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ORIGINAL ARTICLE

Positional cloning, association analysis and expression
studies provide convergent evidence that the cadherin
gene FAT contains a bipolar disorder susceptibility allele
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A susceptibility locus for bipolar disorder was previously localized to chromosome 4¢35 by
genetic linkage analysis. We have applied a positional cloning strategy, combined with
association analysis and provide evidence that a cadherin gene, FAT, confers susceptibility to
bipolar disorder in four independent cohorts (allelic P-values range from 0.003 to 0.024). In two
case—control cohorts, association was identified among bipolar cases with a family history of
psychiatric illness, whereas in two cohorts of parent—proband trios, association was identified
among bipolar cases who had exhibited psychosis. Pooled analysis of the case—control cohort
data further supported association (P=0.0002, summary odds ratio=2.31, 95% Cl: 1.49-3.59).
We localized the bipolar-associated region of the FAT gene to an interval that encodes an
intracellular EVH1 domain, a domain that interacts with Ena/VASP proteins, as well as putative
p-catenin binding sites. Expression of Fat, Catnb (f-catenin), and the three genes (Enah, Ev/
and Vasp) encoding the Ena/VASP proteins, were investigated in mice following administration
of the mood-stabilizing drugs, lithium and valproate. Fat was shown to be significantly
downregulated (P=0.027), and Catnb and Enah were significantly upregulated (P=0.0003 and
0.005, respectively), in response to therapeutic doses of lithium. Using a protein interaction
map, the expression of genes encoding murine homologs of the FAT (ft)-interacting proteins
was investigated. Of 14 interacting molecules that showed expression following microarray
analysis (including several members of the Wnt signaling pathway), eight showed significantly
altered expression in response to therapeutic doses of lithium (binomial P=0.004). Together,
these data provide convergent evidence that FAT and its protein partners may be components
of a molecular pathway involved in susceptibility to bipolar disorder.
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Introduction opportunity to use genetic approaches to identify

the predisposing genes.>® An increasing number of

Bipolar affective disorder is a major psychiatric
illness with a population prevalence of up to 1.6%."
The disorder is characterized by aberrant mood
swings resulting in periods of mania and depression
with reversion to normal behavior between episodes.
Family, twin and adoption studies strongly implicate
a hereditary component in bipolar disorder, and the
familial clustering of the disorder provides an
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loci have been implicated through genetic linkage
studies,*® with reproducible evidence for the pre-
sence of susceptibility loci reported for several
regions including chromosomes 4, 12, 13, 18, 21
and 22.

Several genes have been implicated as conferring
susceptibility to bipolar disorder. Prior to their
association with bipolar disorder, the nested genes
G72 and G30 were originally implicated as schizo-
phrenia susceptibility genes, having been identified
as positional candidates from a 5Mb interval on
chromosome 13q34 that had been genetically linked
to schizophrenia.® This same chromosomal interval
was also linked to bipolar disorder,” suggesting the



presence of a common predisposing gene. Association
analysis has subsequently provided evidence that the
G72/G30 gene locus also confers susceptibility to
bipolar disorder.®'® Similarly, the Disrupted in
Schizophrenia 1 locus (DISC1) was originally identi-
fied in a large Scottish family that exhibited a broad
spectrum of psychiatric disorders including schizo-
phrenia, bipolar disorder and unipolar disorder."* A
balanced translocation (1;11)(q42.1;q14.3) in this
family was shown to disrupt two genes, DISC1 and
the non-coding structural RNA gene DISC2."? Further
evidence for association between bipolar disorder and
the DISC1 locus has been shown in a white North
American cohort and in the broader Scottish popula-
tion."®™ Other putative susceptibility genes have
been implicated in bipolar disorder following their
investigation as biological or functional candidate
genes. These include BDNF, which showed evidence
for association with bipolar disorder in two cohorts of
predominantly Caucasian origin,'*'® although this
has not been replicated in several other cohorts of
European and Japanese origin.’”?° Association and
functional studies have also implicated the XBP1
gene in bipolar susceptibility,** but again, this has not
been replicated in cohorts of European and Chinese
origin.?*?* Evidence has also been reported for
association of the GRIN1 gene with bipolar disorder
in a cohort of predominantly European Caucasian
origin.** Confirming those genes that genuinely confer
susceptibility to bipolar disorder and those that
represent false positives awaits replication in further
large independent samples. Given the increasing
number of genetic loci linked to bipolar disorder,
and the mixed results from association studies among
cohorts of different ethnicity, clearly other putative
susceptibility genes are yet to be identified.

