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Hearris MA, Hammond KM, Seaborne RA, Stocks B, Shep-
herd SO, Philp A, Sharples AP, Morton JP, Louis JB. Graded
reductions in preexercise muscle glycogen impair exercise capacity
but do not augment skeletal muscle cell signaling: implications for
CHO periodization. J Appl Physiol 126: 1587-1597, 2019. First
published May 2, 2019; doi:10.1152/japplphysiol.00913.2018.—We
examined the effects of graded muscle glycogen on exercise capacity
and modulation of skeletal muscle signaling pathways associated with
the regulation of mitochondrial biogenesis. In a repeated-measures
design, eight men completed a sleep-low, train-low model comprising
an evening glycogen-depleting cycling protocol followed by an ex-
haustive exercise capacity test [8 X 3 min at 80% peak power output
(PPO), followed by 1-min efforts at 80% PPO until exhaustion] the
subsequent morning. After glycogen-depleting exercise, subjects in-
gested a total of 0 g/kg (L-CHO), 3.6 g/lkg (M-CHO), or 7.6 g/kg
(H-CHO) of carbohydrate (CHO) during a 6-h period before sleeping,
such that exercise was commenced the next morning with graded
(P < 0.05) muscle glycogen concentrations (means * SD: L-CHO:
88 * 43, M-CHO: 185 = 62, H-CHO: 278 = 47 mmol/kg dry wt).
Despite differences (P < 0.05) in exercise capacity at 80% PPO
between trials (L-CHO: 18 = 7, M-CHO: 36 * 3, H-CHO: 44 =9
min), exercise induced comparable AMPK™172 phosphorylation (~4-
fold) and PGC-1ac mRNA expression (~5-fold) after exercise and 3 h
after exercise, respectively. In contrast, neither exercise nor CHO
availability affected the phosphorylation of p38MAPKTh180/Tyr182
CaMKII™2%8 or mRNA expression of p53, Tfam, CPT-1, CD36, or
PDK4. Data demonstrate that when exercise is commenced with
muscle glycogen < 300 mmol/kg dry wt, further graded reductions of
100 mmol/kg dry weight impair exercise capacity but do not augment
skeletal muscle cell signaling.

NEW & NOTEWORTHY We provide novel data demonstrating
that when exercise is commenced with muscle glycogen below 300
mmol/kg dry wt (as achieved with the sleep-low, train-low model)
further graded reductions in preexercise muscle glycogen of 100
mmol/kg dry wt reduce exercise capacity at 80% peak power output
by 20-50% but do not augment skeletal muscle cell signaling.
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INTRODUCTION

Skeletal muscle glycogen is recognized as the predominant
energy substrate used during endurance exercise (14) and plays
an important role in regulating the capacity to sustain exercise
at a given workload (4, 13, 16). Additionally, muscle glycogen
acts as a regulatory molecule (32) that is able to modulate cell
signaling and transcriptional responses to exercise and subse-
quently augment selected skeletal muscle markers of training
adaptation [e.g., succinate dehydrogenase (29), citrate synthase
(12), and B-hydroxyacyl-CoA dehydrogenase (18) enzyme
activity and cytochrome-c oxidase subunit IV content (47)].
Most notably, exercise commenced with reduced muscle gly-
cogen [as defined as a “train-low” session (40)] augments the
AMP-activated protein kinase (AMPK)-peroxisome prolifera-
tor-activated receptor <y coactivator-la (PGC-1la) signaling
axis (3, 35, 39, 46) and results in the augmented expression of
target genes with putative roles in the regulation of mitochon-
drial biogenesis and substrate utilization (3, 25, 33). Although
a multitude of research designs have been used to study the
physiological and molecular responses to train-low exercise,
the recently developed “sleep-low, train-low” model [which
requires athletes to perform an evening training session, restrict
carbohydrate (CHO) during overnight recovery, and then com-
plete a fasted training session the subsequent morning] pro-
vides a potent strategy to augment mitochondria-related cell
signaling (3, 5, 25). Furthermore, repeated bouts of sleep-low,
train-low is the only train-low model shown to enhance per-
formance in trained endurance athletes (27, 28).

