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Abstract

The epiproteome describes the set of all post-translational modifications (PTMs) made to the proteins
comprising a cell or organism. The extent of the epiproteome is still largely unknown; however, advances in
experimental techniques are beginning to produce a deluge of data, tracking dynamic changes to the
epiproteome in response to cellular stimuli. These data have potential to revolutionize our understanding of
biology and disease. This review covers a range of recent visualization methods and tools developed
specifically for dynamic epiproteome data sets. These methods have been designed primarily for data sets on
phosphorylation, as this the most studied PTM; however, most of these methods are also applicable to other
types of PTMs. Unfortunately, the currently available methods are often inadequate for existing data sets;
thus, realizing the potential buried in epiproteome data sets will require new, tailored bioinformatics methods
that will help researchers analyze, visualize, and interactively explore these complex data sets.

© 2019 Elsevier Ltd. All rights reserved.
Introduction

The “epiproteome,” as envisioned by Margueron
et al. [1], describes the set of all post-translational
modifications (PTMs) made to the proteins comprising
a cell or organism. Almost all proteins are believed to
contain PTMs [2], typically resulting in small but
significant changes in protein structure [3] as well as
functional changes [4], such as gain or loss of
enzymatic activity, alteration of protein interactions,
and changes in subcellular localization. These chang-
es play key roles in cellular regulation and greatly
contribute to the complexity of living organisms [5].
Currently, over 200 different types of PTMs are

characterized in UniProt [6].† Furthermore, some of
these different types of PTMs can work in conjunc-
tion with each other [7,8], thus further increasing the
combinatorial complexity with which PTMs regulate
cellular systems. Some types of PTMs are irrevers-
ible (e.g., deamidation) and are often associated with
processes such as aging and tissue injury responses
r Ltd. All rights reserved.
[9,10]. In contrast, reversible PTMs (e.g., phosphor-
ylation) are often implicated in fast, tightly regulated
processes [11] (e.g., cell signaling pathways). Dys-
regulation and dysfunction of PTMs are associated
with numerous diseases [12–17].
The most commonly occurring PTMs are phos-

phorylation, acetylation, glycosylation, methylation,
and ubiquitination [18], of which phosphorylation is
the most studied [19] (see the Phosphoproteomics
section below for more details). Lysine acetylation
and deacetylation were first discovered in histones
[20], but since then, they have been reported in
many other proteins—such as transcription factors,
nuclear receptors, cytoskeletal proteins, and chap-
erones [21]—and are now also known to play
multiple roles in cellular regulation [22,23]. Glyco-
sylation plays essential roles in protein folding,
especially for membrane-bound and secreted pro-
teins, and in immune regulation [24]. Methylation and
demethylation are common on histone proteins, as
well as on proteins regulating RNAmetabolism, DNA
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repair, cell cycle progression, apoptosis, and signal
transduction [25]. Polyubiquitination marks a protein
for degradation, while monoubiquitination can regu-
late cellular processes, such as receptor transport,
DNA repair, and viral budding [26–29].
While the overall importance of PTMs is clear [30],

much is still unknown. In fact, much of our current
understanding of biochemistry and molecular biolo-
gy has been derived from experimental methods
insensitive to PTMs—primarily due to difficulties in
tracking such relatively small chemical changes.
However, this is changing rapidly, driven by recent
technical advances—making epiproteomics an
emerging frontier in science [31].
Currently, mass spectrometry (MS) is the leading

method for quantitative studies of the epiproteome
[32]. For example, MS methods have recently been
used for omics-scale studies of ubiquitylation [33]
and SUMOylation [34] (i.e., the addition of “Small
Ubiquitin-like MOdifier” proteins, observed to be up-
regulated in various cancers [35]). However, most
epiproteome studies to date have focused on the
phosphoproteome, mapping dynamic changes in
response to specific cellular stimuli [36–41].
These emerging epiproteome data sets present

several challenges when visualized using tools and
methods developed for conventional “whole-protein”
proteomics data [42–44]. First, the visual representa-
tion of each protein needs to be expanded to account
for the fact that many proteins contain multiple PTM
sites [45,46]—with some individual proteins having as
many as 200 distinct PTM sites [47]. Second, the
dynamic epiproteome can be surprisingly large and
complex. For example, tens of thousands of distinct
PTM sites and events can be involved in the cellular
response to a single stimulus, such as the insulin
hormone [47]. Finally, modern MSmethods now allow
tracking of events across multiple time points, as well
as across multiple experimental conditions, thus
adding dimensions of complexity to the analysis and
visualization. Overlaying such data (temporal and
concentrations) onto visualizations of biological path-
ways and networks has long been a vexing challenge
that is still largely unmet.
For these reasons, the visualization tools and

strategies developed for traditional proteomics anal-
ysis have, in many cases, proven to be inadequate to
address dynamic epiproteome data sets. This calls
for innovative, new visualization strategies to help
scientists effectively explore these large and multi-
dimensional data sets, and to communicate their
findings [48,49]. This review covers a range of recent
visualization methods and tools developed specifi-
cally for dynamic epiproteome data sets. As most of
the currently available high-throughput data sets
focus on phosphorylation, we will use this PTM as
the primary example for illustration. However, many
of the visualization methods and tools discussed can
also be used with other types of PTM.
In the sub-section below (Phosphoproteomics
section), we provide details specific to dynamic
phosphoproteome data sets. In subsequent sec-
tions, we then discuss how the experimentally
derived data can be visually explored (Visualizing
Experimental Data section), and how this exploration
can be enhanced by integration with prior knowledge
(Visualizing Integrated Data section) and with
predictive models (Visualizing Predictive Models
section).