We previously reported a novel bipolar disorder
susceptibility locus on chromosome 4q35 following
linkage analysis in a large bipolar pedigree.*® Sub-
sequent analysis in our cohort of 55 multigenerational
bipolar pedigrees significantly strengthened the evi-
dence for linkage to chromosome 435, and haplotype
analysis allowed us to define a candidate interval of
43cM extending to the telomere of chromosome
4q35.%° Other groups have now independently pub-
lished support for this region. Linkage analysis by the
NIMH (NIH) in 56 bipolar pedigrees identified
suggestive evidence for linkage to chromosome 4q35
(NPL of 2.49).?” Similarly, McInnis et al.*® reported
evidence of linkage to 4q35 (NPL of 2.43) after linkage
analysis in 65 bipolar pedigrees. The Dana Consor-
tium (Johns Hopkins University) also reported evi-
dence of linkage to chromosome 4q35 (maximum
multipoint HLOD of 2.11) following linkage analysis
in 50 bipolar families,? although this cohort was also
contained within the larger cohort studied by McInnis
et al”*® In addition, data from the Wellcome Trust
funded UK-Irish Bipolar Sib-pair study also indicates
support for a 4935 locus.*°

The 43 cM genetic interval that harbors a bipolar
susceptibility gene on chromosome 4q35 corresponds
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to 4.8 Mb of DNA.***" We established a comprehen-
sive transcript map encompassing this candidate
region,*" which corresponds with the transcript maps
for this region from the UCSC, Ensembl and NCBI
genome annotation projects. This map provides a
collection of genes for investigation for association
with the disorder. We have applied a positional
cloning strategy, combined with association analysis
to systematically investigate candidate genes from
this chromosome 4q35 interval. Here, we provide
evidence that a cadherin gene, FAT (the homolog of
the Drosophila tumor suppressor gene fat), confers
susceptibility to bipolar disorder in four independent
bipolar disorder cohorts. We subsequently investi-
gated changes in gene expression in mice following
administration of the mood-stabilizing drugs, and
found that Fat, as well as genes encoding its protein
partners, are significantly differentially expressed in
response to therapeutic doses of lithium.

Materials and methods

Cohort ascertainment
Australian cohort individuals were almost entirely of
British or Irish descent. Cases were recruited as part
of an ongoing bipolar genetics study via the Mood
Disorders Unit, Prince of Wales Hospital/School of
Psychiatry, University of New South Wales. Thirty-six
percent of cases were male, and 98% were older than
40 years of age. One RDC-defined bipolar I disorder
case was selected from each of 65 bipolar pedigrees,
previously recruited for linkage analyses. In addition,
six cases were selected from a specialized bipolar
disorder clinic sample, each of whom had no known
family history of the disorder. All patients were
assessed using the Diagnostic Interview for Genetic
Studies (DIGS). We selected the spouse of each case
individual as control, each control individual being
age and ethnically matched to the corresponding case.
(Spouses were also all interviewed using the DIGS. If
there was evidence of assortative mating, the family
did not progress further in the study.) Selected cases
were assessed as described previously.”® A family
history of psychiatric illness in first- or second-degree
relative was present in 87% of cases. A lifetime
psychotic episode was evident in 47% of cases. All
Australian patients who participated in this study
provided appropriate informed written consent. The
Australian study was approved by the Human
Research Ethics Committees of the University of
New South Wales and St Vincent’s Hospital, Sydney.
UK cases (n=669) were all of UK Caucasian origin.
These were recruited through mental health services
in England and Wales and met DSM-IV criteria for
bipolar I disorder; 38% male; mean age 47 years (s.d.
13 years); mean age at the onset of illness 26 years
(s.d. 10 years). A family history of psychiatric illness
in first- or second-degree relative was present in 59%
of cases. Diagnoses were made by the consensus
lifetime best-estimate method,®*? on the basis of all
available information including a semistructured
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interview (SCAN)*® and review of psychiatric case
records and an OPCRIT checklist was completed.?*
Key clinical variables relating to psychosis were rated
using BADDS.*® Seventy percent of UK bipolar cases
had a lifetime occurrence of one or more psychotic
features.

UK control individuals (n=679) were all of UK
Caucasian origin; 36% male; mean age 42 years (s.d.
14 years). Controls were collected from two sources:
(a) The British Blood Transfusion Service (n=>569).
This sample was not specifically screened for psy-
chiatric illness, but individuals were not taking
regular prescribed medications. (b) Family practi-
tioner clinic (n=110). Individuals were recruited
from among those attending for non-psychiatric
reasons. This sample was screened to exclude a
personal history of mood disorder.

All UK subjects provided written informed consent
to participate in genetic studies. Protocols and
procedures were approved by relevant ethical review

panels including the UK West Midlands Multi-centre
Research Ethics Committee.

UK trios were all of UK Caucasian origin. Bulgarian
trios were recruited in Bulgaria and were all of
Bulgarian Caucasian origin. All affected individuals
from the trio cohorts met DSM-IV criteria for bipolar I
disorder. The same clinical instruments described
above for UK cases were used to interview trio
individuals. UK trio cases comprised 43% males;
mean age 34.5 years. Bulgarian trio cases comprised
46% males; mean age 31.9 years. A family history of
psychiatric illness in first- or second-degree relative
was present in 60% of UK trios, and 30% of Bulgarian
trios. A lifetime occurrence of one or more psychotic
features was present in 46% of UK trio cases, and
42% of Bulgarian trio cases.