Given that the enhanced training response associated with
the sleep-low, train-low model is potentially regulated by
muscle glycogen availability, it is prudent to consider the
absolute glycogen concentrations required to facilitate this
response. In this regard, examination of available data demon-
strates that the augmented signaling and transcriptional re-
sponses associated with train-low models are particularly ap-
parent when absolute preexercise muscle glycogen concentra-
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tions are =300 mmol/kg dry wt (20). Such data suggest the
presence of a muscle glycogen threshold, whereby a critical
absolute level of glycogen must be surpassed to induce the
augmented cell signaling responses associated with the train-
low model (33). In accordance with data derived from acute
exercise protocols, the notion of a glycogen threshold is also
apparent when investigating selected skeletal muscle markers
of training adaptation (20). For example, train-low sessions
commenced with glycogen concentrations < 300 mmol/kg dry
wt (12, 29, 47) result in augmented oxidative enzyme activity
and/or content after 3—10 wk of training. In contrast, when
train-low sessions are commenced with markedly higher pre-
exercise muscle glycogen concentrations (400-500 mmol/kg
dry wt) skeletal muscle markers of training adaptation are
not augmented (11). Nonetheless, although training with low
muscle glycogen augments selected signaling events, absolute
training volume (19) and/or intensity (18, 24, 47) may be
reduced because of a lack of muscle substrate and/or an
impairment in the contractile apparatus of skeletal muscle (10,
30). The challenge that exists is to therefore facilitate the
prosignaling environment while simultaneously maintaining
the ability to complete the desired workload and intensity in
order to promote training adaptation.

With this in mind, the aim of the present study was to
examine the effects of graded preexercise glycogen concentra-
tions on both exercise capacity and the modulation of selected
skeletal muscle signaling pathways with putative roles in the
regulation of mitochondrial biogenesis. Our model of graded
preexercise muscle glycogen was achieved through a sleep-
low, train-low model that adopted CHO intakes considered
practically viable (within the time course of sleep-low designs)
and representative of real-world refeeding strategies. Although
the use of such sleep-low, train-low models is primarily de-
signed for athletic populations, the use of recreational popula-
tions allows for a greater understanding of the molecular events
that occur in response to such train-low designs, given the
difficulties of collecting muscle biopsies from elite athletes.
We hypothesized that the activation of skeletal muscle signal-
ing pathways would be proportionally dependent on preexer-
cise muscle glycogen concentrations.

METHODS
Participants

Eight recreationally active men (means = SD: age 22 * 3 yr; body
mass 76.0 * 12.7 kg; height 177.9 + 5.7 cm) took part in this study.
Mean peak oxygen consumption (VOzpeax) and peak power output
(PPO) for the cohort were 48.9 *= 7.0 ml-kg™"-min~! and 273 * 21
W, respectively. None of the subjects had any history of musculosk-
eletal or neurological disease or was under any pharmacological
treatment during the course of the testing period. All subjects provided
written informed consent, and all procedures conformed to the stan-
dards set by the Declaration of Helsinki (2008). The study was
reviewed and approved by the local Research Ethics Committee of
Liverpool John Moores University.

Experimental Design

With a sleep-low, train-low model and a repeated-measures
design, with each experimental trial separated by a minimum of 7
days, subjects undertook an evening bout of glycogen depletion
exercise followed by the consumption of graded quantities of CHO
[low CHO (L-CHO): 0 g/kg; medium CHO (M-CHO): 3.6 g/kg; high
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CHO (H-CHO): 7.6 g/kg] across a 6-h period, so that exhaustive
exercise was commenced the next morning with three different levels
of preexercise muscle glycogen concentrations. Skeletal muscle biop-
sies were obtained from the vastus lateralis immediately before, after,
and 3 h after exercise. During the H-CHO and M-CHO trials, an
additional muscle biopsy was obtained at a matched time point
corresponding to the point of exhaustion in the L-CHO trial, allowing
for work-matched comparison between trials. Consequently, all sub-
jects completed the L-CHO trial first, whereas the subsequent M-CHO
and H-CHO trials were completed in a randomized and counterbal-
anced order. An overview of the experimental protocol is shown in
Fig. 1.

Assessment of Peak Oxygen Uptake

At least 7 days before experimental trials, all subjects were as-
sessed for VOopeak and PPO on an electronically braked cycle ergom-
eter (Excalibur Sport; Lode, Groningen, The Netherlands). After
completion of a 10-min warm-up at 75 W, the test began at 100 W and
consisted of 2-min stages with 30-W increments in resistance until
volitional exhaustion. VOzpeax Was considered as being achieved by
the following end-point criteria: /) heart rate (HR) within 10 beats/
min of age-predicted maximum, 2) respiratory exchange ratio > 1.1,
and 3) plateau of oxygen consumption despite increased workload.
Peak aerobic power was taken as the final stage completed during the
incremental test.

Overview of Sleep-Low, Train-Low Model

Phase 1: Glycogen depletion exercise. In the 24 h preceding glyco-
gen-depleting exercise (i.e., from 12 PM the day prior), subjects
consumed a standardized high-CHO diet (8 g/kg CHO, 2 g/kg protein,
and 1 g/kg fat), having refrained from alcohol and vigorous physical
exercise for the previous 48 h. The standardized diet consisted of three
main meals and three CHO-rich snacks, with subjects required to stop
eating 3 h before commencing glycogen-depleting exercise. On the
day of glycogen-depleting exercise, subjects reported to the labo-
ratory at ~3 PM to perform a bout of intermittent glycogen-depleting
cycling, as previously completed in our laboratory (19, 43). The
pattern of exercise and total time to exhaustion in the subject’s initial
trial were recorded and replicated in all subsequent trials. Subjects
were permitted to consume water ad libitum during exercise, with the
pattern of ingestion replicated during subsequent trials.

