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Abstract

The genetics of osteoporosis can be considered in two broad areas: disease susceptibility and drug activity. While the for-
mer has been studied, the latter is still largely untouched. Pharmacogenomics is the utilization of genetic information to pre-
dict outcome of drug treatment, with respect to both beneficial and adverse effects. The pharmacotherapy of osteoporosis is
characterized by variability in therapeutic response with limited prediction of response on a patient-by-patient basis. This is
particularly problematic in a clinical situation where therapy is typically required for several years before outcomes can be eval-
uated for an individual. Thus, the emerging field of pharmacogenomics holds great potential for refining and optimising phar-
macological treatment of osteoporosis. Key components for future development of the pharmacogenomics of osteoporosis
should include improved understanding of mechanisms of drug action, identification of candidate genes and their variants and
expansion of clinical trials to include genetic profiling. This approach could provide clinicians and scientists with powerful tools
to dissect novel molecular pathways involved in osteoporosis and to identify new drug targets. The iterative combination of
innovative genomics with classical endocrinological approaches in osteoporosis research can be examined as a model of bio-
logical research and innovate therapeutical approaches in a continuing interaction between clinical science and basic research.
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Background

months immediately following a hip fracture’. Fifty percent of
surviving individuals will need help with daily living activities,

Osteoporosis, the most common and serious skeletal "dis-
ease", is highly prevalent among the elderly of both sexes, with
a combined lifetime risk for hip fracture, forearm fracture and
vertebral fractures coming to clinical attention being around
40%, equivalent to the risk for cardiovascular disease’. In the
United States alone, osteoporosis affects 25 million people,
and incurs estimated costs of $60 billion. The lifetime risk of
hip fracture, the most serious fracture, in Caucasian women is
one in six; somewhat higher than the risk of diagnosis of breast
cancer (one in nine)?. Mortality is a frequent occurrence in the
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and 15 to 25 percent will need to enter a long-term care insti-
tution shortly after the fracture®. Moreover, all major osteo-
porotic fractures are associated with a two- to three-fold
increased mortality in both men and women®.

Osteoporosis is defined as a systemic skeletal disease
characterized by low bone mass and microarchitectural dete-
rioration of bone tissue resulting in increased bone fragility
and susceptibility to fracture. Bone mass is traditionally
quantified by bone mineral density (BMD). At any specific
skeletal region, BMD can be accurately and reliably meas-
ured by dual X-ray absorptiometry (DXA); as the amount of
mineral per area of bone imaged.

Although fracture is the clinically relevant endpoint of
osteoporosis, BMD is a primary predictor of fracture risk*®.
Each standard deviation decrease in BMD is associated with
a two-fold increase in the fracture risk’. The BMD - fracture
relationship generally applies across the skeleton, with some
site-specificity; i.e., hip fracture risk is more related to BMD
measurements at the hip than lumbar spine or forearm. The
relationship between fracture risk and BMD measurements



is comparable to the relationship between stroke and blood
pressure readings. In the same way that "hypertension"
relates to cut-off value for blood pressure measurements,
osteoporosis is based on a value for BMD below a cut-off
threshold. Moreover, as for blood pressure, there is no
threshold of BMD that discriminates absolutely between
those who will or will not have a clinical event. Hence, a "nor-
mal" BMD measurement is no guarantee that fracture will
not occur; only the risk is relatively low. Conversely, if BMD
is in the osteoporotic range, then fractures are more likely,
but still may not occur. At age 50 years, the proportion of
women with osteoporosis who will fracture their hip, spine,
forearm or proximal humerus in the next 10 years — i.e., pos-
itive predictive value — is about 45%. The detection rate for
these fractures (sensitivity) is lower, i.e., a significant propor-
tion of fractures occur in women above this BMD threshold.