Genotyping

All FAT gene-specific single-nucleotide polymorph-
isms (SNPs) were selected from dbSNP (http://
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Figure 1 Genomic structure of the cadherin gene FAT, including analyzed SNPs and LD analysis. The location of 26 SNPs
(indicated by their RefSNP ID) analyzed in the Australian case—control cohort is indicated. SNPs showing significant
evidence of association with bipolar disorder are boxed. The output of LD analysis using Haploview is shown. Haplotype
blocks, determined using the default confidence interval algorithm, are indicated on the LD output. The associated SNPs all

fall within an 8.7 kb haplotype block (Block 3).
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www.ncbi.nlm.nih.gov/SNP/). The names and posi-
tions of all SNPs tested within the FAT gene are
provided in Figure 1 and Supplementary Table 1.
Genotypes in the Australian cohort were determined
by direct sequencing or by MALDI-TOF MS utilizing a
Sequenom Autoflex Mass spectrometer. MALDI-TOF
MS genotyping was performed by the Australian
Genome Research Facility. For direct sequencing,
PCR was performed following standard methods and
subjected to automated sequence analysis using the
ABI377 automated sequencer with Big-Dye terminator
sequencing (v3.1, Applied Biosystems). Genotypes in
the UK and Bulgarian cohorts were determined using
the AmplifluorTM method.?*® The allele-specific pro-
ducts were resolved on an Analyst AD fluorescence
reader (LJL Biosystems). Australian DNA samples of
known genotype were used for quality control among
each research group.

Statistical analyses

For association analysis, the frequencies of alleles and
genotypes observed in cases and controls were
compared and tested by constructing contingency
tables and performing y* analysis. Transmission
disequilibrium was tested using the standard TDT
test.®” Hardy—Weinberg equilibrium and linkage dis-
equilibrium (LD) analyses were performed using the
Haploview v2.05 computer program (Whitehead
Institute). LD-based haplotypes were determined by
Haploview using the default confidence interval
algorithm.?*® For haplotype analysis, haplotype fre-
quencies were estimated by the expectation—-maximi-
zation algorithm implemented in the Arlequin
program (http://lgb.unige.ch/arlequin/), and com-
pared and tested by constructing contingency tables
and performing y* analysis. Pooled data (meta-)
analysis was performed with the Comprehensive
Meta-Analysis v1.0.23 computer program (Biostat
Inc.) using the Mantel-Haenszel method. Bonferroni
corrections of statistical significance levels were
performed using the Simple Interactive Statistical
Analysis package at http://home.clara.net/sisa.

Administration of lithium and valproate

C57B16 mice, between the ages of 8 and 16 weeks
received daily intraperitoneal injections for 7 days of
either 340mg/kg/day (8 mmol/kg/day) lithium, or
350mg/kg/day valproate (2-propylpentanoic acid),
or sterile 0.9% saline solution. Total volume of each
injection did not exceed 500 ul. Lithium chloride was
prepared in water, and pH adjusted to 7.5. Valproate
was prepared in 0.9% saline solution. Four hours
after the final injection, mice were euthanized and
whole brains removed. Circulating drug levels were
determined from cardiac puncture blood sample by
SydPath Laboratories (St Vincent’s Hospital, Sydney).
Brains were selected for further analysis if serum
concentrations were between 0.6 and 1.0 mmol/l
lithium or 315-885 umol/1 valproate.
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Expression analysis
Australian brain bank samples comprised fresh—
frozen cerebellum tissue collected post mortem from
115 individuals with a mean age of 46 years (s.d. 17
years). All were considered unaffected with respect to
psychiatric disease.

Total RNA was prepared from human cerebellum
and whole mouse brain with TRI Reagent (Sigma-
Aldrich) and reverse transcribed using Superscript™
I M-MLV reverse transcriptase (Invitrogen) according
to the manufacturer’s instructions.

RT-PCR was carried out on reverse-transcribed RNA
derived from human cerebellum, as well as DNA from
the following cDNA libraries (all from Clontech
Laboratories Inc.): human brain-hypothalamus 5’
Stretch ¢DNA library, human hippocampus cDNA
library and human brain-amygdala 5 Stretch Plus
cDNA library. RT-PCR was carried out as described
previously.®® Primer sequences and amplification
conditions are available on request.