Phase 2: Carbohydrate refeeding strategy. To facilitate our over-
night sleep-low model, subjects were fed 30 g of whey protein isolate
(Science in Sport, Nelson, UK) mixed with 500 ml of water imme-
diately after the cessation of glycogen-depleting exercise to reflect
real-world practice as per current nutritional guidelines (44). Subjects
in the L-CHO trial then refrained from eating for the remainder of
the evening, whereas subjects in the M-CHO and H-CHO trials were
provided with a mixture of CHO drinks (maltodextrin; Science in
Sport) and gels (GO isotonic energy gel; Science in Sport) to be
consumed at hourly intervals. In the M-CHO trial subjects were
provided with CHO at a rate of 1.2 g-kg~!-h ™! for 3 h, whereas in the
H-CHO trial subjects were provided with 1.2 g-kgh™! for 3 h
followed by a high-CHO meal (4 g/kg CHO, 51 = 1 g protein, and
17 = 1 g fat) consisting of bread, soup, rice, fresh juice, rice pudding,
and jam after 4 h of recovery. In this way, total CHO intakes in the
L-CHO, M-CHO, and H-CHO trials equated to 0, 3.6 g/kg, and 7.6
g/kg, respectively, with fluid intake allowed ad libitum.

Phase 3: High-intensity interval cycling and exercise capacity
test. To facilitate our train-low exercise session, subjects arrived the
subsequent morning between 8 and 9 AM in a fasted state, and a
venous blood sample was collected from the antecubital vein and a
muscle biopsy taken from the vastus lateralis. Subjects then completed
the high-intensity interval (HIIT) cycling protocol, consisting of 8 X
3-min intervals at 80% PPO, interspersed with 1-min rest. During
exercise, HR was continuously measured and the final HR for each
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Fig. 1. Schematic overview of the experimental sleep-low, train-low protocol. After 24 h of standardized dietary conditions, subjects completed an evening bout
of glycogen-depleting cycling exercise. Upon completion, subjects received 3 graded levels of carbohydrate [high (H-CHO), medium (M-CHO), low (L-CHO)]
in order to manipulate preexercise muscle glycogen the subsequent morning. After an overnight fast, subjects completed an exhaustive bout of cycling exercise.
Muscle biopsies were obtained before exercise (Pre), at the point of exhaustion [after exercise (Post)], and 3 h after exercise (3 h). During H-CHO and M-CHO
trials, an additional muscle biopsy was obtained at a time point corresponding to the point of exhaustion in the L-CHO trial, allowing for work-matched

comparison between trials.

3-min interval was recorded, whereas ratings of perceived exertion
(RPE) were recorded upon completion of each interval. Expired gas
was collected via a mouthpiece connected to an online gas analysis
system (CPX Ultima; Medgraphics) for the final 1.5 min of each
interval, and substrate utilization was assessed with the equations of
Jeukendrup and Wallis (22) given the validity of indirect calorimetry
for the assessment of substrate utilization at exercise intensities up to
80-85% maximum oxygen consumption (VOzmax) (37). Upon com-
pletion of the high-intensity cycling protocol, subjects were provided
with 5 min of active recovery before commencing an exercise capac-
ity test consisting of intermittent “1-min efforts” corresponding to
80% PPO interspersed with 1-min recovery periods at 40% PPO. This
intermittent protocol was followed until the subjects reached voli-
tional exhaustion and has been utilized previously in our laboratory
(19). After the completion of the exercise capacity test and collection
of the postexercise biopsy, subjects were fed 30 g of whey protein
(Science in Sport) mixed with 500 ml of water.

Blood Analysis

Venous blood samples were collected in vacutainers containing
K>EDTA, lithium heparin, or serum separation tubes and stored on ice
or at room temperature until centrifugation at 1,500 g for 15 min at
4°C. Samples were collected immediately before exercise, at the point
of exhaustion (postexercise) and 3 h after exercise, and an additional
sample was obtained at a time point during the M-CHO and H-CHO
trials corresponding to the point of exhaustion in the L-CHO trial.
Plasma was divided into aliquots and stored at —80°C until analysis.
Samples were later analyzed for plasma glucose, lactate, nonesterified
fatty acids (NEFA), and glycerol with commercially available enzy-
matic spectrophotometric assays (RX daytona analyzer; Randox Lab-
oratories, Crumlin, UK) per manufacturer’s instructions.

