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ABSTRACT	
Fusion	genes	are	a	major	cause	of	cancer.	Their	rapid	and	accurate	diagnosis	can	inform	clinical	
action,	 but	 current	 molecular	 diagnostic	 assays	 are	 restricted	 in	 resolution	 and	 throughput.	
Here,	we	show	that	targeted	RNA	sequencing	(RNAseq)	can	overcome	these	limitations.	First,	
we	 establish	 that	 fusion	 gene	 detection	 with	 targeted	 RNAseq	 is	 both	 sensitive	 and	
quantitative	by	optimizing	laboratory	and	bioinformatic	variables	using	spike-in	standards	and	
cell	 lines.	 Next,	 we	 analyse	 a	 clinical	 patient	 cohort	 and	 improve	 the	 overall	 fusion	 gene	
diagnostic	 rate	 from	63%	with	 conventional	 approaches	 to	 76%	with	 targeted	RNAseq	while	
demonstrating	high	concordance	for	patient	samples	with	previous	diagnoses.	Finally,	we	show	
that	 targeted	 RNAseq	 offers	 additional	 advantages	 by	 simultaneously	 measuring	 gene	
expression	 levels	 and	 profiling	 the	 immune-receptor	 repertoire.	We	 anticipate	 that	 targeted	
RNAseq	will	improve	clinical	fusion	gene	detection,	and	its	increasing	use	will	provide	a	deeper	
understanding	of	fusion	gene	biology.		
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INTRODUCTION	

Chromosomal	 rearrangements	 that	 juxtapose	 two	 different	 genes	 together	 can	 form	 a	 fusion	
gene.	 Fusion	 genes	 play	 a	 causal	 role	 in	 tumorigenesis,	 accounting	 for	 ~20%	 of	 human	 cancer	
morbidity1.	However,	the	prevalence	of	fusion	genes	varies	widely	across	different	cancers,	and	
many	fusion	genes	are	specific	to	certain	cancer	sub-types1-3.	Accordingly,	the	rapid	and	accurate	
identification	of	fusion	genes	can	characterise	and	stratify	cancer	diagnoses.		

Precise	 fusion	 gene	 diagnosis	 can	 also	 inform	 subsequent	 therapeutic	 treatment,	 with	 several	
drugs	having	been	successfully	developed	to	inhibit	fusion	genes,	including	imatinib	mesylate	for	
treating	BCR-ABL1	and	crizotinib	for	treating	EML4-ALK	fusion	genes4,5.	Fusion	gene	diagnosis	can	
also	predict	prognosis,	patient	survival	and	treatment	response1,6,7.		

Fluorescence	 in	 situ	 hybridization	 (FISH)	 and	 quantitative	 real-time	 polymerase	 chain	 reaction	
(qRT-PCR)	 methods	 have	 been	 predominantly	 used	 for	 fusion	 gene	 diagnosis.	 Though	 highly	
sensitive,	these	methods	typically	only	test	for	the	presence	of	a	single	fusion	gene,	often	resulting	
in	 a	 lengthy,	 iterative	 and	 costly	 path	 to	 diagnosis.	 Furthermore,	 these	methods	 are	 unable	 to	
identify	 novel	 fusion	 gene	 partners	 or	 resolve	 complex	 structural	 rearrangements.	 As	 a	 result,	
false	negative	 results	attributed	 to	non-tested	or	novel	 fusion	genes	and	 isoforms	are	a	 leading	
cause	of	misdiagnosis	of	haematological	cancers8.		

RNA	 sequencing	 (RNAseq)	 can	 address	 many	 of	 these	 limitations	 by	 providing	 genome-wide	
surveillance	of	fusion	genes	with	nucleotide-level	resolution	of	fusion	junctions.	However,	due	to	
the	 sheer	 size	 of	 the	 transcriptome,	 RNAseq	 suffers	 from	 poor	 sensitivity	 for	 detecting	 fusion	
genes	 that	 are	 lowly	 expressed	 or	 diluted	 by	 accompanying	 non-cancerous	 cells	 within	 a	
sample9,10.		

We	recently	developed	a	targeted	RNAseq	method	that	uses	biotinylated	oligonucleotide	probes	
to	 enrich	 for	 RNA	 transcripts	 of	 interest11,12.	 This	 method	 enhances	 sequencing	 coverage	 by	
targeting	and	capturing	hundreds	of	genes	with	a	single	assay,	enabling	the	sensitive	detection	of	
rare	or	lowly	expressed	transcripts.	Given	these	advantages,	targeted	RNAseq	has	been	proposed	
as	a	fusion	gene	diagnostic	in	solid	tumours	and	lung	cancer13,14	(Fig.	1a).		

Here,	 we	 evaluate	 the	 diagnostic	 power	 of	 targeted	 RNAseq	 for	 fusion	 gene	 detection.	 In	 this	
analysis,	we	demonstrate	its	ability	to	identify	different	fusion	genes	in	a	variety	of	sample	types	
and	measure	 the	 influence	 of	 different	 laboratory	 and	 bioinformatic	 variables	 on	 performance.	
We	 show	 that	 in	 a	 cohort	 of	 clinical	 patient	 samples,	 targeted	RNAseq	 increases	 the	diagnostic	
rate	 from	 63%	 to	 76%	 compared	 to	 FISH	 and	 RT-PCR	 methods.	 Finally,	 we	 explore	 the	
supplementary	 use	 of	 targeted	 RNAseq	 to	 profile	 the	 immune-receptor	 repertoire	 within	 a	
sample,	measure	expression	of	marker	genes	and	identify	novel	exons.	