Quantitative real-time PCR analysis was performed
in a 10ul reaction containing 1 x Platinum SYBR
Green gqPCR SuperMix-UDG (Invitrogen) and 200 nM
of each primer. Amplification conditions were as
follows: 50°C for 2 min, 95°C for 2 min, followed by 35
cycles of 95°C for 55, annealing for 15s and 72°C for
15s. SYBR Green I fluorescence was measured after
annealing and extension steps. Following amplifica-
tion, samples were dissociated by incremental heat-
ing between 72 and 99°C, at a rate of 1°C/5s, during
which fluorescence was constantly measured. Reac-
tions were performed in a Rotor-Gene 3000 thermo-
cycler (Corbett Research, Sydney). PCR amplification
was performed simultaneously on reverse-transcribed
RNA prepared from the whole brains of seven control
mice, eight mice treated with lithium and six mice
treated with valproate. Quantitative PCR critical
threshold values for each sample were determined
using Rotor-Gene v5.0.37 computer program (Corbett
Research). mRNA copy number was determined
relative to DNA standards of known concentration.
The relative expression for mfat1 was expressed as a
ratio of mfat1 mRNA concentration to that of the
housekeeping gene Gapdh. After analysis of several
housekeeping genes (f-actin, Hprt and Gapdh),
Gapdh was chosen as the reference gene because we
found its expression remained constant across experi-
mental conditions (control, lithium and valproate).
This contrasted with the f-actin gene (Actb), which
we found varied in expression between experimental
conditions. The mean ratio and s.d. for control,
lithium and valproate cDNAs were calculated using
the StatView software v5.47 (Abacus Concepts).
Unpaired Student’s t-tests were performed, with a
two-tailed « value of 0.05.

Individual total RNA samples were selected from
five groups of 15 mice each, including 15 control
mice; 15 mice with a lithium serum level range
between 0.6 and 0.8mmol/l (designated as low
lithium); 15 mice with a lithium serum level range
between 0.8 and 1.0mmol/l (designated as high
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lithium); 15 mice with a valproate serum level range
between 32 and 35 mg/1 (designated as low valproate);
and 15 mice with a valproate serum level range
between 42 and 91mg/l (designated as high valpro-
ate). Total RNA samples from five individual mice
within each group were pooled. Biotinylated copy
RNA (cRNA) probes were prepared using the BioAr-
ray High Yield RNA Transcription Labeling Kit
(Affymetrix, Santa Clara, USA) following the manu-
facturer’s instructions. Prepared cRNA probes were
hybridized to Affymetrix GeneChip® Murine Genome
U74Av2 microarrays following the protocol outlined
in the Affymetrix GeneChip®™ Expression Analysis
Technical manual. Microarrays were washed using a
semiautomated GeneChip® Fluidics Station 400 (Af-
fymetrix) and scanned using a Agilent GeneArray
Scanner (Affymetrix). The microarray fluorescent
signal intensity for specific genes was determined
using Affymetrix Microarray Analysis Suite software
(version 5). The microarray sensitivity is a linear
range of three orders of magnitude. The specificity of
the microarray hybridization was predetermined
using Affymetrix Test3 microarray chips for every
sample before hybridization to the full microarray. As
well as determining the quality of the prepared
samples, these microarrays contain housekeeping
genes from a large range of eukaryotic species to
ensure no cross-hybridization. The specificity of
individual gene hybridizations was determined by
the microarray probe set for each gene. Each probe set
consists of 32 oligonucleotides (16 sense and 16
antisense).

Results

The expression of mRNA from genes located within
the chromosome 4q35 candidate interval (UCSC May
2004 assembly, chromosome 4 positions 186 439 570—
191 259493) was investigated by RT-PCR using cDNA
derived from a range of brain tissues. In addition,
tissue sources of cDNA clones from which database
ESTs were derived were also inspected. Seventeen
brain-expressed genes from the candidate interval
were selected for association analysis. Of these 17
candidate genes, 12 showed no evidence of associa-
tion in our previous studies.?**°

To test the remaining selected positional candidate
genes for association with bipolar disorder, we
identified SNPs located in exons and flanking intron
sequences from the candidate genes via direct DNA
sequencing in an affected individual (case) and their
spouse (control) from seven bipolar kindreds pre-
viously reported by Badenhop et al.*® as showing
evidence for linkage to the chromosome 4q35 locus.
In addition, SNPs spanning the large gene FAT were
selected from dbSNP (http://www.ncbi.nlm.nih.gov/
SNP) based on their proximity to coding sequences. In
the first stage of association analysis, SNPs shown to
be polymorphic among 4q35 linked pedigrees were
analyzed in an Australian bipolar case—control cohort
consisting of 137 individuals (71 cases and 66
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controls) selected by having a strong family history
of bipolar disorder (87% of cases were selected from
bipolar families with illness over at least two
generations, containing a minimum of three affected
individuals). Genotype frequencies for each SNP were
tested using y* analysis and all were found to be in
Hardy—Weinberg equilibrium. Statistically significant
evidence for association was initially observed for
SNP rs1298865, located towards the 3’-end of the FAT
gene (Table 1, Figure 1). Consequently, further SNPs
within the gene were identified from dbSNP and
genotyped in the Australian case—control cohort. A
further four SNPs, all located in the 3’ half of the FAT
gene, provided statistically significant evidence for
association (Table 1, Figure 1, Supplementary Table
1). Analysis of LD among all tested SNPs determined
that the associated SNPs are in high LD and comprise
a haplotype block that spans 8.7 kb, which is located
wholly within the FAT gene (Figure 1). No LD was
detected between FAT and any adjacent gene. Haplo-
type analysis showed that the two common haplo-
types (GTGTA and CGACT) for the associated SNPs
(rs2304865, rs2637777, rs2306990, rs1298865 and
rs2306987) account for 92.4% of the total haplotypic
diversity in this region. The GTGTA haplotype is
over-represented among cases (P=0.045), and the
CGACT haplotype is under-represented (P=0.012). A
sliding window analysis of haplotypes was under-
taken, which showed no greater evidence for associa-
tion with any sub-region within the interval
encompassing these SNPs. Analysis of the associated
SNPs in cases from the seven Australian bipolar
families that show evidence of linkage to chromosome
4g35 demonstrated that 86% of chromosomes con-
stituted the GTGTA haplotype compared to 61.6% of
Australian control individuals. Of all brain-expressed
genes from the candidate interval, FAT is the only
gene that showed evidence of association with bipolar
disorder.