J Appl Physiol - doi:10.1152/japplphysiol.00913.2018 « www.japp

Muscle Biopsies

Skeletal muscle biopsies (~20 mg) were obtained from the vastus
lateralis immediately before exercise, at the point of exhaustion
(postexercise), and 3 h after exercise. During the M-CHO and H-CHO
trials, an additional muscle biopsy was obtained at a time point
corresponding to the point of exhaustion in the L-CHO trial, thereby
allowing for “work-matched” comparison between trials. For the
work-matched biopsy, subjects dismounted the cycle ergometer and
were moved to the adjacent biopsy suite. After collection of the biopsy
sample (~5 min), subjects recommenced cycling exercise. Muscle
biopsies were obtained from separate incision sites 2—-3 cm apart with
a Bard Monopty Disposable Core Biopsy Instrument (12 gauge X
10-cm length; Bard Biopsy Systems, Tempe, AZ) under local anes-
thesia (0.5% Marcaine), immediately frozen in liquid nitrogen, and
stored at —80°C for later analysis.

Muscle Glycogen Concentration

Muscle glycogen concentrations were determined by the acid
hydrolysis method described by van Loon et al. (26). Approximately
2-5 mg of freeze-dried tissue was powdered, dissected of all visible
blood and connective tissue, and subsequently hydrolyzed by incuba-
tion in 500 wl of 1 M HCI for 3 h at 95°C. After cooling to room
temperature, samples were neutralized by the addition of 250 pl of
0.12 mol/l Tris-2.1 mol/l KOH saturated with KCI. After centrifuga-
tion, 200 wl of supernatant was analyzed in duplicate for glucose
concentration by the hexokinase method with a commercially avail-
able kit (GLUC-HK; Randox Laboratories). Glycogen concentration
is expressed as millimoles per kilogram of dry weight, and intraassay
coefficients of variation were <5%.
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RNA Isolation and Analysis

Muscle samples (~20 mg) were homogenized in 1 ml of TRIzol
reagent (Thermo Fisher Scientific), and total RNA was isolated
according to the manufacturer’s guidelines. Concentrations and purity
of RNA were assessed by UV spectroscopy at optical densities of 260
and 280 nm with a Nanodrop 3000 (Fisher, Roskilde, Denmark) with
an average 260 nm-to-280 nm ratio of 1.9 = 0.1. A quantity of 70 ng
of RNA was used for each 20-ul PCR reaction.

Reverse Transcriptase Quantitative Real-Time Polymerase
Chain Reaction

Reverse transcriptase quantitative real-time polymerase chain re-
action (RT-PCR) amplifications were performed with a QuantiFast
SYBR Green RT-PCR one-step kit on a Rotogene 300Q (Qiagen,
Crawley, UK) supported by Rotogene software (Hercules, CA). The
primers used are listed in Table 1. RT-PCR was performed as follows:
hold at 50°C for 10 min (reverse transcription/cDNA synthesis), 95°C
for 5 min (transcriptase inactivation and initial denaturation step), and
PCR steps of 40 cycles of 95°C for 10 s (denaturation), 60°C for
30 s (annealing and extension). Upon completion, dissociation/melt-
ing curve analyses were performed to reveal and exclude nonspecific
amplification or primer-dimer issues (all melt analysis in this study
presented single reproducible peaks for each target gene suggesting
amplification of a single product). After initial screening of suitable
reference genes, GAPDH showed the most stable threshold cycle (Cy)
values across all RT-PCR runs and subjects, regardless of experimen-
tal condition (25.3 = 1.0) and was therefore selected as the reference
gene in all RT-PCR assays. The average PCR efficiency for all
RT-PCR runs (90 = 2%) was similar for all genes across all time
points and experimental conditions. As such, the relative gene expres-
sion levels were calculated with the comparative C, (AAC,) equation
(38), where relative expression was calculated as 2782C¢ mRNA
expression for all target genes was calculated relative to the reference
gene (GAPDH) within the same subject and condition and relative to
the preexercise value in the H-CHO condition.