BMD is not the only predictor of fracture; rather, it is the
interaction of increased force, i.e., in falls, and decreased bone
"strength". Although falls prevention may influence osteo-
porotic fracture prevention, determinants of bone "strength"
have been the major focus to date with many treatments being
developed and applied effectively clinically. BMD is a valu-
able predictor of future fracture risk, and partly accounts for
bone size, but not bone structure, including mass distribution
and quality, which are considered to contribute to bone
strength. Quantitative ultrasound measurements, broadband
ultrasound attenuation (BUA) and speed of sound (SOS),
have been proposed as additional measures of bone quality,
related to trabecular connectivity and bone matrix. Moreover,
many clinical studies have supported a role for normalization
of elevated bone turnover as part of the anti-fracture efficacy
of the widely used anti-resorptive therapies.

Osteoporosis is, therefore, a complex disease. Its com-
plexity is not just characterized by the multiplicity of clinical
aspects, but also multiple determinants. Like many other
multifactorial diseases, osteoporosis is determined by envi-
ronmental factors, by genetic susceptibility and likely by the
interaction between these factors. Genetic variations do not
necessarily cause osteoporosis or fracture, but they can influ-
ence a subject’s susceptibility to specific environmental fac-
tors and so modify the disease risk. This implies that each
subject in the population has a unique risk profile that can
change with time. Hence, population data can be only cau-
tiously extrapolated to the individual subject. Yet, at present,
decisions about diagnosis and treatment of osteoporosis are
still based on statistical data of the subjects’ general popula-
tion. Clearly, this generalized average approach is subopti-
mal compared with an individualized approach, according to
individual genetic and environmental risk profile. Osteo-
porosis presents an ideal case for such an approach, because
of its strong genetic precipitation and high variability in the
susceptibility of fracture risk among individuals. In this
framework, the principles of pharmacogenomics, which seek
to correlate phenotypes and biomarkers by taking advantage
of genomic technology, could be applied to identify the actu-
al genetic basis of inter-individual variation in drug efficacy.
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Genetics of osteoporosis

Heritability of fracture. Data on heritability of fracture
per se are scarce. In a Finnish twin study, approximately 35%
of the variance in the liability to fracture (in both males and
females) was attributable to genetic factors®. In a recent fam-
ily study, approximately 25% of the liability to one fracture
type, i.e., Colles’ fracture of the wrist, was attributable to
genetic factors’. Familial analysis within the Study of Osteo-
porotic Fracture' suggests that women, whose mother had
had a hip fracture, had a two-fold increase in risk of hip frac-
ture compared with controls. The risk of hip or other frac-
tures was three-fold higher with a paternal history of wrist
fracture. In two small studies of osteoporotic women with
vertebral or hip fractures, their daughters had bone density
deficits intermediate between their mothers and "expected"
at the site of their mothers’ fracture i.e., lumbar spine or
proximal femur'*% Similar observations have been made in
both elderly men and women®.

Heritability of bone mineral density. Most genetic stud-
ies on osteoporosis have focused on the predictive bone phe-
notypes, such as BMD. Although BMD is determined by
both environmental and genetic factors, it has been estimat-
ed from twin studies that 70% to 80% of variance of BMD
measured at the lumbar spine and femoral neck is attributa-
ble to genetic factors in twin samples'*'®. Heritability of fore-
arm BMD appears to be lower than that in either the
femoral neck or lumbar spine'”*®, In these studies, there is
evidence for pleiotropic effects, i.e., BMD in various skeletal
sites being determined by both common and site-specific sets
of genes'®*.,

Genetic influence on bone turnover. Change in BMD
during adult life is the result of the net imbalance between
bone formation and bone resorption. These are typically
assessed by measurements (in blood or urinary excretion) of
various products of osteoblast (bone formation) and osteo-
clasts (bone resorption) cell activity. Indices of bone forma-
tion include osteocalcin, bone-specific alkaline phosphates,
procollagen I carboxy-terminal and amino-terminal propep-
tides. Indices of bone resorption include urinary excretion of
hydroxyproline or more specifically pyridinoline cross-links,
and more recently, urinary type I collagen cross-linked N-
telopeptides and urinary or serum type I collagen C-telopep-
tide breakdown products. Genetic factors have been shown
to contribute significantly to the inter-individual variance of
bone formation markers (both osteocalcin and collagen C-
terminal propeptide of type 1 collagen) in premenopausal
twins'*?",