Phosphoproteomics

Phosphorylation (carried out by kinases) and
dephosphorylation (carried out by phosphatases)
often occur across large numbers of proteins during
cellular signaling [47,50]. Each protein involved
typically hasmultiple phosphosites that in turn regulate
and modulate the protein's function in different ways
[51,52]—for example, by inducing conformational
changes that can expose or obstruct binding sites,
affect protein folding and stability, or result in subcel-
lular translocation [53,54]. Phosphorylation has been
reported most often in serine residues (~ 87%),
followed by threonine (~12%) and tyrosine (~2%)
[55]. Other aminoacids suchashistidine and aspartate
can also be phosphorylated; however, they are less
likely to be detected using routine phosphoamino acid
analysis [56,57].
A range of MS techniques have been described

recently that can track changes in phosphorylation
across a cellular proteome [36], generating data sets
that contain three crucial pieces of information [58]:

1. The individual phosphorylation site (often with
the surrounding peptide sequence)

2. The proteins on which these sites reside
3. Thephosphosite ratios or fold changes (log2ratio)

between the basal and themeasured time points

Unfortunately, these MS techniques do not directly
reveal which kinases and phosphatases have
caused the observed phosphorylation events. For
this reason, these studies are often augmented with
knock-down or knock-out experiments targeting
putative kinases and phosphatases. Such MS-
quantified data sets are frequently provided to the
community as supplementary data sets, and raw
data may additionally be deposited in public repos-
itories, such as the PRIDE Archive‡ [59].
Until fairly recently, few of the available tools for

analyzing proteomics data were readily applicable
to phosphoproteome data or, more generally, to
epiproteome data. However, since around 2013, as
the number of such data sets has increased, a range
of visualization strategies have been developed,
tailored for epiproteome data sets. These develop-
ments were partly aided by the 2013 DREAM 8
(Dialogue for Reverse Engineering Assessments
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and Methods) competition, which featured a visual-
ization sub-challenge focused on time-series phos-
phoproteome data [60].
The documentation for each of these tools typically

provides example visualizations with data sets
selected to clearly demonstrate the strengths of
each method; in this work, to help compare these
tools, we have defined a benchmark phosphopro-
teome data set, derived from an experiment by
Humphrey et al. [47] on insulin response within
mouse adipose-like 3T3-L1 cells. In this experiment,
Humphrey et al. were able to detect N37,000 distinct
phosphorylation events involving nearly 6,000 dis-
tinct proteins, measured across nine time points
(including basal). From these, we defined our
benchmark data set by selecting a subset of 103
phosphorylation site profiles that were well under-
stood, based on previous literature [61]. This subset
—hereafter referred to as the “Benchmark data
set”—was then used with each of the tools consid-
ered in this review to generate the figures presented
below. In each case, the figures were modified using
Adobe Illustrator and Adobe Photoshop to improve
clarity for publication. One of the reviewed tools
(DynaPho [62]) allowed only human data; in this
case, we converted the mouse proteins and amino
acid positions to the corresponding equivalents in
human proteins. This was done by running a BLAST
search [63] of each mouse protein against all human
proteins in UniProt [6], then selecting the best
matching human sequence. All data and input files
used to generate the figures are provided in a
supplemental Data in Brief article that accompanies
this review [64]. A summary of the various tools
reviewed in this paper is provided in Table 1.

Visualizing experimental data

Visual exploration of experimental epiproteome
data is often a critical first step, helping to identify
anomalies and to assess data validity. In addition, a
Table 1. An overview of tools and methods used to perform a

Name Platform Analysis methods

DynaPho Web Data summary, clustering,
kinase and phosphatase
assignments, protein
interaction assignments

Quant
phosp
time p

DiBS Web Data summary Quant
phosp
time p

PHOXTRACK Web Kinase enrichment Phosp
phosp

PhosphoPath Cytoscape plugin
(desktop only)

Kinase assignments Separ
sites,

Kappa Web and desktop Modeling and simulation
framework

Mathe
Kappa

Minardo – Kinase and phosphatase
assignments

–

visual overview of these data sets can help detect
patterns that provide insight into the cascade of
signaling events occurring in the experiment. In the
sections below, we discuss two available tools for
visualizing experimental data directly. These tools
primarily use two visualization methods: profile plots
(also known as parallel coordinate plots) and heat
maps [65].

DynaPho (Data Summary)

DynaPho§ [62] is a comprehensive web-based
tool that supports a range of multiple analysis and
visualization modules, tailored for time-course phos-
phoproteomicsdata sets. The “DataSummary”module
of DynaPho allows direct visualization for selected
phosphosites of interest (Fig. 1).
Methods

In the “Data Summary” module (Fig. 1), single or
multiple time profiles can be selected from a
spreadsheet view of a complete data set. Selected
profiles are then shown on a single profile plot.
Features

This combined use of a spreadsheet and profile
plot provides a simple and intuitive technique for
exploring a data set and for revealing changes in the
pattern of phosphorylation across specific sites.
Limitations

The straightforward approach used in this module
can scale to a large number of profiles—however,
only when these profiles are very similar. For profiles
that are highly divergent, the plots rapidly become
visually cluttered as the number of profiles in-
creases, thus impeding the detection of trends. A
second limitation is that, currently, DynaPho's
nalysis and create visualizations in this review

Input Interactive Free Image
export

ified ratios or log2 of ratios of
horylation change at various
oints

Yes Yes Yes

ified ratios or log2 of ratios of
horylation change at various
oints (1 MB file upload limit)

Yes Yes,
for one
project

No (only
for paid
version)

hosite sequences (13aa max) and
horylation ratio (one time point)

Yes Yes Yes

ate input for: proteins and their
and time series data

Yes Yes Yes

matical model in the
-language format

Yes Yes Yes

– – –
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Fig. 1. DynaPho's “Data Summary” module showing part of the Benchmark data set. DynaPho provides an interactive
spreadsheet (top), from which individual profiles can be selected by mouse clicking; these are then displayed in a profile
plot (below). Top and bottom panels were created in DynaPho and modified in Illustrator.
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advanced features are only available when using data
on human proteins. Finally, the “Data Summary”
module has relatively limited functionality and pro-
vides rather generic plotting facilities, similar to Excel
or Google Sheets; a much richer set of
phosphoproteomic-specific features are available in
other DynaPho modules, covered below.