	

RESULTS	

Design	of	panel	to	capture	fusion	genes	

We	first	designed	an	expansive	panel	of	capture	probes	targeting	almost	all	known	fusion	genes	
in	cancer	as	manually	curated	from	literature	and	publically	available	databases1,3,15-33.	However,	
since	the	overall	sensitivity	of	targeted	RNAseq	is	inversely	proportional	to	the	sum	of	captured	
gene	expression,	we	split	the	design	into	two	panels	to	maintain	high	sensitivity	while	targeting	
all	 annotated	 exons	 for	 all	 genes.	 We	 created	 one	 panel	 for	 haematological	 malignancies	
(including	 leukaemia,	 lymphoma	and	myeloma)	that	targeted	188	fusion-related	genes	and	one	
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panel	 for	 solid	 tumours	 (including	 prostate,	 lung,	 sarcoma,	 ovarian	 and	 bladder)	 that	 targeted	
241	fusion-related	genes,	with	43	genes	represented	on	both	panels	(Supplementary	Fig.	1a	and	
Supplementary	Data	1-2).	Given	their	involvement	in	a	range	of	fusion	events	in	blood	cancers,	
we	also	 included	 the	T-cell	 receptor	 (TCRA/D,	TCRB,	TCRG)	and	 immunoglobulin	 (IGH,	 IGL,	 IGK)	
loci	 on	 the	 blood	 panel	 (Supplementary	 Fig.	 1a-b).	 Notably,	 the	 capture	 of	 these	 genes	 also	
allowed	the	simultaneous	profiling	of	 immune-repertoire	expression	within	each	sample.	Whilst	
these	 designs	 were	 more	 expansive	 than	 those	 typically	 used	 in	 a	 diagnostic	 context,	 they	
facilitated	a	comprehensive	investigation	of	clinically	relevant	fusion	genes.		

We	also	considered	whether	targeted	RNAseq	could	simultaneously	profile	additional	genes	with	
prognostic	and	analytical	value.	Therefore,	we	included	probes	for	2	additional	core	transcription	
factors	(5	also	fusion-involved),	5	cell-type	markers	and	10	splicing	factors	on	the	blood	panel34-40	
(Supplementary	 Fig.	 1a-b).	 Similarly,	 the	 solid	 panel	 covered	 14	 immune	 genes	 that	 infer	
potential	 avenues	 of	 treatment	 (Supplementary	 Fig.	 1a,c;	 personal	 communication	 with	
Australasian	Sarcoma	Study	Group).		

Lastly,	we	 added	 probes	 for	 sequencing	 spike-in	 controls.	 Both	 panels	 included	 probes	 for	 the	
External	RNA	Controls	Consortium	(ERCC)	RNA	spike-in	controls,	with	the	solid	panel	additionally	
containing	 probes	 for	 RNA	 spike-in	 controls	 that	 represent	 fusion	 genes	 (fusion	 sequins41;	
Supplementary	Fig.	1a-c).		

	

Evaluation	of	targeted	sequencing	enrichment		

We	 initially	 evaluated	 the	 performance	 of	 the	 two	 panels	 by	 comparing	 targeted	 RNAseq	 to	
conventional	 RNAseq	 using	 matched	 RNA	 extracted	 from	 the	 K562	 and	 RDES	 cell	 lines.	 We	
employed	a	double-capture	approach	 to	 increase	 the	on-target	capture	 rate,	achieving	a	mean	
93%	of	reads	aligning	to	targeted	regions	(compared	to	4%	of	matched	RNASeq	libraries;	Table	1).	
We	 also	 compared	 the	 abundance	 of	 ERCC	 RNA	 spike-ins	 between	 targeted	 and	 conventional	
RNAseq	to	precisely	quantify	the	enrichment	rate	achieved	by	the	capture,	finding	that	targeted	
RNAseq	achieved	a	mean	59-fold	enrichment	for	the	blood	panel	and	33-fold	enrichment	for	the	
solid	panel	whilst	maintaining	quantitative	 accuracy	 and	 reliable	detection	down	 to	3pM	 input	
(Fig.	1b-c,	 Supplementary	Fig.	 2a-b).	Notably,	we	detected	minimal	read	coverage	for	the	non-
targeted	 ERCCs,	 indicating	 a	 lack	 of	 off-target	 contamination	 in	 our	 libraries	 (Fig.	 1b,	
Supplementary	Fig.	2a).	

We	next	 investigated	 the	 fraction	of	 genes	 represented	on	 the	panel	 that	were	 reliably	 tested	
using	 targeted	 RNAseq.	Within	 both	 cell	 lines,	we	measured	 over	 70%	 of	 targeted	 genes	with	
expression	 above	 15	 transcripts	 per	 kilobase	million	 (TPM;	 Supplementary	 Fig.	 2c),	 observing	
broad	 and	 uniform	 read	 coverage	 across	 the	 full	 length	 of	 these	 expressed	 genes	 (Fig.	 1d,	
Supplementary	Fig.	2d).	Furthermore,	we	found	that	splice-junction	reads	encompassed	77.8%	of	
annotated	 introns	 on	 the	 blood	 panel	 and	 84.6%	 of	 annotated	 introns	 on	 the	 solid	 panel	
(Supplementary	Fig.	2e).	Collectively,	these	findings	suggest	that	translocations	interrupting	the	
majority	of	genes	represented	on	the	two	panels	would	be	detected	with	targeted	RNAseq.		

	

Evaluation	of	fusion	gene	detection		

Following	the	successful	validation	of	the	targeted	RNAseq	panels,	we	next	assessed	our	ability	to	
diagnose	fusion	genes,	utilising	six	cell	 lines	(K562,	RDES,	143B,	GOT3,	KARPAS45	and	MLS1765-
92)	 that	harbour	 known	 fusion	 genes	 (Fig.	 2a,	 Table	 1).	As	 reliable	 fusion	 gene	detection	with	



	 4	

short-read	sequencing	 is	 computationally	difficult	and	 relies	on	 the	 identification	of	paired-end	
reads	that	span	or	overlap	the	fusion	junction	(Fig.	2a),	we	assessed	a	wide	range	of	bioinformatic	
tools	 for	 fusion	 gene	 identification	 (reviewed	 in	 42-44).	 Ultimately,	 we	 implemented	 a	 fusion	
analysis	 pipeline	 using	 STARfusion	 and	 FusionCatcher45,46	 (Supplementary	 Fig.	 3).	 Due	 to	 the	
presence	of	numerous	false	positive	fusion	events,	we	required	fusion	genes	to	be	detected	by	
both	 algorithms.	 Using	 this	 computational	 approach,	 we	 successfully	 detected	 known	 fusion	
genes	in	all	cell	lines	(Table	1).		

To	measure	 the	capture	enrichment	of	 fusion	genes,	we	compared	 fusion	 junction	read	counts	
between	 targeted	 and	 conventional	 RNAseq.	 Whilst	 the	 BCR-ABL1	 fusion	 gene	 was	 easily	
detected	 in	K562	RNASeq	 libraries	 (where	the	 fusion	gene	 is	expressed	from	8-24	DNA	copies),	
the	single-copy	EWSR1-FLI1	fusion	gene	was	barely	detected	in	the	RDES	cell	line	using	standard	
RNASeq,	 illustrating	 the	 advantage	 of	 targeted	 RNAseq	 in	 fusion	 gene	 detection	 (Fig.	 2b	 and	
Supplementary	Fig.	4a-b).		