SDS-PAGE and Western Blotting

Muscle samples (~20 mg) were powdered on dry ice and homog-
enized (FastPrep-24 5G Instrument) for 2 X 40 s at 6 m/s in a 10-fold
mass of ice-cold lysis homogenization buffer [in mM: 20 Na-pyro-
phosphate, 150 NaCl, 50 HEPES (pH 7.5), 20 -glycerophosphate, 10
NaF, 1 EDTA (pH 8.8), 1 EGTA (pH 8.8), 3 benzamidine, and 1
1,4-dithiothreitol, with 10% glycerol, 1% NP-40, 1% Phosphatase
Inhibitor Cocktail 2 (Sigma), 1% Phosphatase Inhibitor Cocktail 3
(Sigma), and 4.8% complete Mini Protease Inhibitor Cocktail
(Roche)]. The resulting homogenate was centrifuged at 4°C for 10
min at 8,000 g, and the supernatant was used for the determination of
protein concentrations with the DC protein assay (Bio-Rad). Samples
were resuspended in 4X Laemmli buffer, boiled for 5 min, and
separated by SDS-PAGE before being transferred to nitrocellulose
membranes (Pall Life Sciences, Pensacola, FL). After transfer, mem-
branes were stained for protein with Ponceau S (Sigma-Aldrich,
Gillingham, UK), blocked in TBS-Tween containing 3% nonfat milk

Table 1. Primers used for real-time RT-PCR
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for 1 h, and incubated overnight in primary antibodies [AMPKa (no.
2603), phospho (p)-AMPK™172 (no. 2531), acetyl-CoA carboxylase
(ACC; no. 3676), p-ACCS° (no. 3661), p38MAPK (no. 9212),
p-p3SMAPKTr180/Tyri82 (ng 4511), CaMKII (no. 3362), and p-
CaMKII™268 (no, 12716) from Cell Signaling Technologies] before
incubation in relevant secondary antibodies [anti-rabbit (no. 7074)
from Cell Signaling Technologies] for 1 h at room temperature.
Proteins were detected via chemiluminescence (Millipore, Watford,
UK) and quantified by densitometry with GeneTools software (Syn-
gene, Cambridge, UK). Sufficient muscle was available for Western
blot analysis for seven subjects. Data are reported as the phosphory-
lated protein of interest normalized to total protein, and each time
point is reported relative to the preexercise value in the H-CHO
condition.

Statistical Analysis

All statistical analyses were performed with the Statistical Package
for the Social Sciences (SPSS version 24). Comparisons of average
physiological responses and exercise capacity were analyzed with a
one-way repeated-measures general linear model, whereas changes in
physiological and molecular responses between conditions (i.e., mus-
cle glycogen, mRNA expression, and activity of signaling molecules)
were analyzed with a two-way repeated-measures general linear
model, where the within factors were time and condition. Here the
postexercise sampling point in the L-CHO trial was also used as the
work-matched sampling point, as this corresponded to the same
sampling point and allowed for comparison between trials. Where a
significant main effect was observed, pairwise comparisons were
analyzed according to Bonferroni post hoc tests to locate specific
differences. All data in text, figures, and table are presented as
means *= SD, with P values = 0.05 indicating statistical significance.

RESULTS
Skeletal Muscle Glycogen and Exercise Capacity

The exercise and nutritional strategy employed was success-
ful in achieving graded levels of preexercise muscle glycogen
(H-CHO 278 = 47, M-CHO 185 = 62, L-CHO 88 £ 43
mmol/kg dry wt) such that exercise was commenced with three
distinct levels of muscle glycogen (P = 0.016) (Fig. 2A).
Exhaustive exercise significantly reduced (P < 0.001) muscle
glycogen concentration to comparable levels (<100 mmol/kg
dry wt), with no difference between conditions (P = 0.11). In
accordance with the observed differences in preexercise mus-
cle glycogen concentration, total exercise time spent at 80%
PPO in the H-CHO trial (44 = 9 min) was significantly greater
than that in both M-CHO (36 = 3 min) (P = 0.037) and
L-CHO (18 = 6 min) (P < 0.001) trials, while that in the
M-CHO trial was significantly greater than in the L-CHO trial
(P < 0.001) (Fig. 2B). Given the low preexercise muscle
glycogen concentration of subjects in the L-CHO trial, six of
the eight subjects were unable to complete the prescribed HIIT

Gene Forward Primer Reverse Primer
PGC-1 TGCTAAACGACTCCGAGAA TGCAAAGTTCCCTCTCTGCT
pS3 ACCTATGGAAACTACTTCCTGAAA CTGGCATTCTGGGAGCTTCA
Tfam TGGCAAGTTGTCCAAAGAAACCTGT GTTCCCTCCAACGCTGGGCA
CD36 AGGACTTTCCTGCAGAATACCA ACAAGCTCTGGTTCTTATTCACA
PDK4 TGGTCCAAGATGCCTTTGAGT GTTGCCCGCATTGCATTCTT
CPT1 GACAATACCTCGGAGCCTCA AATAGGCCTGACGACACCTG
GAPDH AAGACCTTGGGCTGGGACTG TGGCTCGGCTGGCGAC

J Appl Physiol - doi:10.1152/japplphysiol.00913.2018 « www.japp
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protocol. Therefore, exercise capacity data are presented as the
total amount of time spent at 80% PPO, are inclusive of the
exercise performed during the prescribed HIIT protocol and
subsequent capacity test, and exclude all time spent at rest/
recovery.