DynaPho (Profile Clustering)

The “Profile Clustering” module of DynaPho [62]
overcomes the limitations mentioned above, en-
abling very similar time profiles to be identified and
grouped together (Fig. 2).
Methods

In the “Profile Clustering” module (Fig. 2), quanti-
fied ratios for phosphorylation changes are normal-
ized, standardized, then clustered using the fuzzy
c-means (FCM) algorithm [66]. This algorithm—also
implemented in the Mfuzz R package [66]—has
often been used for phosphoproteomics data sets
[67,68]. FCM is a “soft clustering” technique, in which
each individual profile is assigned a membership
score (between 0 and 1, low to high, respectively)
for each cluster, indicating the certainty of a profile's
assignment to that cluster. Profiles in the same
cluster are generally hypothesized to be regulated by
the samekinases and phosphatases [69,70], and thus
to have associated functions [71]. For epiproteome
data, fuzzy clustering methods are considered more
appropriate than “hard clustering” methods, in which
an individual profile can only be assigned to one
cluster. This is because (1) individual phosphorylation
sites can be regulated by multiple enzymes, and
(2) most epiproteome data sets to date have high
variability arising from experimental uncertainties,
noise, and intrinsic variations in underlying biological
processes.

Features

Once clusters are calculated, a matrix of profile
plots is then generated, one plot per cluster, each
plot showing all profiles assigned to that cluster
(Fig. 2). Individual time profiles are colored to show
their membership score, as assigned by the FCM
algorithm. Clicking on a particular cluster opens a
table showing details of profiles assigned to that
cluster.
Limitations

A key limitation of this DynaPho module is that
the FCM membership score can only be shown via
the rainbow color map—a poor visual encoding that
can introduce visual artifacts and obscure true data
patterns [72,73]. A more effective and scalable
encoding could be achieved via a monochromatic
color map. A second limitation is the absence of an
overall trendline within each cluster (e.g., both of
these suggestions are implemented in Fig. 7c from
O'Donoghue et al. [49]).

DiBS

DiBS¶ is a web-based tool designed to enable
visual exploration of phosphoproteomic data using
heat maps with a circular layout (Fig. 3).
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Fig. 2. DynaPho's “Profile Clustering” module showing all profiles in the Benchmark data set. For the Benchmark data
set, six fuzzy c-means clusters (top) were automatically estimated and generated using the default parameters. When a
cluster is selected, shown with a pink box around the profile plot, an interactive spreadsheet is displayed (below),
containing further information for the profiles contained within. Top and bottom panels were created in DynaPho and
modified in Illustrator.
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Methods

In DiBS (Fig. 3), quantified ratios for phosphory-
lation changes are first normalized then visualized
using a divergent color map (red = high levels of
phosphorylation, green/blue = low). These colors
are then used to construct a heat map [65] with a
circular layout, where rows are aligned radially,
showing time points used in the experiment, and
columns are aligned along the circumference, sorted
by the normalized phosphorylation changes in a
selected row. Color hue is also used on the outermost
row to encode the names of genes. Compared with
profile plots (above), heat maps are often able to
encode a greater density of data with reduced visual
clutter; for example, compare Figs. 2 and 3, which
both show the same 824 distinct values from the 103-
site Benchmark data set.
Features

The web-based heat maps created by DiBs can
be explored interactively, thus providing greatly
enhanced functionality over a static image. A key
interactive feature is the ability to reveal an informative
pop-up showing details (gene name, time point,
phosphorylation value) associated with each cell in
the heat map upon mouse hover (Fig. 3). Additional
features include the ability to hide or reveal selected
data-values (e.g., hiding specific time points or sets
of genes), and to define which information will be
displayed in the pop-ups.
Limitations

Using color hue to encode gene names makes it
difficult to identify more than 10–15 genes. Additional
confusion can arise as color is also used to encode
a second, unrelated, property (phosphorylation
values). In the online version, these issues are
partly mitigated via pop-ups; for static, published
figures, gene names could be displayed explicitly
around the circumference rather than in a legend off
to the side. An additional issue with color is that heat
maps, like rainbow color maps, can introduce strong
perceptual illusions, resulting in visual artifacts and
obscuring true patterns [74]. Other limitations arise
due to the circular layout: first, cells on the outermost



Fig. 3. DiBS tool showing the entire Benchmark data set as a circular heat map. The outermost row of the heat map
shows colors that are associated with gene names (right hand side legend). All other rows in the heap map show
phosphorylation abundance values using a diverging color map, with red and green/blue for high and low values,
respectively (top legend). Columns in the heat map have been sorted by values at the 15-s time point (i.e., the row following
gene names). Hovering over a cell displays a pop-up showing the gene name, site number (in an international protein
identifier (IPI) protein sequence), and amino acid type. The figure was created in DiBS and modified in Illustrator.
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row have greater area, and hence greater visual
prominence, compared with inner cells, introducing
mild perceptual biases. Second, this layout greatly
limits the number of rows (time points) and columns
(genes) that can be included; thus, DiBS can
typically only display a small subset of a high-
throughput data sets. Finally, some current techni-
cal limitations include the following: (1) restricted
ability to define sort order in the heat map; (2) data
sets file size must be ≤1 MB—for comparison,
the complete Humphrey data set is ~4 MBs; and
(3) some DiBS features cannot be used without
paying a fee.
Visualizing Integrated Data

To understand and interpret a new epiproteome
data set, it is usually necessary to integrate these
data together with prior knowledge. For example,
with a phosphoproteomics data set, prior knowledge
is needed to infer which kinases and phosphatases
have caused the observed phosphorylation chang-
es. For this purpose, one key resource is Phospho-
SitePlus [75], a compendium of kinases and their
known substrate sites—it also includes similar
information for other PTMs. Another key resource
is DEPOD [76], a compendium of phosphatases and
known substrate sites.
In addition, it is often very helpful to infer the

subcellular location of epiproteome events (e.g.,
via a resource such as COMPARTMENTS [77]), to
view relevant protein–protein interactions (e.g., via
BioGRID [78]), and to group proteins in the database
based on functional categories (e.g., via resources
using Gene Ontology (GO) [79]). Prior knowledge
such as this is available from a wealth of online
resources (Pathguide†† [80] currently lists 702 path-
way resources). However, such resources need to be
usedwith caution since, overwhelmingly, theyare built
using data derived from experiments insensitive to
PTMs.