The evidence of association between FAT genotype
and bipolar disorder observed in the initial screening
of case—control cohort could have occurred by
chance. To test this, putatively associated SNPs were
analyzed for association in an independently ascer-
tained bipolar disorder case—control cohort compris-
ing 1348 UK individuals (669 cases and 679 controls).
Given the high LD between putatively associated
SNPs observed in the Australian case—control cohort,
representative tagSNPs were selected for analysis
among the UK cohort (Table 1, Supplementary Table
2). In addition to total cohort analysis, association
was also tested in the presence of a known family
history of psychiatric illness (in first- or second-
degree relative), as this constituted the largest
common group across both case—control cohorts (87
and 59% of the Australian and UK case—control
cohorts, respectively). Statistically significant evi-
dence for association with bipolar disorder was
observed in the UK case—control cohort for those
cases with a family history of psychiatric illness
(rs2304865 allelic P=0.007, genotypic P=0.025). This
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Table 1 Association analysis (P-values) of chromosome 4q35 tagSNPs®

rs2304865 rs1298865 rs2306987

Allele Genotype Allele Genotype Allele Genotype
Overall
Aust case—control 0.007 0.009 0.072 0.044 0.020 0.005
UK case—control 0.274 0.542 0.838 0.147 0.463 0.439
UK trios 0.084
Bulgarian trios >0.5
Family history® positive
Aust case—control 0.007 0.006 0.010 0.007 0.010 0.004
UK case—control 0.007 0.025 0.038 0.078 0.365 0.592
UK trios 0.060
Bulgarian trios 0.128
Pooled analysis® (odds ratio) 0.0002 (2.31) 0.003 (1.44) 0.083 (1.19)
Family history negative
Aust case—control 0.310 0.528 0.980 0.639 0.384 0.228
UK case—control 0.841 0.975 0.082 0.020 0.050 0.022
UK trios NA
Bulgarian trios NA
Lifetime psychotic episode (during manic or depressive episode)
Aust case—control 0.092 0.176 0.197 0.382 0.178 0.261
UK case—control 0.466 0.487 0.512 0.194 0.329 0.484
UK trios 0.003
Bulgarian trios 0.024
No psychotic episode
Aust case—control 0.012 0.011 0.029 0.009 0.013 0.005
UK case—control 0.085 0.079 0.729 0.272 0.947 0.298
UK trios >0.5
Bulgarian trios 0.058

Aust = Australian; NA =not applicable; UK =United Kingdom.

#Allele and genotype frequencies are provided online as Supplementary Table 2.

PFamily history of psychiatric illness.

“Pooled (meta) analysis of case—control cohort data. Empty cells indicate that the marker was not tested.

Table 2 Comparison of bipolar disorder-associated alleles/
haplotypes of chromosome 4q35 tagSNPs

1rs2304865 rs1298865 rs2306987

Australian

UK-family history positive
UK-family history negative
UK trios

Bulgarian trios

G T
G T
C

> >

result is consistent with that observed for the
Australian case—control cohort, with the same haplo-
type over represented (Table 2).

Pooled data (meta-) analysis (Mantel-Haenszel
method) was performed using tagSNP allelic data
from the Australian and UK case—control cohorts. To
establish whether pooled data analysis was appro-

priate, we first compared the cohorts for differences
between control allele or genotype frequencies. y?
analysis showed that there were no significant
differences between control allele or genotype fre-
quencies for any marker analyzed, and as such,
pooled data analysis could be performed. Pooled
data analysis was performed using the largest
common group of bipolar disorder cases, those
with a family history of psychiatric illness (Table 1).
SNP 1rs2304865 showed significant evidence for
association (P=0.0002) with a summary odds ratio
(OR) of 2.31 (95% CI: 1.49-3.59). SNP rs1298865
also showed significant evidence for association
(P=0.003) with a summary OR of 1.44 (95% CIL
1.13—1.83). SNP rs2306987 showed weak evidence for
association (P=0.06) with a summary OR of 1.27
(95% CI: 0.99-1.64). The statistics for rs2304865 and
rs1298865 remained significant after applying a
Bonferroni correction for multiple testing (corrected
«=0.017).
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Given the statistically significant evidence for
association, we subsequently undertook association
analysis of sub-phenotype categories of these case—
control cohorts (Table 1, Supplementary Table 2).
These categories included those cases without a
family history of mental illness, and those cases that
exhibited the presence or absence of psychosis during
manic or depressive episodes. Statistically significant
evidence for association was observed in the UK
case—control cohort for those cases without a family
history of mental illness (rs2306987 allelic P=0.050,
genotypic P=0.020). However, the observed bias was
for the alternate haplotype to that over-represented
among cases with a family history. No case—control
cohort showed evidence for association among psy-
chosis or non-psychosis subsets.