Next,	to	assess	the	fusion	sensitivity	of	the	capture	panels	for	fusion	gene	detection,	we	prepared	
serial	dilutions	of	K562	RNA	from	1:10	to	1:10,000	against	a	GM12878	RNA	background.	Whilst	
we	confidently	detected	the	BCR-ABL1	transcript	in	all	samples	through	to	the	1:1,000	dilution,	it	
was	only	detectable	with	STARfusion	 in	the	1:10,000	sample	(Fig.	2c).	Notably,	this	sensitivity	 is	
dependent	on	library	depth,	the	number	of	genes	captured	and	the	fusion	gene	expression	level,	
so	may	vary	for	different	fusion	genes.		

Finally,	 to	provide	an	absolute	quantification	of	 targeted	RNAseq	 sensitivity	 in	detecting	 fusion	
genes,	we	measured	the	detectable	range	of	fusion	sequins	spiked	into	RNA	extracted	from	the	
RDES	cell	line.	We	achieved	50%	detection	of	fusion	sequins	at	2	pM	input	and	100%	detection	of	
all	fusion	sequins	at	their	expected	relative	abundances	between	8	pM	and	31	nM	input	(Fig.	2d).	
Notably,	this	positive	identification	was	independent	of	whether	the	panel	targeted	one	or	both	
fusion	partners,	demonstrating	the	ability	of	targeted	RNAseq	to	capture	and	identify	novel	non-
targeted	fusion	partners	(Fig.	2d).		

	

Validation	of	fusion	gene	detection	in	clinical	samples	

Following	 successful	 validation	 in	 cell	 lines,	we	next	evaluated	 targeted	RNAseq	 for	 fusion	gene	
diagnosis	 in	 patient	 tumour	 samples.	 Initially,	 we	 assessed	 fusion	 gene	 detection	 in	 two	 lung	
cancer	 tumour	biopsies	previously	diagnosed	by	FISH	cytogenetics	with	break-apart	probes	 (Fig.	
3a-b).	 For	 each	 sample,	 library	 preparation	 and	 capture	 hybridisation	 were	 performed	 under	
clinical	 conditions	 within	 the	 St.	 Vincent's	 Hospital	 Research	 Precinct.	 In	 both	 cases,	 targeted	
RNAseq	 not	 only	 confirmed	 the	 previously	 identified	 ROS1	 and	 ALK	 rearrangements,	 but	 also	
ascertained	 both	 the	 fusion	 gene	 partners	 (EZR	 and	 EML4,	 respectively)	 and	 the	 precise	 fusion	
junction	locations	(Fig.	3d-e,	and	Supplementary	Data	3).		

We	 then	 expanded	 our	 analysis	 to	 test	 for	 the	 presence	 of	 fusion	 genes	 in	 a	 clinical	 cohort	
representing	a	broad	range	of	cancer	samples.	In	total,	we	profiled	72	samples	encompassing	40	
solid	tumours	using	the	solid	panel	and	32	haematological	malignancies	using	the	blood	panel,	as	
described	above	(Fig.	 3d,	 Table	2).	Patient-consented	samples	were	collected	by	clinicians	at	St.	
Vincent's	 and	 Royal	 Prince	 Alfred	 Hospitals	 (Sydney),	 the	 Australian	 arm	 of	 the	 International	
Sarcoma	Kindred	Study	(ISKS),	the	Kinghorn	Cancer	Centre	Molecular	Screening	and	Therapeutics	
(MoST)	study	and	the	Australasian	Leukaemia	and	Lymphoma	Group	(ALLG)	Discovery	Centre.		
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Across	the	total	cohort	of	72	clinical	patient	samples,	targeted	RNAseq	detected	fusion	genes	in	
55	 samples	 (76%),	 a	 subset	 of	 which	 were	 validated	 by	 Sanger	 sequencing	 (Fig.	 3d,	 Table	 2,	
Supplementary	Fig.	5f-k).	In	comparison,	fusion	genes	were	detected	in	only	39	of	the	62	(63%)	
samples	 with	 prior	 molecular	 analyses	 (Fig.	 3d,	 Table	 2	 and	 Supplementary	 Data	 3).	 To	
specifically	 assess	 the	 overall	 concordance	 of	 these	 targeted	 RNAseq	 findings	 with	 previous	
diagnoses	(ex.	Fig.	3a-c,	 Supplementary	Fig.	5a-e),	we	compared	the	fusion	genes	 identified	by	
both	 approaches.	 Targeted	RNAseq	 correctly	 detected	 fusion	 genes	 in	 33	 of	 39	 (85%)	 samples	
with	previous	 fusion	gene	diagnoses,	 identifying	both	 fusion	gene	partners	 in	6	 samples	where	
only	 one	 gene	was	 previously	 identified	 (Fig.	 3d	 and	Supplementary	 Data	 3).	Of	 the	 6	missed	
diagnoses,	 targeted	 RNAseq	 detected	 the	 inverse	 fusion	 gene	 in	 one	 sample	 and	 another	was	
likely	due	to	a	promoter	fusion	event	(see	below).	For	the	remaining	23	patient	samples	where	
previous	molecular	analyses	reported	no	fusion	genes,	targeted	RNAseq	detected	fusion	genes	in	
12	samples	(52%;	Fig.	3d,	Table	2	and	Supplementary	Data	3).	Finally,	targeted	RNAseq	identified	
fusion	 genes	 in	 6	 of	 the	 10	 (60%)	 patient	 samples	where	 prior	molecular	 testing	 reports	were	
unavailable	(Supplementary	Data	3).		

To	 measure	 the	 reproducibility	 of	 fusion	 gene	 diagnosis	 using	 targeted	 RNAseq	 in	 patient	
samples,	 we	 selected	 3	 samples	 –	 2	 with	 detected	 fusion	 genes,	 1	 without	 –	 and	 prepared	
targeted	RNAseq	 libraries	 in	 triplicate	 to	assess	 intra-run	variability.	These	9	samples	were	also	
captured	in	triplicate	and	sequenced	independently	on	3	lanes	to	assess	inter-run	variability.	We	
detected	 the	expected	 fusion	genes	 in	all	 replicates	of	 the	2	positive	 samples,	whilst	no	 fusion	
genes	were	detected	in	any	of	the	negative	sample	replicates	(Supplementary	Data	4).		