N
e
t
w
o
r
k
 
g
r
a
p
h
s
 

Representation Graphical term Example

Node

Undirected edge

Directed edge

(Arrow)

Directed edge

(Hammerhead)

Directed edge

(Dashed arrow)

 PTM  sitesSubnodes

Forward reaction, 

activation

Reverse reaction

Protein-protein 

interaction

Protein

Inhibition

1525Visualization and Analysis of Epiproteome Dynamics
In the sections below, we discuss several tools
that are used to integrate epiproteomics data with
prior and inferred knowledge. All these tools use
graphs as the primary strategy for visualization—
except for one (PHOXTRACK), which primarily uses
bar charts.

Generic graph tools

Graphs have long been a core visual paradigm for
organizing data on cellular systems [81]. As a result,
a suite of powerful, generic tools and methods are
available [42,43] that can be adapted to combine
epiproteomics data with prior knowledge. Some
commonly used generic tools include: the Cytos-
cape core distribution [82], Gephi [83], and Adobe
Illustrator.
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Fig. 4. Graphical terms used to describe networks and
storylines. In each case, graphical elements are shown
with blue coloring, followed by their denotation, and an
example interpretation of the graphical element. A key
complexity with epiproteome data is that each protein can
have many PTM sites: this structure can be represented
using a simple tree graph or, more concisely, with subnodes
attached to a node.
Methods

Within networks or pathway graphs showing
epiproteomics data, a single protein is generally
represented as a node connected to subnodes that
represent the protein's PTM sites (Fig. 4). PTM
reactions are typically shown with arrows connecting
an enzyme to its substrates, for example, a kinase
and a phosphosite. Reactions that inhibit or suppress
are typically shown with hammerheads, while generic
protein–protein interactions (e.g., co-occurrence in a
protein complex [84]) are shown with undirected
edges (Fig. 4). For each PTM site, coloring is often
used to show experimentally measured PTM abun-
dance values. To show changes in PTM abundances
over time—or over a series of concentrations—this
coloring can be changed dynamically [85] or, alterna-
tively, a series of “small multiple” versions [86] of the
network can be calculated [87].
Features

Graphics generated for epiproteomics data sets
are almost always large and complex; a key feature
that helps in managing these data is to hide textual
information associated with nodes or edges, and
selectively reveal this information upon mouse hover.
Fortunately, this is widely supported, especially in
web-based tools, which further allow linking to other
resources with more detailed information. Here,
graphic tools specifically designed for biological
networks (e.g., Cytoscape [82]) often are particularly
useful, for example, by automatically recognizing
proteins identifiers in the imported data set and
matching them to standard database entries, thereby
enabling more useful information in the pop-ups, and
facilitating a range of bioinformatics analysismethods.
Another useful feature available in many network
tools is the ability to interactively expand or collapse
subnetworks: this can be especially useful for data
sets in which proteins have a large number of PTM
sites.
Limitations

Using generic graph tools with epiproteome data
can be challenging. A core limitation is that most
epiproteome experiments to date have focused on
tracking PTM changes across time, or in response to
varying stimuli. While such data can be overlaid onto
generic graphs, the results are often cluttered and
difficult to read [43,44,88]. Usually, when dynamic
epiproteome data are overlaid onto a graph, some
information is lost; one strategy to overcome this
limitation would be to use profile plots (Figs. 1 and 2)
connected to a graph via “brushing and linking” [89].
To overcome these limitations, a small but increas-
ing set of tools is available, specifically tailored for
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integrating epiproteome data with prior knowledge—
these are covered in the subsections below.

PhosphoPath

PhosphoPath [90] is a plugin for Cytoscape [82]
that uses prior knowledge on kinases and protein
interactions to help interpret dynamic phosphopro-
teomics data sets (Fig. 5).
Methods

In PhosphoPath (Fig. 5a), each data set is first
shown as a network graph (Fig. 4), calculated using
the so-called “force-directed layout,” in which nodes
are arranged so that all edges have—as nearly as
possible—the same length [91]. In Fig. 5b, the layout
is then modified, such that each protein is shown as a
node with attached subnodes, indicating phosphory-
lation sites; arrows are used to connect these sites to
kinase proteins, inferred via PhosphoSitePlus [75],
while other physical interactions between proteins in
the data set are shown using undirected edges,
inferred from BioGRID [78]. Changes in PTM abun-
dance are shown using a small, single-row, heat map
placed close to selected phosphosites (Fig. 5b).