Physiological and Metabolic Responses to Exercise

Subject s average HR (Fig. 3A) across the HIIT session,
when matched for work done (H-CHO 163 = 16, M-CHO
167 = 15, L-CHO 171 = 17 beats/min), was significantly
higher in the L-CHO trial compared with H-CHO (P = 0.031)
only. Similarly, subjects average RPE (Fig. 3B) across the
HIIT session (H-CHO 13 = 1, M-CHO 14 = 1, L-CHO 16 =
1 arbitrary units) was significantly higher in the L-CHO trial
compared with both M-CHO (P = 0.041) and H-CHO (P =
0.012) trials. Exhaustive exercise resulted in a significant
reduction in plasma glucose (P = 0.036), where plasma glu-
cose was significantly lower in the L-CHO trial compared with
the H-CHO trial only (P = 0.015) (Fig. 3C). Exhaustive
exercise resulted in a significant increase in plasma lactate
(P =0.001), NEFA (P < 0.001), and glycerol (P = 0.012) but
did not display any significant differences between trials (Fig.
3, D-F, respectively). However, when matched for work done,
plasma NEFA (P = 0.01) and plasma glycerol (P = 0.017)
were increased to a significantly greater extent in the L-CHO
trial compared with the H-CHO trial only. In addition, subjects
in the L-CHO trial oxidized significantly less CHO (P =
0.048) and greater amounts of lipid (P = 0.004) compared with
the H-CHO trial only (Fig. 3, G and H, respectively).

Regulation of Mitochondrial Biogenesis-Related Cell
Signaling

Exhaustive exercise induced significant increases in AMPK™"172
phosphorylation (P = 0.017) but did not display any significant
differences between trials (P = 0.548) (Fig. 4A). Similarly,
exhaustive exercise induced significant increases in ACCSe""?
phosphorylation (P = 0.005), although phosphorylation was
higher in the M-CHO trial compared with the L-CHO trial only
(P = 0.021) (Fig. 4B). When exercise duration was matched to
the postexercise sampling point in the L-CHO group, the
increase in AMPK™"!72 phosphorylation remained comparable
between groups (P = 0.269) and the increase in ACCS*"”® phos-
phorylation still remained higher in the M-CHO trial compared
with the L-CHO trial (P = 0.021). In contrast, exhaustive exercise
did not induce phosphorylation of p38MAPK180/Tyri82 (p —
0.656) (Fig. 4C) or CaMKII™28 (P = 0.707) (Fig. 4D). Repre-
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Fig. 2. A: skeletal muscle glycogen concentra-
tion. dw, Dry weight. B: exercise capacity at
80% peak power output (PPO) (reflective of
set work protocol plus time to exhaustion).
H-CHO, high carbohydrate; M-CHO, medium
carbohydrate; L-CHO, low carbohydrate; Pre,
preexercise; Matched, work-matched time
points; Post, point of exhaustion; +3 h, 3 h
after exercise. Data are presented as means,
and individual data points represent individual
subjects (n = 8). P < 0.05, significantly
different from Pre; §P < 0.05, significantly
different from H-CHO; P < 0.05, signifi-

L. C.H ° cantly different from M-CHO.

M-CHO

sentative Western blots are shown in Fig. 4E. With regard to
exercise-induced gene expression, exhaustive exercise induced a
significant increase in PGC-1a mRNA expression at 3 h after
exercise (P = 0.001) but did not display any significant
differences between trials (Fig. 5A). In contrast, pS3, tran-
scription factor A, mitochondrial (Tfam), carnitine palmi-
toyltransferase 1 (CPT-1), CD36, and pyruvate dehydroge-
nase kinase 4 (PDK4) mRNA expression (Fig. 5, B-F,
respectively) was unaffected by either glycogen availability
or the exhaustive exercise protocol (P > 0.05).

DISCUSSION

Using a sleep-low, train-low model, we examined the
effects of three distinct levels of preexercise muscle glycogen
on exercise capacity and the modulation of selected skeletal
muscle signaling pathways with putative roles in mitochondrial
biogenesis. We provide novel data by demonstrating that /)
graded reductions in preexercise muscle glycogen of 100
mmol/kg dry wt reduce exercise capacity at 80% PPO by
~20-50% and 2) despite significant differences in preexercise
muscle glycogen availability, we observed comparable in-
creases in AMPK ™72 phosphorylation and PGC-1oc mRNA.
In contrast to our hypothesis, these data suggest that graded
levels of muscle glycogen < 300 mmol/kg dry wt do not
augment skeletal muscle cell signaling, a finding that may
be related to the fact that commencing exercise with <300
mmol/kg dry wt is already a critical level of absolute
glycogen [as suggested by Impey et al. (20)] that is required
to induce a metabolic milieu conducive to cell signaling. In
relation to the goal of promoting cell signaling, our data
therefore suggest that reducing preexercise glycogen con-
centrations below 300 mmol/kg dry wt does not confer any
additional benefit within the context of the sleep-low, train-
low model.