Heritability of quantitative ultrasound (QUS). The
genetic influence on different types of QUS measurements,
namely BUA and SOS, has been shown to be 0.53 to 0.82%.
BUA measurements have been reported to be more strong-
ly correlated between mothers and their postmenopausal
rather than their premenopausal daughters; i.e., the reverse
of what has been reported for DXA measurements™*.
These observations suggest that different genetic influences
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act on components of the bone phenotype as measured using
QUS and DXA. There are no data on heritability of speed-
of-sound measures along cortical bone. Genetic correlations
observed between transmission QUS and BMD measure-
ments have been moderate, 0.32 to 0.59% Thus, genes that
influence variation in BMD might, but not necessarily, influ-
ence variation in QUS, and vice versa. This is consistent with
QUS measuring additional non-density characteristics of
bone. In any case, a significant part of the variability of QUS
and DXA BMD measurements appears unrelated, consis-
tent with their assessment of some distinct bone phenotypic
characteristics.

The recognition that various bone-related traits are large-
ly determined by genetic factors has led to an intensive
search for specific genes either linked or associated with
these traits. Gene-search studies have focused on bone min-
eral density using the two major approaches of genome-wide
screening and candidate genes. The candidate gene
approach is based on a priori knowledge of the potential
function of the gene involved, and takes advantage of the rel-
evant and known biochemical pathway of bone physiology.
Based on this commonly used approach, currently 16 genes
have been proposed as potential candidates for bone miner-
al density, including vitamin D receptor, collagen type Ial,
osteocalcin, IL-1 receptor antagonist, calcium sensing recep-
tor, a2HS glycoprotein, vitamin D binding protein, osteo-
pontin, osteonectin, estrogen receptor a, interleukin-6, calci-
tonin receptor, collagen type Ia2, parathyroid hormone, and
transforming growth factor al. As well as the above gene
polymorphisms, other polymorphisms in genes including
other steroid receptor, cytokine, and bone matrix proteins
genes, and more "distant" osteoporosis candidate genes such
as apolipoprotein E have also been suggested™ ™. A fea-
ture of these candidate gene studies has been the wide range
in positive and negative outcomes and, even in consistent
studies, the wide range of effect sizes.

The candidate genes identified so far have been neither
strong nor consistent enough to have major clinical predic-
tive value. More importantly, since their relationship with
bone biology was the basis of their initial study as "candi-
dates", none could provide novel targets for development of
new therapies. It seems likely that minor variations in the
regulation or function in several genes, each making rela-
tively small contributions, interact to make up the genetic
component of osteoporosis. Under this scenario, individual
studies seeking to establish an association between a candi-
date gene and markers of the disease may yield spurious
results. The best strategies for resolving the genetic and envi-
ronmental contributions to such a polygenic disease such as
osteoporosis are not clear.

The less common alternative approach of genome-wide
scan has yielded interesting findings. By using linkage analy-
sis of data from a family with osteoporosis-pseudoglioma
syndrome (OPS), a disorder characterised by severely low
bone mass and eye abnormality, investigators were able to
localise the OPS locus to chromsomal region 11q12-13%. At
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the same time, a genome-wide linkage analysis of an extend-
ed family with 22 members among whom 12 had very high
bone mass (HBM) suggested that the HBM locus also locat-
ed within 30cM region of the same locus®. In follow-up stud-
ies using the positional candidate approach both research
groups found that a gene encoding the low-density lipopro-
tein receptor-related protein 5 (LRP5) was linked to both
OPS and high bone mass™*. The finding that LRP5 gene is
linked to high bone mass was subsequently confirmed in a
family study which included individuals with exceptionally
high BMD but were otherwise phenotypically normal®. This
study showed that a missense mutation (G171V) was found
in high-BMD individuals®. A recent family study further
identified six novel mutations in LRP5 among 13 confirmed
polymorphisms that were associated with different condi-
tions with increased BMD®. The conditions included
endosteal hyperostosis, Van Buchem disease, autosomal
dominant osteosclerosis, and osteopetrosis type 1. The asso-
ciation between LRP5 and BMD has also recently been
shown in a general unselected population®.