Features

PhosphoPath is able to take advantage of a range
of Cytoscape features that support effective, inter-
(a) Overview of phosphoevents (b) Detailed view

Fig. 5. PhosphoPath network for the entire Benchmark dat
PhosphoPath via a force-directed layout. Here, proteins and PT
hence not easily distinguishable. Panel b shows part of the i
enriched pathway in the Benchmark data set. PTM sites are
corresponding protein. Phosphorylation abundance values for
next to the site subnode. Arrows originate from kinases and te
protein interactions. The figure was created using the Phosph
3.6.1), and panel b was further modified in Illustrator.
active exploration of large graphs. This includes (1) a
graph that facilitates navigation via zoom and pan,
(2) automatic hiding or revealing of details as the
user zooms in or out, (3) selective reveal of detail
via mouse hover, and (4) ability to manually edit
the layout (Fig. 5). In addition, a range of analysis
methods are supported; this includes automated
detection of pathways (obtained from Wikipathways
[92]) enriched with proteins in the data set.
Limitations

PhosphoPath currently has several key limitations.
First, many manual steps are required to upload data
and to create an effective visualization. Second, the
method used to assign kinases is often incomplete
and does not account for the many other factors
that influence phosphorylation abundance during
cell signaling, such as protein degradation or phos-
phatases [93]. Third, no consideration is given to
the subcellular location of phosphorylation events,
although this can be critical for understanding cell
signaling [94]. Fourth, PhosphoPath creates a single
view, in which the phosphorylation abundance data
are split up and scattered across a large graph,
making it difficult to see patterns. This could be
improved by gathering the abundance data into a
smaller number of heat maps (e.g., Fig. 3) or profile
plots (e.g., Fig. 2). Finally, due to high interconnec-
tivity, the graph can become unreadably cluttered for
large data sets, e.g., with thousands of nodes.
 showing time-course

a set. Panel a shows the complete network generated by
M sites are both shown with the same node shape and are
nsulin pathway, which PhosphoPath detects as the most
shown as subnodes located on nodes that represent the
each site are visualized as a single row heat map placed
rminate at phosphosites. Undirected edges show protein–
oPath plugin (version 3.2) in the Cytoscape tool (version
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DynaPho (Dynamic Networks)

The web-based tool DynaPho [62] also has a
module called “Dynamic Networks” that uses prior
knowledge on protein–protein interactions to help
assign kinases and phosphatases in phosphopro-
teomics data sets (Fig. 6).

Methods

The “Dynamic Network”module (Fig. 6) generates
a network graph (Fig. 4), using nodes of different
shape to distinguish four types of proteins: kinases
(shown as octagons), phosphatases (squares),
transcription factors (triangles), and all other proteins
in the data set (circles). Undirected edges between
these nodes show protein–protein interactions de-
Fig. 6. DynaPho's “Dynamic Networks”module showing net
panels depict protein–protein interactions. This module pro
“Phosphosites” (bottom two panes) through a select bar. In
colored according to the average abundance ratios of all its si
individual site nodes are also shown, attached to the prote
abundance ratios. A slider, seen at the bottom, allows visualiz
network at 15 s, and the right column depicts it at 30 s. This f
generated using DynaPho, with default parameters, brought to
rived from multiple sources, including BioGRID [78],
HPRD [95], and IntAct [96]. In addition, small circular
nodes are used to show phosphosites, each colored
to show phosphorylation abundance values, and are
joined to their corresponding proteins. Each network
can also be switched to a mode where the phospho-
sites are hidden, and where each protein node is
colored to indicate an average phosphorylation
abundance value for the corresponding phosphosites
(Fig. 6, top). This can significantly reduce clutter, thus,
helping the user manage larger networks.

Features

The tool provides a slider with values corresponding
to each timepoint in the data set; this enables a user to
explore dynamic changes in phosphorylation
works generated for the entire Benchmark data set. All four
vides two views, “Proteins only” (top two panes) and
the protein-only view, only the protein nodes are shown,
tes quantified in the data set. In the phosphosite view, the
in nodes as subnodes, and colored according to their
ing the time specific network. The left column depicts the
igure contains five screenshots (four panels and a slider),
gether and modified in Illustrator.
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abundance values. The user can also explore the
network with standard operations, such as zoom, pan,
as well as basic editing (e.g., moving individual
nodes). By presenting an integrated view that includes
known interactions between kinases, phosphatases,
and substrate proteins, this tool can help users
manually assign which enzymes cause observed
phosphorylation and dephosphorylation events.
Limitations

A key limitation of this tool is that it can only show
one state of the network at a time, making it difficult
to gain an overview of dynamic changes across
the whole data set. This can be partly addressed
by manually creating small multiple versions of the
network—as done in Fig. 6. A second limitation is
that the edges joining a protein to its phosphosites
are quite variable in length, and often greater than
edges between proteins; this contributes to visual
clutter, making larger graphs harder to read. This
could be improved via shorter edges or subnodes
(Fig. 4). A third limitation is the lack of a network
overview (e.g., Fig. 5b), which again makes it difficult
Fig. 7. DynaPho's “Correlation Analysis” network showing
statistical correlation, gene ontology, and various kinase- an
kinases and phosphatases for the events detected at each phos
node represents a phosphosite and edge coloring distingu
respectively). Additional evidence for kinase and phosphatas
yellow edges. Details about each site are revealed in a pop-up
there are no nodes or edges to represent the protein that each s
this tool can visually organize phosphorylation events into grou
the kinases and phosphatases causing the phosphorylation
created using DynaPho with default parameters and has been
to use with larger data sets. Finally, the graph can
become unreadably cluttered for large data sets
(e.g., with thousands of nodes).