One associated tagSNP (rs2306987) was subse-
quently analyzed for association in two additional
independently ascertained bipolar disorder cohorts
comprising 90 UK parent—proband trios, and 173
Bulgarian parent—proband trios (Table 1). Neither the
UK trios nor the Bulgarian trios showed evidence for
association among family history or non-family
history subsets. However, both trio cohorts did show
statistically significant evidence for association
among those bipolar cases who had exhibited psy-
chosis (UK trios P=0.003, Bulgarian trios P=0.024;
allele transmissions/non-transmissions were 38/16
and 37/20, respectively). Combined with the case—
control cohort data described above, this provides
evidence for association between FAT genotype and
bipolar disorder among unrelated individuals from
four independent cohorts.

To determine whether the bipolar disorder-asso-
ciated FAT genotype is correlated with FAT mRNA
levels in vivo, we undertook quantitative real-time
RT-PCR in brain tissue. No correlation between
FAT genotype (bipolar disorder-associated SNP
genotype) and mRNA levels was observed among
115 post-mortem cerebellum samples. We next
tested whether mood-stabilizing drugs such as
lithium and valproate modulate FAT mRNA expres-
sion in mouse brain tissues. Mice received daily
administration of lithium, or valproate, or saline
vehicle for a period of 7 days. CGirculating
drug concentrations were assayed to ensure levels
equivalent to those used to obtain high and low
human therapeutic ranges.** The mRNA from
whole brain was analyzed by quantitative real-time
PCR to determine the steady-state mRNA level of the
mfatl gene (murine FAT orthologue) and a control
gene, Gapdh. Gapdh was chosen as the reference
transcript because we found its expression remained
constant across different experimental conditions
(control, lithium and valproate). In addition, Gapdh
has been previously used in several studies that
investigated the effects of lithium and valproate on
gene expression in rats and mice.**** We found the
relative mRNA expression levels for mfat1 were
reduced following administration of either drug
(Figure 2a), with administration of lithium
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Figure 2 Relative mRNA expression levels in mice for
mfat1, Enah and Catnb (f-catenin) following administration
of bipolar therapeutic drugs. (a) mfatl expression was
significantly decreased 2.7-fold (P=0.027) in response to
high serum levels of lithium. (b) Enah expression was
significantly increased 2.0-fold (P=0.005) and 1.9-fold
(P=0.017) in response to low and high serum levels of
lithium, respectively. (c) Catnb expression was significantly
increased 1.8-fold (P=0.0003) and 1.9-fold (P=0.003) in
response to low and high serum levels of lithium,
respectively.

significantly reducing mfat1 expression by 2.7-fold
(P=0.027).

The FAT protein regulates cell-cell contact and
polarity via a process that is mediated via interaction



with Ena/VASP proteins (ENAH, homolog of Droso-
phila enabled [ena]; EVL, Ena-vasodilator-stimulated
phosphoprotein; and VASP, vasodilator-stimulated
phosphoprotein).*>*® The Ena/VASP proteins are
thought to play redundant roles in regulating actin
cytoskeletal dynamics (reviewed by Renfranz and
Beckerle?*”). Interaction between FAT and Ena/VASP
proteins is mediated via an EVH1 domain. We
observed that the 8.7kb LD block associated with
bipolar disorder encodes the EVH1 domain of the FAT
protein. Expression of the three genes (Enah, Evl and
Vasp) that encode the Ena/VASP proteins were
therefore investigated in the mice treated with
lithium and valproate, via microarray analysis with
Affymetrix gene chip arrays. Enah was significantly
increased 2.0-fold (P=0.005) and 1.9-fold (P=0.017),
in response to low and high therapeutic doses of
lithium, respectively (Figure 2b). No change in EvIl
and Vasp expression was detected.

The structural organization and function of many
cadherins is mediated by the binding of f$-catenin,
which through the cadherin—catenin complex links
cadherins to the actin cytoskeleton. The 8.7kb LD
block within FAT that is associated with bipolar
disorder also encodes the potential f-catenin binding
regions, FC1 and FC2.*®* Cox et al.*® reported that
mouse mfat1 did indeed bind f$-catenin through these
regions in two-hybrid and co-immunoprecipitation
assays. Expression of the murine gene encoding f-
catenin, Catnb, was also investigated in the mice
treated with lithium and valproate, via microarray
analysis. Catnb was significantly increased 1.8-fold
(P=0.0003) and 1.9-fold (P=0.003), in response to
low and high therapeutic doses of lithium, respec-
tively (Figure 2c, Table 3).