An example of the success of the combined linkage and
association strategy was demonstrated in a recent study in
207 nuclear families with 1323 individuals of Icelandic ances-
try. In this study, by first performing a genome-wide scan in
the families, the BMP2 gene was found to be linked to the
variation in BMD; and by association analysis, with
increased fracture risk and BMD,

Pharmacology of osteoporosis

In the past decade there have been remarkable advances
in the understanding of basic bone biology leading to target-
ed approaches both in the prevention and effective treat-
ment of osteoporosis. Among the approved pharmacological
therapies for osteoporosis, estrogen replacement therapy,
selective estrogen receptor modulators (SERMs), calcitonin,
vitamin D derivatives, potent bisphosphonates, and parathy-
roid hormone have been introduced to clinical use™. Most of
these drugs, with the exception of parathyroid hormone, act
as anti-resorptive agents, and thus decrease bone loss.

Paradoxically, although these agents have modest effects
of increasing bone density, they exert a much greater effect
on fracture risk reduction. For example, alendronate (a
potent bisphosphonate) can improve BMD by 4 to 8%,
which based on the BMD-fracture relationship, could be
expected to reduce fracture risk by 12 to 28%; but in reality,
the fracture risk among alendronate-treated patients was
reduced by about 50%. Potential mechanisms for this high-
er-than-BMD-expected reduction are still being evaluated.

A common feature of all clinical trials involved pharma-
cological intervention in osteoporosis is that the efficacy and
safety are highly variable among patients, such that the range
of response is considerable, ranging from "success" to little
or no response. For example, the standard deviation of
change in BMD induced by potent bisphosphonates is more
than twice the rate of change®. As a result, while the major-



ity of patients experience an increase in BMD, a small pro-
portion (perhaps 5 to 10%) of patients apparently still lose
bone. Thus, although very few patients experience absolute-
ly no therapeutic effects following typical anti-resorptive
treatment, no treatment currently prevents all fractures.
Moreover, some subjects experience significant adverse
effects. These effects, both positive and negative, are experi-
enced over years. Thus, while these treatments are overall
beneficial, no reliable means exist to predict who will experi-
ence unfavourable or an adverse effect of some type.

Pharmacogenomics

On the clinical level, drug response is affected by many fac-
tors, including age, sex, ethnicity, and concomitant disease or
drug therapy. However, it is also possible that genetic factors
affect the variability in drug response®. Indeed, evidence of
genetic influence on inter-subject drug response had been
reported as early as the 1940s, in the case of peripheral neu-
ropathy in a substantial number of patients treated with the
anti-tuberculosis drug, isoniazid®. It was also observed that
African-American soldiers given antimalarial drugs were
more likely than their Caucasian colleagues to develop
haemolytic anaemia, due to inherited metabolic enzyme dif-
ferences®. Further evidence of genetics of drug response was
found in twin studies, in which identical twins were more sim-
ilar than non-identical twins in regard to the plasma half-life
of numerous drugs, providing the best experimental indica-
tion of strong genetic components in drug elimination®.
Thus, genetic factors may determine an individual’s response
to pharmacological therapy of osteoporosis and their suscep-
tibility to adverse drug reactions, for each specific drug.
Although drug elimination and metabolism can be relatively
easily studied, other components that influence drug effects
are either unknown or are more difficult to study.