We	 next	 compared	 fusion	 junction	 read	 coverage	 between	 inter-run	 and	 intra-run	 replicates	
(Supplementary	 Fig.	 6a,b).	 We	 observed	 low	 variability	 between	 inter-run	 and	 intra-run	
replicates	with	mean	 coefficient	of	 variations	of	 0.073	and	0.071,	 respectively	 (Supplementary	
Data	 4).	 In	 addition,	we	quantified	 the	 read	 coverage	 for	every	 canonical	 gene	on	 the	 capture	
panel	 and	 performed	 hierarchical	 clustering	 to	 illustrate	 the	 high	 reproducibility	 in	 gene	
expression	measurements	(Supplementary	Fig.	6c).	

We	 next	 assessed	 fusion	 gene	 diagnosis	 in	 these	 samples	 according	 to	 cancer	 type.	Of	 the	 20	
prostate	 cancer	 samples	 within	 the	 cohort,	 we	 confirmed	 all	 10	 (100%)	 samples	 previously	
diagnosed	by	RT-PCR	and	found	fusion	genes	in	an	additional	4	samples	(Fig.	3d,	Supplementary	
Fig.	7a-c	and	Supplementary	Data	3).	The	cohort	also	included	16	sarcoma	patient	samples	with	a	
prior	molecular	diagnosis,	of	which	we	confirmed	7	 (44%)	 samples	with	high-confidence	 fusion	
genes,	6	(38%)	samples	with	fusion	genes	identified	by	a	single	fusion-finding	algorithm,	one	(6%)	
sample	where	we	identified	the	inverse	of	the	fusion	gene	previously	identified	and	one	sample	
(6%)	where	we	detected	a	novel	fusion	gene	(Fig.	3d	and	Supplementary	Data	3).	In	addition,	we	
identified	novel	fusion	genes	in	2	sarcoma	samples	(Fig.	3d	and	Supplementary	Data	3).		

Using	the	blood	panel,	we	applied	targeted	RNAseq	to	analyse	5	acute	lymphoblastic	leukaemia	
(ALL)	samples.	This	confirmed	prior	analyses	in	1	of	2	(50%)	samples	and	detected	fusion	genes	in	
2	 samples	 (100%)	where	prior	 testing	 identified	no	 fusion	 genes	 and	1	 sample	 (100%)	with	no	
prior	testing	information.	In	the	ALL	sample	where	RT-PCR	detected	an	AFF1-KMT2A	fusion	gene,	
targeted	 RNAseq	 identified	 the	 KMT2A-AFF1	 fusion	 gene	 in	 addition	 to	 a	 previously	 unknown	
AFF1-MYC	 fusion	gene	 (Fig.	 3d,	 Supplementary	 Figs.	 5j,	 7d	and	 Supplementary	Data	 3).	As	all	
three	 genes	 reside	 on	 separate	 chromosomes,	 these	 two	 fusion	 genes	 likely	 result	 from	 a	
complex	genomic	 rearrangement.	Of	 the	15	acute	myeloid	 leukaemia	 (AML)	 samples	analysed,	
we	 confirmed	previously	 reported	 fusion	 genes	 in	 1	 of	 2	 (50%)	 samples	 and	 identified	 a	 novel	
gene	in	the	other	sample	with	a	previously	reported	fusion	gene.	Additionally,	targeted	RNAseq	
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identified	fusion	genes	in	3	of	7	(43%)	samples	where	prior	testing	identified	no	fusion	genes	and	
4	of	6	(67%)	samples	with	no	information	on	prior	molecular	analyses.	We	confirmed	previously	
detected	 fusion	 genes	 in	 all	 3	 (100%)	 chronic	myeloid	 leukaemia	 (CML)	 samples	 and	 identified	
fusion	genes	in	1	CML	sample	where	prior	testing	identified	no	fusion	genes	and	1	sample	with	no	
analysis	 history	 available.	 Similarly,	 we	 confirmed	 all	 3	 (100%)	 lymphoma	 samples	 with	 prior	
fusion	gene	 identification.	Finally,	we	detected	a	novel	 fusion	gene	 in	one	uncategorized	blood	
cancer	sample.		

Across	 the	 solid	 and	 blood	 panels,	 there	 were	 23	 patient	 samples	 where	 previous	 analysis	
identified	no	fusion	genes.	Of	these,	we	reported	fusion	genes	in	12	(52%)	samples.	In	8	of	these	
samples,	the	identity	of	the	fusion	gene	was	different	from	those	previously	analysed	with	FISH	
or	 RT-PCR.	However,	 in	 the	 remaining	 4	 samples	 targeted	RNAseq	 identified	 fusion	 genes	 that	
were	previously	tested	for	but	not	reported	by	either	FISH	or	RT-PCR.	This	could	be	due	to	the	
additional	 sensitivity	 of	 targeted	 RNAseq	 or	 a	 discrepancy	 between	 the	 isoforms	 detected	 by	
targeted	 RNAseq	 and	 those	 analysed	 by	 FISH	 or	 RT-PCR;	 in	 one	 instance	 (AML	 patient	 36EW),	
unusual	RT-PCR	banding	prevented	the	fusion	gene	from	being	reported	(Supplementary	Data	3).	
Both	 the	 issues	of	 incorrect	gene	choice	and	varying	 isoform	usage	demonstrate	 the	benefit	of	
interrogating	hundreds	of	genes	at	once	in	a	manner	independent	of	fusion	junction	location.		

In	total,	37	unique	fusion	genes	were	identified	across	our	clinical	cohort	(Table	2).	The	72	clinical	
samples	in	this	cohort	were	prepared	from	a	variety	of	sources,	including	both	solid	tissue	(fresh-
frozen	 and	 FFPE)	 and	 liquid	 samples	 (bone	 marrow	 and	 peripheral	 blood),	 with	 samples	
representing	 a	 range	 of	 RNA	 qualities.	 Despite	 this	 variability	 in	 sample	 type	 and	 quality,	 we	
observed	only	small	differences	in	alignment	performance.	All	double-capture	samples	reported	
≥89%	 of	 reads	 mapping	 to	 capture	 panel	 regions	 (Supplementary	 Fig.	 8a).	 The	 capture	 of	
targeted	regions	was	slightly	higher	for	liquid	samples	than	tissue	samples	(median	99.3	v	94.7,	p	
=	5.8	x	10-16,	Wilcoxon	 rank	 sum	test).	However,	 there	was	no	significant	difference	 in	 capture	
efficiency	between	FFPE	and	fresh-frozen	tissue,	indicating	that	even	challenging	FFPE	tissue	can	
be	effectively	analysed	using	targeted	RNAseq	(median	94.5	v	95.4,	p	=	0.50,	Wilcoxon	rank	sum	
test;	Supplementary	Fig.	8b).		