To investigate whether other potential upstream or
downstream effectors of FAT show altered expression
in response to bipolar therapeutic drugs, we identi-
fied potential effectors by searching protein—protein
interaction databases. As FAT was not present in the
mammalian PPID database, we used FlyBase GRID*°
to establish a Drosophila melanogaster protein inter-
action map, encompassing ft, the homolog of the
human FAT protein (Figure 3). D. melanogaster is a
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proven model system for many aspects of mammalian
biology. Genes that encode the murine homologs of
these Drosophila proteins (Table 3) were investigated
in the mice treated with lithium and valproate, via
microarray analysis. The expression of 12 of these
interacting protein homologs was detected on micro-
array chips, and seven of these showed significantly
altered expression in response to therapeutic doses of
lithium (Table 3). The binomial probability of this
result is P=0.007. Combining this with the data for
the Ena/VASP proteins described above, we have
found significantly altered expression in response to
therapeutic doses of lithium, for eight of 14 interact-
ing genes that were detected on microarray chips
(P=0.004).

We also inspected microarray data to determine
whether any of the remaining brain-expressed genes
from the chromosome 4q35 bipolar candidate interval
(i.e. other than FAT) showed expression changes in
response to therapeutic doses of mood-stabilizing
drugs. Of these 16 genes, four showed no significant
change in expression level, five showed no expres-
sion (below detection level), with the remaining genes
not present on analyzed chips.

Discussion

The data from three complementary strategies provide
convergent evidence that the cadherin gene FAT
confers susceptibility to bipolar disorder. We first
used a positional cloning strategy to localize a bipolar
susceptibility gene to a gene poor interval on
chromosome 4q35. Secondly, association analysis
provided significant evidence that FAT is associated
with the disorder in four independent bipolar
disorder cohorts. Finally, microarray and real-time
PCR analysis of transcripts in mice treated with
mood-stabilizing drugs provided evidence that Fat,
as well as genes encoding its protein partners, are
differentially expressed in response to therapeutic
doses of lithium. Together, these data provide con-
vergent evidence that FAT and its protein partners are
components of a molecular pathway involved in
susceptibility to bipolar disorder.

Table 3 Microarray analysis of mRNA expression response for genes encoding murine homologs of Drosophila-interacting

proteins, following treatment with bipolar therapeutic drugs

Fly Mouse Lithium-fold A (P-value) Valproate-fold A (P-value)
Low High Low High

Apc Apcl 2.4 | (0.001) 2.5 | (0.0005) No change No change
arm Catnb 1.8 1 (0.0003) 1.9 1 (0.003) 1.3 | (0.010) No change
brm Smarca4 2.5 | (0.0005) 2.9 | (<0.0001) 1.2 | (0.020) No change
cbp Crebbp 1.9 1 (0.006) 1.8 1 (0.001) No change No change

fz Fz4 1.6 T (0.024) 1.6 1 (0.013) No change No change

N Notch 2.5 1 (0.008) No expression No expression No expression
pka-c1 prkaca 2.7 | (0.008) 2.8 | (0.024) No change No change

| =downregulated; 1 =upregulated.
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Figure 3 Drosophila protein interaction map encompassing ft (fat), the homolog of the human FAT protein.

Although association between FAT and bipolar
disorder was replicated in four independent cohorts,
this association was not achieved with a single
phenotypic category. It is possible that the multiple
statistically significant P-values arose by chance;
however, our pooled data (meta-) analysis suggested
that these are unlikely to represent false-positive
associations (P=0.0002, summary OR=2.31, 95% CIL:
1.49-3.59). It is also possible that population strati-
fication between the two case—control cohorts may
have led to false-positive associations. We did not
undertake any genomic analysis of the two case—
control cohorts to test for population stratification;
however, careful attention to the standard principles
of epidemiological study design was applied in
ascertaining these cohorts. Each case—control cohort
was carefully controlled for ethnicity, and controls
were selected to ensure that they are representative of
the source population of cases. This approach
significantly reduces the potential for population
stratification.

Multiple testing is an issue among association
studies, with greater numbers of statistical tests
increasing the likelihood of obtaining false-positive
results. In our screen for association within the
chromosome 4q35 candidate region, we tested 65
SNPs across all brain-expressed genes before identify-
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ing association with SNPs in the FAT gene. Applying
a Bonferroni correction for this number of tests
provides a corrected statistical significance level of
0.0008. If this corrected significance level is accepted,
no P-value obtained in this study reached signifi-
cance. However the testing of multiple SNPs in a
linked region and in defined LD blocks represents
tests that are not independent. It should be appre-
ciated that this corrected significance level is highly
conservative, and few association studies of complex
traits, such as bipolar disorder, would ever meet this
threshold.

