism, acutely stimulating calcitonin se-
cretion, reducing PTH secretion, and reducing bone
resorption.1=7®

IGF-I is an important regulator of bone growth. Its se-
cretion is reduced in states of poor nutrition, possibly be-
cause of resistance to the actions of growth hormone. Long-
term feeding of protein supplements has been shown to
increase circulating IGF-I in a randomized, controlled trial
in patients with recent hip fractures, in whom there was a
2.4% increase in hip BMD over 1 year.”* A milk supple-
mentation study in normal young women also found in-
creases in IGF-1.7 IGF-I (and insulin) are also likely to be
anabolic to muscle, contributing to the relationship be-
tween lean mass and bone density.

Ghrelin is a recently discovered hormone of nutrition,
synthesized in the stomach and released in response to fast-
ing. Thus, circulating levels are maximal before meals, and
ghrelin is an appetite stimulant. Its receptor is expressed in
osteoblastic cells, and ghrelin stimulates osteoblast prolif-
eration and differentiation, as well as osteoclastogenesis
and the bone-resorbing activity of mature osteoclasts’® (J
Cornish, unpublished observations, 2005). The latter data
suggest that ghrelin may contribute to the increased bone
resorption that accompanies fasting. However, its anabolic
effects seem to predominate, because it increases BMD in
rats. 79

A schema of how these hormonal influences may act in
concert is shown in Fig. 2.

INCREASED NUTRITION AS A CAUSE
OF FRACTURE?

Whereas the discussion above has focused on the effects
of nutrition-related factors on bone, it is important to re-
member that many of these effects are also seen in chon-
drocytes, and factors such as leptin and amylin directly in-
crease growth plate thickness and stimulate linear growth of
long bones.!>'%>D These effects might mediate the steady
increase in the height of young adults over the last 150
years, which continues at a rate of about 1 cm/decade.””
There is also evidence of a parallel increase in hip axis
length.®7? Both height and hip axis length are important
risk factors for hip fracture. Thus, increases in skeletal
growth may underlie the increases in hip fracture incidence
that have been observed in many countries and are a par-
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FIG. 2. Possible mechanisms by which feeding may influence
bone cell function, and thus, bone mass. Reprinted with permis-
sion from IR Reid.

ticular issue at present in the rapidly urbanizing regions of
Asia.® Increased size will also increase the forces on bone
after a fall, and increasing obesity is likely to be associated
with an increased risk of falling.

CONCLUSIONS

There is now clear evidence of many interconnections
between nutrition and bone metabolism, as would be pre-
dicted. These are immediately relevant to clinical assess-
ments of bone turnover, which are substantially different in
the fed and fasted states. The regulatory pathways identi-
fied will generally result in denser bones as nutritional sta-
tus becomes more positive, which would be expected to
result in greater skeletal strength. However, greater body
weight increases the load that the skeleton carries, and
lengthening of bones may carry with it mechanical disad-
vantages, so the impact of changing nutrition on fracture
rates may not always be easily predictable. Thus, nutritional
influences may underlie the changing epidemiology of frac-
tures, but the bone-active factors that mediate the effects of
nutrition on bone may also provide novel therapeutic strat-
egies for osteoporosis management.
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