A	unique	advantage	of	targeted	RNAseq	is	the	ability	to	resolve	alternative	fusion	gene	isoforms	
that	 may	 inform	 clinical	 action.	 For	 example,	 across	 the	 5	 CML	 patients,	 we	 identified	 two	
previously	 described	 BCR-ABL1	 isoforms	 that	 were	 associated	 with	 disparate	 responses	 to	
imatinib	 treatment47,48	 (Fig.	 4a).	 The	 presence	 of	multiple	 fusion	 transcript	 isoforms	was	most	
notable	in	the	prostate	cancer	samples,	where	10	of	the	11	(91%)	TMPRSS2-ERG	positive	samples	
expressed	 two	or	more	alternative	 isoforms	 (Supplementary	 Fig.	 9a).	 In	 total,	we	 identified	10	
distinct	TMPRSS2-ERG	fusion	isoforms,	with	the	majority	exhibiting	complex	5'	end	diversity	from	
alternative	 TMPRSS2	 transcription	 start	 sites	 (Fig.	 4b).	We	 also	 detected	multiple	 fusion	 gene	
isoforms	 that	 resulted	 from	 different	 translocations	 upstream	 or	 downstream	 of	 ERG	 exon	 3,	
though	these	alternative	isoforms	had	no	effect	on	expression	level	(Supplementary	Fig.	9a-b).		

Across	the	entire	clinical	patient	cohort,	24	of	54	(44%)	patient	samples	harboured	fusion	genes	
whose	diagnosis	would	 inform	subsequent	clinical	action	 (Supplementary	Data	 3).	 Six	 (25%)	of	
the	 actionable	 fusion	 genes	 were	 not	 previously	 identified	 using	 alternative	 methods	
(Supplementary	Data	3).	While	some	fusion	genes,	such	as	SS18-SSX1	and	MYC-IGH,	constitute	
prognostic	factors,	other	fusion	genes,	such	as	EML4-ALK	and	PML-RARA	are	directly	targetable.		

	

Measuring	gene	and	exon	expression	with	targeted	RNAseq	
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In	addition	to	identifying	fusion	genes,	targeted	RNAseq	simultaneously	measures	the	expression	
of	all	captured	genes	within	each	sample11.	 Initially,	we	quantified	read	coverage	for	each	exon	
and	found	that	abrupt	changes	in	read	coverage	corresponded	to	fusion	junction	locations	(Fig.	
4c-d).	This	 likely	represents	 the	difference	 in	overall	expression	 levels	between	the	 fusion	gene	
and	the	non-fused,	canonical	alleles,	though	observed	expression	levels	will	depend	on	the	sum	
of	 expression	 of	 the	 fusion	 gene,	 the	 inverse	 fusion	 gene	 (in	 the	 case	 of	 balanced	
rearrangements),	and	any	non-rearranged	alleles.	For	the	majority	of	patient	samples,	high	fusion	
gene	 expression	 contrasted	 with	 little	 or	 no	 expression	 from	 the	 non-rearranged	 alleles,	
suggesting	the	existence	of	additional	factors	that	lead	to	enhanced	expression.	For	example,	the	
EZR-ROS1	fusion	gene	was	highly	expressed	compared	to	the	corresponding,	non-fused	EZR	and	
ROS1	genes	(Fig.	4c).	However,	in	a	minority	of	cases,	the	endogenous	expression	of	the	5'	fusion	
gene	drives	 fusion	gene	expression.	For	example,	 the	ACSL3-ETV1	 fusion	gene	exhibited	similar	
expression	 to	 the	 corresponding	ACSL3	 gene,	which	 likely	 results	 from	 the	 translocation	of	 the	
ACSL3	promoter	and	its	regulatory	activity	(Fig.	4d).		

Notably,	for	one	sarcoma	sample,	targeted	RNAseq	was	unable	to	identify	a	fusion	gene,	despite	
previous	FISH	analysis	reporting	a	chromosomal	rearrangement	 involving	ROS1	 (Supplementary	
Data	3).	Subsequent	analysis	of	 this	sample	showed	ROS1	expression	to	be	50-fold	higher	than	
the	 median	 of	 all	 sarcoma	 samples,	 supporting	 the	 existence	 of	 a	 promoter	 fusion	 that	
deregulated	 ROS1	 expression	 (Supplementary	 Fig.	 10a-b).	 This	 suggests	 that	 whilst	 targeted	
RNAseq	is	unable	to	directly	detect	chromosomal	rearrangements	that	fuse	a	promoter	upstream	
of	a	different	gene,	it	may	still	detect	the	resulting	change	in	gene	expression.		

Finally,	we	expanded	the	gene	expression	analysis	to	the	targeted	genes	that	can	yield	cell	marker	
or	 prognostic	 information.	 Whilst	 expression	 of	 these	 genes	 varied	 across	 samples,	 we	
nevertheless	detected	suggestive	gene	expression	patterns.	This	was	exemplified	by	high	GATA2	
expression	in	some	AML	and	CML	patients,	which	is	a	known	marker	of	poor	prognosis	in	AML49	
(Supplementary	Fig.	11-12).		

	

Immune	repertoire	profiling	

As	deregulated	V(D)J	 recombination	can	create	 fusion	genes	 involving	 IG/TCR	receptor	 loci	 in	a	
range	 of	 blood	 cancers,	 our	 blood	 panel	 targeted	 the	 V,	 J	 and	 C	 exons	 at	 these	 loci	 (Fig.	 5a).	
Accordingly,	we	identified	3	lymphoma	patients	within	our	patient	cohort	harbouring	IGH-MYC	or	
IGH-BCL6	fusion	genes.	However,	in	addition	to	fusion	genes,	these	probes	also	captured	all	RNA	
transcripts	expressed	from	the	 immune	receptor	 loci	 (Fig.	5a).	Therefore,	we	next	assessed	our	
ability	to	resolve	the	immune	repertoire	profile	within	each	sample.		