On the molecular level, pharmacological agents act by
interacting with proteins such as receptors, enzymes and
intracellular signalling proteins. Therefore, when a drug is
taken, its absorption, distribution, excretion and pharmaco-
logical responses are likely determined by the interactions
among those factors, including carrier proteins, transporters,
metabolising enzymes, receptors, and co-factors. Members
of the cytochrome P450 (CYP), including CYP2D6,
3A4/3A5, 1A2, 2E1, 2C9, and 2C19 are known to influence
drug efficacy and toxicity®*®. For example, patients who are
homozygous for the CYP2D6 null alleles exhibit a poor
metabolizer phenotype, with impaired degradation and
excretion of many drugs, including debrisoquine, metopro-
lol, nortriptyline, and propafone®. These poor metabolizers
are more likely to exhibit adverse drug reactions. The fre-
quency of this recessive trait ranges from 1% to 2% in
Asians, 5% in African Americans and up to 6% to 10% in
Caucasian populations®®®. Similarly, patients who are
homozygous for the "null" allele of the P450 isoform
CYP2C19 are highly sensitive to omeprazole, diazepam, pro-
pranolol, mephenytoin, amitriptyline, hexobarbital and
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other drugs®. The CYP2C19 poor metabolizer phenotype
comprises 2% to 5% of Caucasians and 3% to 23% of
Asians, resulting largely from a single base pair mutation
(A-G) in exon 5 of the coding region 7”°. Another poly-
morphically expressed member of the cytochrome P450 fam-
ily, CYP2C9, metabolizes ibuprofen, naproxen, piroxicam,
tetrahydrocannabinol, phenytoin, tolbutamide, and S-war-
farin'; some of which have narrow therapeutic indices.
Amino acid substitutions at codons 144 and 359 in the cod-
ing region of CYP2C9 result in a 5-fold decline in metabolic
activity. Although the frequency of these 2 allelic variants is
uncertain, approximately 25% of Caucasians appear to be
heterozygous for one or the other variant, leading to a pre-
dicted frequency of 5% for the compound homozygous

genotype’.
Pharmacogenomics of osteoporosis

Some drugs used in osteoporosis therapy, bisphospho-
nates for example, are not subject to metabolism, but many
others are metabolized to active components or as part of
their elimination pathway. Despite the evidence of genetic
effects on the variation in efficacy and safety of pharmaco-
logical agents in other diseases, these are still largely untest-
ed in the treatment of osteoporosis, but their potential is
underlined by their rapid adoption in disciplines such as obe-
sity and hypertension.

Nevertheless, recent evidence suggests that genetic fac-
tors may mediate the response to drug treatment”, and mod-
ify the dynamic association between bone turnover markers
and bone density. A recent series of studies by Palomba and
colleagues™ ™ suggested that among postmenopausal women
who were on alendronate and hormone replacement therapy
(HRT) treatments, the b allele of the VDR’s Bsm-I poly-
morphisms was associated with a greater increase in BMD
than those carriers of the B allele. However, interestingly,
among patients on RLX the B allele carriers were associated
with a greater increase in BMD than the b allele carriers. As
a result of the opposite effects, among those on combined
ALN and RLX there was no significant association between
VDR polymorphisms and BMD change. These results clear-
ly illustrate the interaction between VDR polymorphisms
and various anti-resorptive drug therapies in BMD change.

In a study of 21 premenopausal Caucasian women who
were homozygous for the VDR genotypes (BB or bb), it was
found that baseline osteocalcin, 1,25-(OH),D, type I colla-
gen carboxyterminal telopeptide, and inorganic phosphate
levels were significantly higher and spinal bone mineral den-
sity was significantly lower in the BB allelic group. However,
after calcitriol administration, similar serum levels of 1,25-
(OH),D were attained in both genotypic groups. The
increase in serum osteocalcin levels in the BB group was sig-
nificantly less than that in the bb group. The genotype-relat-
ed baseline difference in osteocalcin levels was not apparent
at similar serum 1,25-(OH),D levels. By contrast, baseline
differences in phosphate and type I collagen carboxytermi-

65



T.V. Nguyen and J.A. Eisman: Pharmacogenomics of osteoporosis

nal telopeptide persisted throughout the study. Moreover,
parathyroid hormone was less suppressed in the low bone
density group despite similar ionized calcium levels”.

The VDR gene polymorphisms may also affect the dynam-
ic association between dietary calcium intake and bone den-
sity. For example, on lower dietary calcium intakes, gut calci-
um absorption in women with VDR’s BB genotype did not
increase, but those with bb genotype did’™®”. The difference in
gut calcium absorption between the two alternate homozy-
gotes for the vitamin D receptor start codon polymorphism
was 42%". As with other studies of bone and genetics, a num-
ber of studies have found positive relationships between the
vitamin D receptor gene alleles and calcium homeostasis®*2,
while other studies have been negative®™ ™.