DynaPho (Correlation Analysis)

DynaPho [62] also has a module called “Correlation
Analysis” that uses prior knowledge together with
correlation analysis to assign kinases and phospha-
tases in phosphoproteomics data sets (Fig. 7).
Methods

The “Correlation Analysis” module (Fig. 7) uses
multiple resources (e.g., UniProt [6]) to first identify
kinase or phosphatase proteins in the data set. A
network graph (Fig. 4) is then generated in which
each phosphosite is represented as a node, with
different shapes distinguishing sites on kinases
(triangles), on phosphatases (squares), or on other
proteins in the data set (circles). Edges in the network
indicate pairs of sites where phosphorylation abun-
dance is correlated either positively or negatively,
indicated with red and blue arrows, respectively.
almost all of the Benchmark data set. DynaPho uses
d phosphatase-to-substrate databases, to infer potential
phosite. The results are shown as a network in which each
ishes positive and negative correlations (red and blue,
e assignments based on sequence analysis is shown via
that appears upon mouse hover. Note that in this network,
ite belongs to. Overall, the correlation network presented in
ps, potentially with similar time profiles; this helps identify
and dephosphorylation events observed. The figure was
minimally modified in Illustrator.
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Details on each edge are also listed in a table below
the network in the webtool.
Features

The tool provides a slider that enables a user to
explore the effect of varying cutoffs for the correla-
tion score. The user can also explore the network
using standard operations, such as zoom, pan, and
basic editing (e.g., moving individual nodes). Click-
ing on a node reveals a pop-up showing the protein
identifier and amino acid position of that phosphosite.
Overall, the correlation network presented in this
tool can visually organize phosphorylation events
into groups, potentially with similar time profiles; this
helps identify the kinases and phosphatases causing
the phosphorylation and dephosphorylation events
observed.
Limitations

A key limitation is that the timing of events is not
explicitly encoded visually; although timing is used
implicitly to generate the graph, in the resulting
layout it is difficult for a user to see and reason
about the ordering of events. Another key limitation
is that sites belonging to the same protein can be
difficult to find as they are not interconnected with
edges to the protein and are often widely dis-
persed throughout the graph. A further limitation is
that node labels show only protein names; residue
numbering identifying the site that each node
represents is only shown when the user manually
opens the pop-up for that node. Together, these
limitations make it difficult for the user to reason
about how multiple phosphorylation events coor-
dinate to influence function in individual proteins,
and to orchestrate cellular changes involving multiple
proteins. Finally, as with other methods based around
networks, the graph can become unreadably cluttered
for large data sets.

Minardo

Minardo [61,97] is a novel layout strategy that
uses storyline graphs (Fig. 4) to integrate phos-
phoproteomics data sets with prior knowledge on
kinases, phosphatases, and protein subcellular
location (Fig. 8). Minardo was designed to address
some of the key limitations mentioned above in
methods based on network graphs. By depicting
events on a circular cellular topology, this layout is
well suited for describing the transient cellular
responses typically studied in epiproteomics ex-
periments, in which the state of a cell is initially
perturbed, then eventually returns to a baseline
level. An automated web-based tool using this
strategy is currently being developed by the
authors; currently, two published examples using
Minardo [97,98] are available online at http://
minardo.org.

Methods

The Minardo layout (Fig. 8) produces a graph in
which spatial position is used to explicitly encode the
timing and subcellular location of phosphorylation
events. These events are sorted by the time at which
phosphorylation abundance is estimated to cross the
50% threshold between the minimum and maximum
observed values. Proteins with only one phosphor-
ylation event are shown as nodes, while proteins
(or protein complexes) with multiple phosphorylation
events are represented as a track—which can be
thought of as a node stretched out in time (Fig. 4).
Each phosphorylation event is indicated via an arrow
connecting either track points or nodes (Fig. 4), with
the arrow direction distinguishing the enzyme and
substrate.

Features

In the online Minardo examples [97,98], hovering
over each node reveals a pop-up showing details
about that specific phosphorylation event; in addi-
tion, hovering highlights all related events, thus
facilitating interactive exploration of the graph.
Overall, by including time and subcellular localiza-
tion explicitly in the layout, Minardo can help users
clearly see and reason about the causal relation-
ships between phosphorylation events and how they
interact to orchestrate cellular functions.
Limitations

A key limitation of Minardo is that it is currently only
a method, not a tool, making it difficult to apply to
new data sets. A second limitation is that the use of
storyline graphs for dynamics cellular systems is quite
novel, thus potentially presenting a steep learning
curve for some users. A related limitation is that some
of the visual cues used in Minardo to simplify the
layout may be too subtle to be easily noticed: for
example, tracks showing either proteins or protein
complexes are distinguished only via the coloring
on the track labels (blue and black for proteins and
complexes, respectively). Finally, while Minardo
generally results in less visual clutter than network
graphs (compare Figs. 7 and 8), the layout may still
become unreadably cluttered for larger data sets.

PHOXTRACK

The web-based tool PHOXTRACK (PHOspho-
site-X-TRacing Analysis of Causal Kinases) [99]
aims to identify the kinases responsible for the
e v e n t s o b s e r v e d i n a p a r t i c u l a r

http://minardo.org
http://minardo.org
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phosphoproteomics data set. In contrast to most of
the tools discussed above, the results generated
by PHOXTRACK are visualized using only bar
charts and heat maps (Fig. 9).
Methods

PHOXTRACK compares phosphopeptides ob-
served in a specific phosphoproteomics data set
against all phosphopeptides previously assigned to
human and mouse kinases; these assignments are
drawn from many resources, including PhosphoSi-
tePlus [75], SwissProt [100], and Phospho.ELM
[101]. For each time point in the data, PHOXTRACK
generates a one-column heat map with rows
showing the kinases likely to have either activated
(red) or inhibited (blue) phosphoproteomic events in
the data set (Fig. 9, left, “kinase regulation”).
Another one-column heat map is also generated,
with rows showing abundance values for all phos-
phorylation sites in the data set; this heat map can
be used, together with a bar chart, to explore the
phosphorylation sites assigned to each kinase
(Fig. 9, right, “substrate phosphorylation”).
Features

PHOXTRACK provides several options for modi-
fying its enrichment analysis; for example, the user
can select which database is used for kinase
assignments. Each resulting analysis can then be
explored via a dropdown menu, which enables the
user to select one of the enriched kinases, and see
all phosphorylation sites assigned to that kinase
(Fig. 9, right). Overall, the analyses performed by
PHOXTRACK appear to be quite thorough, and
results are well presented, making it easy to use and
thus helpful for assigning kinases in phosphopro-
teomics data sets.
Limitations