We	 first	 captured	 RNA	 from	 B-	 (Daudi,	 Raji,	 Ramos)	 and	 T-	 (KARPAS45,	 Jurkat)	 cell	 lines	 with	
known	V(D)J	recombination	events,	as	described	above.	We	then	used	both	MiXCR	and	IMSEQ	to	
profile	 the	 clonotype	 population	within	 each	 sample50,51	 (Supplementary	 Fig.	 3).	 For	 each	 cell	
line,	 we	 detected	 1-3	 dominant	 clonotypes	 supported	 by	 the	 majority	 of	 immune	 reads,	 as	
expected	for	clonal	cell	lines	(Fig.	5b	and	Supplementary	Data	5).	False	positive	clonotypes	were	
supported	by	only	a	small	 fraction	of	reads	and	predominantly	derived	from	the	same	 immune	
receptor	loci.		

Next,	we	extended	this	immune	analysis	to	the	32	haematological	patient	samples	(29	cancerous,	
3	healthy)	within	 the	clinical	 cohort.	 In	contrast	 to	 the	cell	 lines,	 the	majority	of	 the	cancerous	
and	 healthy	 samples	 expressed	 hundreds	 of	 different	 immune	 receptor	 clonotypes,	 with	 each	
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clone	represented	by	a	small	number	of	reads	(Fig.	5b	and	Supplementary	Data	6).	As	expected	
for	 bone	 marrow	 aspirates,	 more	 IG	 clones	 were	 identified	 in	 each	 sample	 than	 TCR	 clones,	
reflecting	 the	 diversity	 of	 B-cells	 maturing	 in	 bone	 marrow	 (Fig.	 5b).	 Notably,	 in	 2	 of	 the	 29	
cancerous	 samples,	 a	 set	 of	 T/BCR	 clones	 were	 ~10x	 and	 100x	more	 abundant	 than	 all	 other	
samples,	possibly	 reflecting	 the	presence	of	malignant	T-	 and	B-cell	 clonal	populations	 (Fig.	 5b	
and	Supplementary	Data	6).		

	

Novel	transcriptomic	features	

The	enriched	sequence	coverage	achieved	by	targeted	RNAseq	also	enables	the	discovery	of	novel	
exons	 and	 isoforms11.	 Given	 the	 clinical	 value	 of	 the	 genes	 targeted	 by	 our	 panels,	 newly	
discovered	 exons	 could	 become	 novel	 therapeutic	 targets.	 Therefore,	 we	 performed	 genome-
guided	transcript	assembly	to	build	an	expansive	annotation	based	on	the	clinical	patient	cohort.	
In	total,	we	identified	528	novel	exons	within	targeted	genes,	of	which	256	were	novel	5'	exons,	89	
were	novel	internal	exons	and	183	were	novel	3'	exons	(ex.	Fig.	5c).		

To	assess	 the	validity	of	 these	novel	exons,	we	 investigated	the	 flanking	nucleotide	composition	
for	evidence	of	poly-pyrimidine	tracts	and	3'	splice	site	motifs.	We	found	the	flanking	nucleotide	
profile	 of	 novel	 exons	 was	 similar	 to	 high-confidence	 exons	 annotated	 in	 GENCODE	 v2752	 and	
miTranscriptome53	 (Supplementary	 Fig.	 13a).	 Additionally,	 novel	 exons	 exhibited	 a	 similar	 size	
range	 to	 these	 previously	 annotated	 exons	 (Supplementary	 Fig.	 13b).	Whilst	most	 (83%)	 novel	
exons	encode	alternative	first	or	last	exons,	which	may	influence	gene	expression,	we	found	that	
70%	of	novel	internal	exons	are	predicted	to	modify	the	open	reading	frame	(Supplementary	 Fig.	
13c).	

	

DISCUSSION	

Chromosomal	 translocations	 that	generate	 fusion	genes	are	a	major	cause	of	 cancer,	and	 their	
accurate	diagnosis	is	critical	to	effective	treatment.	However,	previous	methods	such	as	FISH	and	
RT-PCR	 rely	 on	 prior	 annotations,	 are	 low-throughput	 and	 limited	 in	 resolution.	 As	 a	 result,	
typically	 only	 the	 most	 common	 fusion	 genes	 are	 iteratively	 tested	 during	 diagnosis.	
Unfortunately,	 misdiagnosis	 in	 haematological	 malignancies	 can	 lead	 to	 delayed	 or	 unsuitable	
treatment54.		

In	 contrast	 to	 previous	 techniques,	 targeted	 RNAseq	 delivers	 high-resolution	 fusion	 gene	
detection	whilst	assessing	hundreds	of	genes	 in	a	single	test,	 identifying	both	known	and	novel	
fusion	 genes.	 This	 breadth	 can	 reduce	 time	 to	 diagnosis	 while	 improving	 diagnostic	 yield,	
exemplified	 by	 the	 novel	 fusion	 genes	 detected	 by	 targeted	 RNAseq	 that	went	 undetected	 by	
prior	molecular	testing.	The	ability	of	targeted	RNAseq	to	simultaneously	identify	multiple	fusion	
genes	in	a	single	sample	enables	molecular	stratification	into	cancer	subtypes,	while	 its	use	will	
also	 likely	 increase	 the	catalogue	of	 fusion	genes	–	 including	 rare	 fusion	genes	and	novel	 gene	
partners	 –	 that	 are	 known	 to	 occur	 in	 cancer.	 Given	 these	 advantages,	 targeted	 RNAseq	 is	
increasingly	being	used	for	the	diagnosis	of	fusion	genes14.		

However,	 whilst	 the	 high-throughput	 nature	 of	 targeted	 RNAseq	 offers	 a	 broader	 path	 to	
diagnosis,	it	can	also	increase	the	false	positive	rate	at	which	fusion	genes	are	detected.	Indeed,	
this	was	a	major	challenge	we	faced,	and	our	bioinformatic	pipeline	required	supervision,	manual	
curation	and	nuanced	 interpretation.	This	 challenge	may	be	offset	by	 the	development	of	high	
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quality	 enterprise	 software	or	 simultaneous	 analysis	 of	matched-normal	 samples,	which	would	
indicate	 the	 prevalence	 of	 erroneous	 fusion	 gene	 calls	 and	 detect	 non-driver	 fusion	 events55.	
Additionally,	long-read	sequencing	can	better	resolve	alternative	fusion	isoforms	and	would	likely	
reduce	spurious	alignments	that	are	a	major	source	of	erroneous	fusion	gene	calls56.		