Similarly, longitudinal studies have also shown differences
of the bone density response to calcium intake according to
vitamin D receptor genotype. In one study, the vitamin D
receptor heterozygotes responded to calcium intake while
the alternate homozygotes either gained or lost bone irre-
spective of calcium intake®. By contrast, in a second study,
the BB homozygotes gained some bone when supplemented
from a very low basic calcium intake®.

However, despite apparent differences in gut calcium
absorption, a number of studies have not found any differ-
ence in intestinal vitamin D receptor level*****, By contrast,
differences in parathyroid gland regulation have been relat-
ed to vitamin D receptor polymorphisms’-*,

Another potential gene-environment interaction for the
vitamin D receptor gene would be in relation to simple vita-
min D itself or the active hormonal forms of vitamin D. Dif-
ferences in response of bone density to the vitamin D
metabolites and analogs have been reported according to the
vitamin D receptor genotypes, particularly in Japanese stud-
ies™%. The more common bb genotype in Japanese cohorts
(about 75% of the subjects) was more responsive compared
with the heterozygotes, who did not respond well or actually
worsened. Given that the heterozygote is the most common
genotype in most Caucasian groups, these differences have
an intriguing parallel to the differences that have been
observed in response to the active vitamin D compounds in
clinical studies of osteoporosis between Japanese and Cau-
casian groups. In another study, the response to simple vita-
min D varied according to vitamin D receptor genotype®.

The mechanism by which any changes in the vitamin D
receptor alleles may account for changes in calcium and
bone homeostasis is not clear. At a simple level it is possible
that there may be subtle differences in the regulation of the
gene or in stability of the mRNA product. Some initial in
vitro studies suggested that change in stability of mRNA
product’™; however other studies do not confirm this
effect’™'®. Another mechanism may relate to changes in
alternative transcripts from the recently reported multiple
promoters of single human vitamin D receptor gene'"’.

The differences in the vitamin D allelic effects may relate
to genetic backgrounds and/or environmental factors such as
calcium and vitamin D intakes. Genetic backgrounds may
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relate to other allelic gene effects, e.g., the estrogen receptor
genotype'™'®, By this mechanism, allelic effects could differ
between environments. Some effects could be quite unex-
pected as, for example, the apparent protection against some
chronic infections reported in a recent African study'™ and
relationship to risk of osteoarthritis of spine and hip'®'"".

Elucidating pharmacogenomic mechanisms

Currently, most pharmacogenomic studies depend on
comparing expression profiles at the mRNA (genomics) or
protein (proteomics) level for a given tissue or cell type after
a relevant stimulus. Comparison of expression profiles at the
mRNA level is attractive, particularly with the advent of
recent availability of microarrays allowing concurrent analy-
ses of tens of thousands of genes. This new technology can
rapidly genotype individuals to provide information on poly-
morphic drug metabolism genes, and also identify genes dif-
ferentially expressed in response to a drug. In fact, one gene
chip, CYP2C6/CYP2C19, is already available for identifying
potential poor drug metabolizers. On the other hand, this
genomics-based technology might also help to understand
the biological drug responses and to interpret therapeutic
trials'®.

Comparing mRNA expression profiles can be used to
explore which genes are up-regulated or down-regulated in
osteoporosis treatment by comparing the expression profiles
in tissue taken from affected and unaffected individuals. The
potential difficulty with this approach is that small variations
in the cellular constituents of the tissue might produce large
fluctuations in mRNA and/or protein, giving rise to false pos-
itive (or negative) results. Another potential problem is that
the logistical difficulties of dealing with data on thousands of
gene products (which by definition may have no known func-
tion) are considerable. These problems can be avoided to
some extent by simplifying the experimental design. For
example, one approach is to use cultured human bone cells
from a single individual and then to compare expression pro-
files after treatment with, say, bisphosphonates.