To achieve our intended model of graded glycogen concen-
trations, we adopted a sleep-low, train-low design in which
subjects performed an evening bout of glycogen-depleting
exercise and subsequently ingested three graded quantities of
CHO that were practically viable within the time course of the
sleep-low model. This strategy was effective in achieving
graded differences in preexercise muscle glycogen concentra-
tion (278 vs. 185 vs. 88 mmol/kg dry wt in H-CHO, M-CHO,
and L-CHO, respectively) and represents muscle glycogen
resynthesis rates (~30 mmol-kg”"-h™!") commonly observed
with CHO feeding rates of 1-1.2 gkg~"-h™! (21). A novel
aspect of our chosen study design was that we employed a
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sampling point in both the H-CHO and M-CHO trials that was
matched to the point of exhaustion in the L-CHO trial, thus
allowing for the assessment of mitochondria-related signaling
events at both work-matched and exhaustive exercise time
points while also allowing for the assessment of exercise
capacity. In accordance with differences in muscle glycogen,
both NEFA availability and lipid oxidation were greater in the
L-CHO trial compared with the H-CHO trial at the work-
matched sampling point. However, at the point of exhaustion,
plasma NEFA and glycerol were comparable between all
conditions, which is likely reflective of the postexercise muscle
glycogen concentrations in all three conditions given the well-
documented effects of muscle glycogen (2) on substrate utili-
zation during exercise.

Consistent with the well-documented effects of muscle gly-
cogen on exercise capacity (4, 16) we observed that even small
differences in preexercise muscle glycogen concentration
(~100 mmol/kg dry wt) can induce changes in exercise capac-
ity at 80% PPO of between ~20% and 50% (8—18 min).
Although we acknowledge that the lack of blinding to each
experimental condition may have influenced exercise capacity
(despite subjects receiving no feedback during exercise), it is
unclear whether prior knowledge of CHO intake alone would
enhance exercise performance (17). Nonetheless, these data are
consistent with previous data (1, 6) that suggest that differ-
ences in muscle glycogen of 100—120 mmol/kg dry wt enhance
exercise capacity at 70% V02max by 5-12 min. Therefore, the
8-min difference in exercise capacity between M-CHO and
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significantly different from Pre; *P < 0.05, significantly different from L-CHO. Data are presented as means, and individual data points represent individual

subjects (n = 7).

H-CHO trials is likely more representative of changes in
muscle glycogen concentration. Although we consider that the
present data may help to characterize what is considered a
worthwhile change in absolute muscle glycogen concentration
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in determining exercise capacity, we acknowledge that these
changes should be considered in the context of each individual,
given the interindividual variability between subjects in the
present study. Furthermore, as the capacity for glycogen stor-
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cycle) before (Pre) and 3 h after (+3 h) exercise. *P < 0.03, significantly different from Pre. Data are presented as means, and individual data points represent

individual subjects (n = 8).

age is enhanced and its utilization during exercise reduced
among well-trained populations (1, 15, 23), such small differ-
ences in muscle glycogen (as observed within the present
study) may allow for extended exercise times among well-
trained individuals.

In relation to postexercise mitochondria-related signaling, it
is widely accepted that commencing work-matched exercise
protocols with reduced muscle glycogen induces greater skel-
etal muscle signaling (20). For example, AMPK™172 phos-
phorylation (46), AMPK-a2 activity (45), and nuclear abun-
dance (39) are all augmented when acute exercise is com-
menced with reduced preexercise muscle glycogen. In contrast,

we observed no enhancement in AMPK™!72 or ACCSer7?
phosphorylation at our work-matched time point (i.e., after the
completion of ~20-min high-intensity cycling) despite graded
reductions in preexercise muscle glycogen concentrations. This
apparent lack of augmented cell signaling may be explained by
subjects already commencing exercise with preexercise glyco-
gen concentrations < 300 mmol/kg dry wt, an absolute con-
centration that was previously suggested to facilitate the en-
hanced cell signaling responses associated with low glycogen
availability (20). Indeed, our range of preexercise muscle
glycogen concentrations is distinctly lower than previous work
that reports greater skeletal muscle signaling following work-

J Appl Physiol - doi:10.1152/japplphysiol.00913.2018 - www.jappl.org
Downloaded from www.physiology.org/journal/jappl at Univ of New South Wales (129.094.226. 091) on September 8, 2019.