Targeted	RNAseq	also	provides	greater	resolution	of	fusion	gene	loci.	This	includes	the	detection	
of	 chromosomal	 rearrangements	 that	are	complex	and	can	only	be	ambiguously	detected	with	
other	 techniques.	 Furthermore,	 targeted	 RNAseq	 can	 resolve	 alternative	 fusion	 gene	 isoforms	
with	distinct	 functional	 roles	 during	disease	development	 and	 treatment	 response.	 Indeed,	we	
anticipate	 that	 isoform-level	 resolution	 of	 fusion	 genes	 using	 targeted	 RNAseq	 will	 ultimately	
provide	more	nuanced	prognostic	measures	and	better	patient	care47,57.	

Targeted	RNAseq	can	also	provide	many	supplementary	benefits	beyond	fusion	gene	diagnosis.	
This	includes	the	measurement	of	fusion	gene	expression	and	splicing	that	can	predict	treatment-
resistance	 and	 variant	 detection	 to	 reveal	 the	 presence	 of	 treatment-resistant	 or	 cooperating	
mutations	in	signalling	pathways58.	The	further	measurement	of	gene	expression	signatures	and	
markers	can	contribute	additional	prognostic	 information59,	whilst	 the	ability	 to	 simultaneously	
resolve	immunoglobulin	and	T-cell	receptor	clonotypes	can	detect	the	presence	of	B-	and	T-cell	
populations	 within	 a	 sample.	 We	 anticipate	 that	 this	 diversity	 of	 diagnostic	 features	 will	 be	
ultimately	combined	into	a	single	unified	targeted	RNAseq	test.	

Whilst	 the	 spectrum	 of	 transcriptomic	 features	 that	 can	 be	 tested	 with	 targeted	 RNAseq	 will	
improve	 the	 breadth	 and	 value	 of	 diagnosis,	 this	 increased	 information	 will	 require	 careful	
interpretation	 to	 offset	 a	 greater	 risk	 for	 false	 positive	 detection.	 Nevertheless,	 such	 broad	
diagnostic	measures	will	 increase	 the	 likelihood	of	 identifying	 treatable	mutations	 for	precision	
oncology.	 Accordingly,	 we	 anticipate	 that	 targeted	 RNAseq	 will	 be	 increasingly	 used	 -	 and	
eventually	dominate	current	methods	-	for	the	diagnosis	of	fusion	genes,	leading	to	the	improved	
diagnosis	of	cancer	patients	and	further	advancing	our	understanding	of	fusion	gene	biology.	

	

	

	

	

	

METHODS		

Capture	panel	design	
Fusion	 gene	 content	 of	 the	 capture	 panels	 was	 based	 on	 extensive	 literature	 searches	 and	
through	 consultation	 with	 clinicians	 and	 pathologists;	 final	 gene	 lists	 are	 included	 in	
Supplementary	 Data	 1	 and	 2.	 To	 ensure	 complete	 coverage	 of	 the	 T-cell	 receptor	 and	
immunoglobulin	loci	on	the	blood	panel,	we	used	previous	PCR	work	as	a	reference60	for	mining	
all	annotated	IG	and	TR	genes	in	both	hg19	and	hg38,	including	pseudogenes.	Once	the	candidate	
target	 list	was	 assembled	 and	 supplemented	with	 ERCC	and	 fusion	 sequin	 sequences,	 this	was	
sent	 to	Roche	 for	proprietary	SeqCap	EZ	design	 layout.	For	 the	canonical	protein-coding	genes,	
biotinylated	 DNA	 probes	 were	 tiled	 across	 all	 hg38-annotated	 exons	 from	 all	 isoforms	 with	
limited	trimming	of	regions	containing	repetitive	sequences	or	strong	homology	to	other	genes	to	
minimize	off-target	 results.	 Panels	were	 assessed	 in	 silico	 against	 pre-existing	RNAseq	datasets	
prior	to	manufacture	to	ensure	good	coverage	of	all	targets.	
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Cell	lines	
GM12878,	K562	and	KARPAS45	cell	 lines	were	sourced	 through	 the	Coriell	 Institute,	ATCC,	and	
CellBank	 Australia,	 respectively.	 All	 were	 tested	 for	 mycoplasma	 and	 cultured	 according	 to	
standard	growth	protocols	for	each	cell	line.	Cell	lines	were	not	independently	verified.	RNA	was	
extracted	 from	 these	 samples	 following	 standard	 Trizol	 (Invitrogen)	 procedures.	 RDES,	 GOT3,	
143B	 and	MLS	 cell	 pellets	were	 kindly	 provided	 by	Maya	 Kansara	 for	 standard	 RNA	 extraction	
with	Trizol.	Total	RNA	from	Daudi,	Raji,	Ramos	and	Jurkat	cell	lines	was	kindly	provided	by	Joanne	
Reed.	
	
Patient	samples	
Collection	of	patient	samples	was	ethically	approved:		RPA	X15-0103	and	LNR/15/RPAH/143,	ISKS	
Peter	 MacCallum	 Cancer	 Centre	 HREC	 Project	 Number	 09/11,	 and	 MoST	 St	 Vincent’s	 Hospital	
Sydney	 HREC/16/SVH/23.	 Additional	 patient	 samples	 were	 collected	 for	 this	 study	 under	 local	
Medical/Human	 Research	 Ethics	 Committee	 (MREC	 or	 HREC)	 approvals	 granted	 from	 the	
University	 of	 Limpopo’s	 Medunsa	 Campus	 (MREC/H/28/2009)	 and	 the	 University	 of	 Pretoria’s	
Faculty	 of	 Health	 Sciences	 (HREC#43/2010).	 Samples	 were	 shipped	 to	 the	 Garvan	 Institute	 of	
Medical	 Research	 under	 the	 Republic	 of	 South	 Africa	 Department	 of	 Health	 Export	 Permit,	 in	
accordance	 with	 the	 National	 Health	 Act	 2003	 (J1/2/4/2	 #1/12).	 Analysis	 of	 the	 samples	 was	
performed	 in	 accordance	 with	 St	 Vincent’s	 Hospital	 (SVH)	 HREC	 site-specific	 approval	
(#SVH15/227).	
	