Apart from the logistical difficulties in sampling from
bone and obtaining comparable bone tissue, study design
will also be a major issue. As with genetic linkage studies, a
major challenge for pharmacogenomics of osteoporosis lies
in the design of meaningful studies for use of these tech-
nologies. In any mRNA-level study, a reasonable number of
paired replicates must be performed and relevant time
points examined. In practice, it may be possible to reduce
this to a baseline and two different time points for this kind
of experiment. However, even then, with an appropriate
number of replicates, the number of samples to be processed
and the logistics of multiple samples, at least in humans,
remain daunting if not ethically impossible.

On the other hand, large epidemiological studies are
required to identify associations between specific gene poly-
morphisms and predisposition to osteoporosis before these
could be useful in clinical settings. At present, large-scale



SNP-based association studies in osteoporosis are feasibly
prevented by limitations in genotyping resources and biosta-
tistical models. Large-scale association studies involving
SNPs will be more practical when high-throughput and
affordable SNP scoring methods are available'”. The
progress has, nevertheless, been impressive: to date, the
Human Genome Project has provided more than two million
SNPs as genetic markers''’. Within the next few years, SNPs
located every 3-50 kb will likely be characterized, it will be
possible to perform genome-wide association studies to
obtain information about major genes that contribute to the
disease or pharmacological differences, as well as secondary,
modifier, genes that also affect the disease. The recent
development of a single mouthwash method for obtaining
genomic DNA clinical studies'! may be suitable for large
community-based studies in which samples can be collected
by the participants themselves.

The advance of genomic research gives rise to several eth-
ical issues that need to be resolved. While information such
as race and ethnicity have long been used in predicting ther-
apeutic response, a growing number of critics view the use of
this information as potentially prejudicial®. Collecting and
storing genetic information from individuals raise questions
of privacy as well as security and ethical dilemmas, since the
information also provides information about potentially
non-censored relatives. Thus, guidelines need to be devel-
oped to protect the privacy and confidentiality of partici-
pants and their family members. A critical component of any
such study will be to ensure that the ethical principle of
beneficence is fulfilled. The analysis of DNA samples,
including those from large population-based studies, in
research is very important for understanding genetic influ-
ences of disease susceptibility, but the benefit must be
weighed against risk to persons, including the potential for
discrimination and invasion of privacy. Although these issues
are difficult, it has been suggested that treating participants
as limited partners in genetic research can provide a frame-
work for addressing many of these concerns'.

In summary, data accumulated during the last three
decades clearly indicate that genetic factors are a major
determinant of bone mineral density, quantitative ultrasound
of bone, and bone turnover. Many genetic factors appear to
be involved in the determination of BMD as well as bone
architecture in various skeletal sites. From the clinical as well
as economic points of view, aggressive strategies to search for
osteoporosis genes are warranted. With the progress of the
Human Genome Project, a new era of post-genomics geno-
type — phenotype correlations in osteoporosis is heralded.
The identification of relevant genes should enhance our
understanding not just of disease mechanisms, but also
explain why the clinical course of osteoporosis is so variable
among individuals. Much more operational research is
required to design studies capable of deciphering the com-
plex interactions between individuals’ genetic differences,
predisposition to the disease, and drug-gene interactions; and
the integration and interrogation of the vast data sets that
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such studies will produce. While such research effort is
undoubtedly complex, the ongoing development of molecular
techniques in pharmacogenomics may allow not only individ-
ual prediction of drug efficacy and toxicity but also the devel-
opment of innovative, more active and safer drugs. Genotyp-
ing individuals can help determine the influence of the poly-
morphisms on the pharmacokinetics of the drug on a number
of enzymes and transporters that influence the processes of
drug absorption and metabolism. Genotyping could also be
used to stratify patients for phase III trials, to reduce the nec-
essary sample size. Likewise, genotyping may become part of
routine investigations to help clinicians tailor drug therapy
effectively. Recent studies demonstrate the feasibility and the
importance of these concepts'®!",

The Human Genome Project, coupled with new molecu-
lar technologies and new statistical methods, will collective-
ly enhance the search for osteoporosis genes and help trans-
late the prediction of genetically complex osteoporosis into
the realm of the possible.
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