A key limitation of PHOXTRACK is that it can only
show data associated with one time point at a time,
making it difficult to see overall trends across multiple
time points; this is partly mitigated by features that
make it easy to save images for offline use. A minor
limitation is the potential confusion that may arise
from using red-blue diverging color-maps [102] for two
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very different properties, namely, PHOXTRACK
enrichment scores and phosphorylation abundance
values. A final limitation of PHOXTRACK and other
methods using prior knowledge is the effect of biases
in underlying databases [103]; for example, one of
the known biases is that PHOXTRACK currently
only uses kinase assignments for human and mouse
proteins; however additional unknown biases may
arise for proteins or processes that are either well-
studied or understudied [103].
Visualizing Predictive Models

One way to test our understanding of a biological
system is to create a model of the system, run a
simulation, then check if it reproduces what we
observe experimentally [104,105]. For this purpose,
a wide range of modeling frameworks have been
developed [106] using mathematical formalisms that
range from highly detailed (e.g., differential equations)
to very minimal (e.g., boolean networks). Most of
these frameworks use standardized notations
[107,108], which facilitates model sharing, reuse,
and storage in online repositories such as BioModels
[109], a large compendium of models (both manually
curated and automatically generated). Many of these
models can be visualized using standard tools (e.g.,
Cytoscape [82]), and can also be used to predict how
themodeled system changes over time; this allows for
comparisonwith experimental data sets and facilitates
computational reasoning about biological processes
[110].
To date, most systems biology models have been

built manually, with a focus on validating them against
experimental studies. For example, Di Camillo et al.
[111] described a comprehensive, small-scale, highly
predictive model of insulin signaling. Recently, how-
ever, driven by high-throughput experimental tech-
niques, algorithms are emerging that allow predictive
models to be automatically generated from large
data sets. For example, Terfve et al. [112] described
an algorithm named PHONEMeS that generates
boolean models from high-throughput phosphoryla-
tion perturbational data sets. In the next section,
we discuss Kappa [113,114], a formalism particularly
well suited for modeling dynamic changes to the
epiproteome.

Kappa

Kappa‡‡ [115] is a modeling framework originally
designed for simulating phosphoproteomic events,
although it can also model many other types of
biomolecular events. Accessing all of Kappa's
capabilities requires using a suite of desktop tools;
here, however, we focus on a limited set of novel and
practical visual methods available online via the
Kappa website§§ (Fig. 10).
Methods

In Kappa, proteins and other macromolecules in a
model can be visualized using a circular “contact
map” in which each macromolecule is represented
as an arc segment placed on the circumference of
the circle, while specific interaction sites (e.g., PTM
sites or domains) are represented as dots on the
inner side of each arc segment (Fig. 10a). Interac-
tions between sites are shown as chords. Once
the model is defined, the user can run a simulation
(using Gillespie's kinetics [116]), generating time
profiles of each site (Fig. 10b). Also generated is
an “influence map” (Fig. 10c), a somewhat complex
graph in which each node represents a reaction
(e.g., a PTM event), and each edge indicates the
influence that one reaction has on another (green
indicates positive influence; red indicates negative
influence). The influence map is updated at each
time point in the simulation.
Features

Hovering over a site in the contact map highlights
its interactions with other components in the system
(Fig. 10a); this makes the map usable and insightful,
even with models containing many interactions. The
simulated profile plots (Fig. 10b) provide a quick
and simple method to visually inspect the simulation;
the simulated data can be exported to other tools
(e.g., DynaPho, Fig. 1) to enable detailed compar-
ison against experimental results. The influence map
(Fig. 10c) has buttons (start, next, and back) that
enable navigation to versions of the map, covering
all time points in the simulation. The influence map
can be searched using Kappa's query language,
thus facilitating highly detailed exploration of the
simulation dynamics.
Limitations

A key limitation of Kappa is that the user needs
to manually specify each reaction in the system. A
second limitation is that the influence map is often
cluttered and difficult to read (even for the relatively
small Benchmark data set) and cannot be manually
edited—however, this can be partly addressed using
a standalone tool calledDIN-viz [117]. A final limitation
is that using Kappa effectively can require detailed
knowledge of its modeling and query language.
Perspectives

The analysis and visualization tools discussed in
this review have been developed predominantly for
phosphorylation—currently the most studied PTM.
Many of these methods can also be used with
epiproteome data on other types of PTMs (e.g.,
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Fig. 10. Three visualizations for a small insulin signaling model from Kappa language's online tool. The model was
created by surveying the literature for a small set of proteins, which started from the interaction with insulin and ended at
ERK1 and ERK2 proteins, with the focus being the sites that were present in the Humphrey data set. Panel a depicts all the
binding interactions represented in the model. It shows a contact map, where arc segments are used to depict proteins and
dots in the inner side of the arcs represent the various protein components, such as domains and phosphorylation sites.
Chords connect the interacting components. Hovering on a particular dot of an arc segment highlights the connecting cord,
and reveals the possible states of the component (e.g. phosphorylated (p) and unphosphorylated (u) states of a
phosphorylation site). Panels b and c are simulation outputs. Panel b shows simulated profiles that can be compared to
experimental data (Fig. 1). Panel c shows an advanced queryable influence map. The network is a snapshot in simulation
time, where the nodes represent the modeled reactions (rules) and the directed edges represent the influence that a
reaction in the source node has on the reaction in the target node at that time point. The figure was generated using various
features of Kappa's online tool, and panels a and b were modified in Illustrator.
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acetylation, glycosylation, or methylation). However,
we can expect that analyzing specific PTMs may
require some tailoring of visual analysis methods
used. For example, many PTMs (e.g., prenylation
[118] and myristoylation [119]) cause direct changes
in subcellular localization; interpretation of such
data sets is likely to require visual layout strategies
that explicitly depict cellular compartments and
membranes—for example, in a manner similar to
Minardo [120].
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Over the next decade, we can expect a deluge
of epiproteome data sets; these will also include
multiple different types of PTMs studied in the same
experiment. These experiments can be thought of as
“hypothesis-generating engines” [121]; each exper-
iment reveals new insights but leaves many parts of
the puzzle missing, which, in turn, helps direct future
research, including both experimental and modeling
studies [112].
However, the process of gaining insight from

epiproteomics techniques is becoming increasingly
challenging due to the rapid growth in data volume
and complexity. Nonetheless, from the methods and
tools considered in this review, we can identify a
general strategy for addressing these challenges;
this strategy, in turn, suggests specific areas of focus
where future bioinformatic developments could help
to unravel the insights buried in epiproteome data
sets.