The issue of multiple testing also applies to the
microarray analysis, where a Bonferroni correction
provides a corrected statistical significance level of
0.002. Only four of the seven genes in Table 3 still
meet this conservative threshold. However, the degree
of false-positive discovery is likely to be very low,
because of the specificity and sensitivity of these
commercially available microarrays.

Significant evidence for association was observed
in the UK case—control cohort for both those cases
with, and those without, a family history of mental
illness. However, the observed bias in each case was
for the alternate haplotype. It is possible that one or
both of these are false-positive results. Alternatively,
it is possible that this is an example of molecular



heterosis, a common phenomenon that may be seen in
as many as 50% of association studies.”® A more
complete assessment of this and the genetic associa-
tions that were observed among other cohorts await
further investigation in the patient cohorts of other
investigators, to establish whether there is wider
support for FAT as a putative susceptibility gene.

The FAT protein regulates cell-cell contact and
polarity, probably through regulation of actin cytos-
keletal organization at cell peripheries, which is
mediated via interaction with Ena/VASP proteins.***°
This interaction is mediated via an EVH1 domain. All
bipolar disorder-associated SNPs fall within an 8.7 kb
LD block of FAT, which encodes the EVH1 domain of
the FAT protein. The Ena/VASP protein ENAH has
been implicated as a downstream effector of FAT*®
and was found in our analysis to be significantly
differentially regulated in response to bipolar dis-
order therapeutic drugs. ENAH maps to chromosome
1942, a region that has been strongly implicated in
linkage studies as harboring a bipolar disorder
susceptibility gene.’*** ENAH can now be investi-
gated as a positional candidate gene.

The mood-stabilizing drugs used to treat bipolar
disorder are believed to provide their therapeutic
action via transcriptional mechanisms. This is be-
cause the efficacy of the drugs is typically realized
after chronic administration. In the case of lithium,
the antimanic effect occurs within 5-10 days, but
there is a delay of 6-8 weeks before it exerts an
antidepressant effect.”® We treated mice with ther-
apeutic drugs for 7 days prior to investigation of
differential gene expression. This length of time may
be sufficient for the antimanic effects to be observed,
but insufficient for the antidepressant effects to
manifest. Maintaining a human therapeutic range of
circulating lithium concentration in the mice for
periods longer than seven days led to toxicity. Hence,
we were unable to investigate the effect of longer
chronic drug administration on gene expression.
However, other groups have successfully maintained
chronic administration of mood-stabilizing drugs in
rats,®®*” and as such, this may be a better therapeutic
model for the future assessment of the differential
expression of FAT and genes encoding its protein
partners.

Of the seven genes from our protein interaction
map that showed differential expression following
lithium administration, only two were also altered by
valproate (Table 3). This is not necessarily surprising,
as these two agents are structurally highly dissimilar,
and with the exception of GSK3 (glycogen synthase
kinase 3), they have generally been found to target
different molecules (reviewed by Gould et al.®®).
Unfortunately, GSK3 was not present on the Affyme-
trix gene chip arrays that were analyzed in this study,
and as such, any common differential expression of
this molecule could not be investigated.

A challenge for bipolar disorder pharmacogenomics
is to differentiate between those lithium-responsive
genes that are involved in the therapeutic action of
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lithium, and those that are involved in the side
effect or non-therapeutic action. We have identified
FAT as a gene that shows evidence of association
with bipolar disorder, and is responsive to lithium at
therapeutically relevant concentrations in mice. In
addition, the mammalian homologs of two ft (fat)-
interacting proteins, GSK3 and p-catenin (arm),
have previously been shown to also respond to
lithium, as well as valproate treatment.”® GSK3 is a
direct target of lithium®°* and is a key regulator of
the Wnt signaling pathway®® (Figure 3). GSK3
phosphorylates f-catenin leading to ubiquitin-depen-
dent degradation. Inhibition of GSK3 therefore leads
to accumulation of cytoplasmic p-catenin, which
becomes available for translocation to the nucleus
where it binds TCF/LEF transcription factors, indu-
cing target gene expression. The two cellular
pools of f-catenin, the cytoplasmic pool and the
cadherin-bound pool are not mutually exclusive.
Evidence suggests that the cadherin-bound pool of
p-catenin may be released to the cytoplasm and
made available for signaling.®* Other studies have
suggested that cadherins may act as negative
regulators of ff-catenin-mediated signaling by seques-
tering and binding p-catenin at the cell surface
(reviewed by Nelson and Nusse®). There is increasing
evidence of a convergence of the cadherin, f-catenin
and Wnt pathways,** and the data presented here
further support these inter-relations. Our investiga-
tion of the mammalian homologs of ft (fat)-interacting
proteins demonstrated that several members of the
Wnt signaling pathway are also responsive to lithium
(Table 3). Together, these data provide evidence for a
lithium-responsive gene network. Work can now
commence to determine how these molecules
and pathways may be involved in pathogenesis of
bipolar disorder. As such, this approach® offers
the opportunity of identifying novel targets with
enhanced efficacy for the long-term treatment of
bipolar disorder.
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