CHO RESTRICTION AND CELL SIGNALING

matched exercise protocols. For example, high-glycogen trials
are commonly commenced with muscle glycogen concentra-
tions between 400 and 600 mmol/kg dry wt (3, 36) and remain
above 300 mmol/kg dry wt after exercise (3, 36, 45). In such
instances, these researchers observed attenuated (45) or abol-
ished (3, 36) activation of cell signaling pathways. Interest-
ingly, despite the completion of significantly more work in
both the M-CHO and H-CHO trials, no further increases in
AMPK™172 phosphorylation were observed after exhaustive
exercise. Although both AMPK activity and ACC phosphory-
lation are known to be regulated by exercise duration (41),
these responses appear to be closely linked to changes in
muscle glycogen concentrations (9, 41). With this in mind, the
lack of augmented signaling in response to further exercise in
the present study may be explained by the relatively small
changes in muscle glycogen from the work-matched time point
to exhaustion.

In contrast to AMPK and ACC, we did not observe any
change in the phosphorylation status of p38MAPKThr180/Tyr182
or CAMKII™286 in response to either exercise or muscle
glycogen concentration, although we note the large interindi-
vidual variability and recommend the use of larger sample
sizes in the future. These data are in agreement with previous
work that demonstrates no change in p38MAPK or CAMKII
phosphorylation with a variety of train-low methodologies,
including sleep-low, train-low (3, 25), twice-per-day training
(46), and fasted training (42). Although augmented p38MAPK
phosphorylation has been observed when preexercise muscle
glycogen is reduced (163 vs. 375 mmol/kg dry wt), this is
apparent only within the nucleus and not the cytoplasm (7).
Therefore, further work should utilize cellular fractionation
methodologies to investigate the cellular localization of such
exercise-inducible kinases.

Despite the observed augmented mRNA expression of
PGC-1a within the postexercise recovery period, exhaustive
exercise did not augment the mRNA expression of other
mitochondria (p53 or Tfam)- or substrate utilization (PDK4,
CPT1, or CD36)-related genes. Although the time course of
mRNA expression for these genes is not well understood, the
lack of change in mRNA expression in the present study may
be explained by our chosen sampling points in accordance with
our sleep-low, train-low exercise model. Indeed, given that our
preexercise biopsy was sampled within ~14 h of glycogen-
depleting exercise, it is difficult to determine whether mRNA
expression was already elevated at preexercise. For instance,
time course studies have revealed that the mRNA expression of
Tfam (31), PDK4 and CPT1 (34) is enhanced for up to 24 h
after exercise, which coincides with our preexercise sampling
time point (~14 h between the 2 exercise bouts). However,
given the time course of phosphorylation of our chosen protein
targets (8), it is highly unlikely that any of these proteins would
be phosphorylated at preexercise as a result of the previous
evening’s glycogen depletion exercise.

Practically, these data suggest that in the context of the
sleep-low, train-low model, where muscle glycogen is depleted
to very low levels (~100 mmol/kg dry wt), insufficient time is
available to restore muscle glycogen to normal levels. As such,
individuals undertaking sleep-low, train-low models, which
reduce muscle glycogen to very low levels, should consume
CHO in accordance with the energetic requirements of the
subsequent morning session, given that withholding CHO
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intake overnight appears to confer no additional benefit in
relation to cell signaling but impairs exercise capacity. In
contrast, it appears that when muscle glycogen is not depleted
to such low levels (>300 mmol/kg dry wt), withholding CHO
intake in the postexercise period may prolong the acute cell
signaling and gene expression responses (25, 34). With this in
mind, it should be noted that driving glycogen depletion below
300 mmol/kg dry wt would likely be more difficult and require
considerably more work in well-trained individuals (11), given
that they display an enhanced capacity for glycogen storage
and reduced utilization during exercise (1, 15, 23). In practice,
it appears that careful consideration of the individual’s training
status and the metabolic demands of each training session is
required to ensure appropriate day-to-day periodization of
CHO in order to ensure that absolute training intensity is not
compromised while also creating a metabolic milieu conducive
to facilitating the metabolic adaptations associated with ‘train
low.’

In summary, we provide novel data by demonstrating that
graded reductions in preexercise muscle glycogen below 300
mmol/kg dry wt (as achieved with a sleep-low, train-low
model) impair exercise capacity but do not augment skeletal
muscle cell signaling responses. Practically, our data suggest
that, within the context of the sleep-low, train-low model
(when muscle glycogen is depleted to very low levels), over-
night CHO restriction is not required to augment skeletal
muscle cell signaling and thus CHO should be consumed in
accordance with the metabolic demands of the subsequent
morning session. Future studies should investigate stepwise
reductions in preexercise muscle glycogen, within a wider
range (i.e., 100—600 mmol/kg dry wt), in order to investigate
the existence of a potential glycogen threshold (20) and allow
for a better definition of its potential upper and lower limits.
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