(1) Overview first. A promising first step in
analyzing an epiproteome data set is exem-
plified in PHOXTRACK [99], which creates
a concise visual summary of key outcomes
derived from the entire data set (Fig. 9). We
anticipate that further innovations using this
general approach will be very helpful, and
are likely to also include graph-based
methods.

(2) Show Uncertainty and Missing Data. Epipro-
teomics data sets often have high variability
and missing data; these arise from limita-
tions in experimental techniques, as well as
from inherent features of the epiproteome.
Additional uncertainties occur in the assign-
ment of kinases and cellular functions, and
in other data derived from prior knowledge.
The currently available tools have only
limited capabilities for visualizing uncer-
tainties: for example, DynaPho's “Correla-
tion Analysis” module [62] allows users to
interactively vary the correlation score cutoff
(Fig. 7). Effective visualization of uncertainty
and incomplete data is an important but
often vexing problem, ripe for future innova-
tion [122,123].

(3) Cluster and Assign Enzymes. A core task is to
assign the enzymes (kinases, methylases,
ubiquitin-conjugating enzymes, etc.) respon-
sible for the PTM events in a data set. This
can be done by drawing upon prior knowledge
(e.g., using PhosphoPath [90] or DynaPho's
“Dynamic Networks” module [62]); it can also
be done by identifying correlated profiles in
the data set (e.g., DynaPho's “Correlation
Analysis” module [62]). We expect that future
methods will combine both approaches. An
interrelated task is to cluster PTM profiles
(e.g., Fig. 2); to date, this hasmostly been done
using generic clustering methods (e.g., FCM
[66]); in the future, we expect to see more
methods combining clustering with enzyme
assignment (e.g., ClueR [70]).

(4) Assign Function. Another task is to identify
general cellular functions or compartments
implicated in a data set; as an example,
several events in the Humphrey data set are
involved in priming the cell cytoplasm for
glycolysis (Fig. 8). Such functions can be
found via a wide range of enrichment methods
(e.g., listed on the GO home page [79]¶¶).
Many enrichment methods have been devel-
oped to analyze gene expression data; some
are specific for proteomics data [124]; in
the future, we can expect to see enrichment
methods tailored specifically for epiproteo-
mics data.

(5) Integrate and Explore Details. Information
from the above steps needs to be integrated
with experimental data to allow effective
exploration of details. This is increasingly
challenging as data sets grow rapidly in size
and complexity. Currently, this integration is
typically done using networks with force-
directed layout [91], overlaid with additional
data—for example, showing PTM abundance
via color, and functional categories via node
shapes (Figs. 5–7). Networks overlaid in such
ways can encode multiple variables: but can
be difficult to read and visually cluttered [88].
To improve this, we can expect the develop-
ment of alternative graph layouts specifically
tailored for epiproteome data; some examples
already developed include Minardo [61,97]
(Fig. 8), CellNetVis [125], and CerebralWeb
[126], each of which uses position to encode
key variables, such as time, causal flow, or
subcellular location. In addition, tools will
need to adopt strategies that facilitate inter-
active exploration of massive data sets: this
includes filtering, zoom, overview maps (e.g.,
Fig. 5b), edge bundling [127], small multiples
[86], revealing details upon mouse hover,
and collapsing and expanding subgraphs.
Especially useful will be alternative views
(e.g., a graph and a profile plot) connected via
“brushing and linking” [89].

One of the core goals when analyzing an
epiproteome data set is to gain insight into how
multiple PTM events are orchestrated to regulate
overall changes in cell state. This goal is showcased
in two online resources created by the authors using
the Minardo layout [61,97] (Fig. 8): one resource
shows how insulin stimulation leads to phosphoe-
vents that cause fat cells to switch from releasing
energy to storing energy [97]†††; the other resource
shows how phosphoevents regulate key processes
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in mitosis [98]‡‡‡. Each resource was published as a
Cell SnapShot, one of the few publication formats
that currently allow for inclusion of an online version
with interactive features.
Unfortunately, due to many underlying complexi-

ties, it is currently quite difficult to create visualiza-
tions that clearly express the multidimensional data
stories within an epiproteome data set, as highlighted
in the two SnapShots. While part of the process can
be automated, many manual steps are still needed;
for comparison, the exemplary Roche metabolic
pathway—showing thousands of reactions in one
comprehensive view—results from ongoing work
begun in 1965 [128]§§§. However, there is hope
that new approaches (e.g., machine learning) will
improve the computer-aided design of graphs that
visualize complex data sets [129,130].
In summary, advances in experimental techniques

are set to produce a deluge of epiproteome data sets
that reveal an unprecedented depth of information
about the molecular processes in living cells. This
calls for the development of new, tailored bioinformat-
ics methods that will help researchers analyze,
visualize, and interactively explore these complex
data sets, with the goal of enabling new insights
into the epiproteome to be effectively integrated
with prior knowledge. These insights have potential
to revolutionize our understanding of biology and
disease, and to lead to more precise diagnosis and
therapeutic intervention.
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