De-identified,	 patient-derived	 bone	 marrow	 aspirate	 and	 peripheral	 blood	 samples,	 frozen	 in	
Trizol,	 were	 sourced	 from	 the	 Australasian	 Leukaemia	 and	 Lymphoma	 Group	 (ALLG)	 Discovery	
Centre	 Melbourne.	 These	 samples	 were	 subject	 to	 ALLG	 Tissue	 Bank	 committee	 approval	 and	
accompanied	 by	 informed	 patient	 consent.	 The	 RNA	 was	 extracted	 according	 to	 Trizol	
manufacturers	 instructions,	 treated	 with	 TURBO	 DNA-free	 Kit	 (Thermo	 Fisher	 #AM1907)	 and	
purified	using	RNA	Clean	and	Concentrator-25	columns	(Zymo	#R1017).		
	
For	all	lung,	prostate,	SP-#	sarcoma	samples	and	all	cell	lines,	Garvan	Molecular	Genetics	(Sydney,	
Australia)	extracted	the	RNA	using	the	Qiagen	QiaSymphony	robot	with	associated	reagents.	For	
the	 remaining	 sarcoma	 samples,	 the	 FFPE	 samples	 were	 deparaffinised	 using	 Deparaffinization	
Solution	(Qiagen,	#939018),	after	which	the	RNA	was	extracted	using	the	AllPrep	DNA/RNA	FFPE	
kit	(Qiagen,	#80234).	
	
Library	construction	
Canonical	RNASeq	 libraries	were	prepared	using	 the	Stranded	mRNA-Seq	Kit	 from	Roche	KAPA	
Biosystems	(#07962193001)	with	inputs	of	4	µg	of	RNA	samples	pooled	with	1	µl	of	ERCC	Mix	1	
(Thermo	 Fisher	 #4456740).	 CaptureSeq	 libraries	 were	 prepared	 using	 the	 Stranded	 RNA-Seq	
Library	Preparation	Kit	 (#07277261001)	with	100-1000	ng	of	RNA	 input	plus	1	µl	of	ERCC	Mix1	
(except	for	the	lymphoma	samples	and	the	Jurkat	cell	 line,	which	were	mixed	with	1	µl	of	ERCC	
Mix2).	Some	solid	samples	contained	additional	1	µl	spike-ins	of	1:50	dilution	of	fusion	sequins41.	
Library	 construction	 followed	 manufacturers	 instructions	 using	 supplied	 reagents	 and	 Roche	
SeqCap	 adapters	 (#07141530001	 and	 #07141548001)	 prior	 to	 8-12	 PCR	 amplification	 cycles,	
depending	 on	 RNA	 input.	 In	 some	 instances,	 homemade	 Y-adapters	 containing	 1	 of	 96	 unique	
molecular	 identifier	 (UMI)	 barcodes	 were	 ligated	 to	 each	 end	 of	 dsDNA	 fragments	 following	
second-strand	 synthesis.	 These	 8	 nt	 UMIs	 were	 generated	 with	 the	 EDITTAG	 suite61	 using	 a	
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Levenschtein	editing	distance	of	4	and	passed	filters	to	remove	homopolymers,	40%	<	GC-content	
<	60%,	and	sequences	with	complementarity	to	Roche	adapters	or	indexing	sequences.		
	
cDNA	capture	
After	 library	 preparation	with	 the	 Stranded	 RNA-Seq	 Library	 Preparation	 Kit	 (described	 above),	
samples	were	processed	on	the	capture	panels	following	the	Roche-NimbleGen	standard	double-
capture	protocol	 (except	 for	4	 samples	–	3x	FFPE	 lymphoma	and	 Jurkat,	where	a	 single-capture	
approach	was	used),	as	described	in	the	SeqCap	EZ	Library	support	literature	("NimbleGen	SeqCap	
EZ	 User's	 Guide	
[http://netdocs.roche.com/PPM/SeqCapEZLibrarySR_Guide_v3p0_Nov_2011.pdf]"	 and	 "Double	
Capture	 Technical	
Note[http://netdocs.roche.com/PPM/Double_Capture_Technical_Note_August_2012.pdf]".	
Briefly,	 libraries,	 probes	 and	Roche	hybridisation	 reagents	 (SeqCap	 EZ	Accessory	 Kit	 v2	 #07	 145	
594	 001;	 SeqCap	 EZ	 Developer	 Enrichment	 Kit	 #06	 471	 684	 001;	 SeqCap	 EZ	 Hybridization	 and	
Wash	Kit	#05	634	261	001;	SeqCap	HE-Oligo	Kit	A	#06	777	287	001;	SeqCap	HE-Oligo	Kit	B	#06	777	
317	001)	were	incubated	overnight	at	47oC.	Libraries	were	washed	and	then	re-hybridized	for	an	
additional	overnight	step	to	further	enrich	the	subsequent	capture	libraries.		
	
Sequencing	
All	libraries	were	sequenced	on	an	Illumina	HiSeq	2500	v4.0	platform	at	the	Kinghorn	Centre	for	
Clinical	Genomics	(KCCG)	in	Sydney,	Australia	using	a	paired-end,	standard	depth	125	nt	run.		
	
Panel	validation	
Reads	were	barcode	sorted	by	the	sequencing	facility	to	separate	individual	samples.	When	UMI-
containing	 adaptors	were	 used,	 paired-end	 FASTQ	 files	were	 processed	with	 Tally62	 to	 remove	
PCR	 duplicates,	 after	 which	 the	 UMIs	 were	 removed	 with	 cutadapt	 v1.1463.	 All	 reads	 were	
trimmed	of	Illumina	adaptor	sequences	using	cutadapt.		
	
Sequencing	 reads	 were	 mapped	 to	 hg38	 with	 STAR	 2.4.2a_modified64	 using	 the	 default	
parameters	 with	 the	 following	 modifications:	 	 '--twopassMode	 Basic	 --outSAMstrandField	
intronMotif	 --outFilterMultimapNmax	 100	 --outFilterMismatchNmax	 33	 --seedSearchStartLmax	
12	--alignSJoverhangMin	15	--outFilterMatchNminOverLread	0	--outFilterScoreMinOverLread	0.3	
--outFilterType	 BySJout	 --outFilterIntronMotifs	 RemoveNoncanonicalUnannotated	 --
chimSegmentMin	 15	 --chimJunctionOverhangMin	 15	 --alignMatesGapMax	 200000	 --
alignIntronMax	 200000'.	 All	 further	 panel	 validation	 analysis	 was	 limited	 to	 uniquely	mapping	
reads,	filtering	for	a	mapping	score	of	255	using	SAMtools65.		
	
On-target	 reads	were	 identified	 using	BEDTools66	 pairToBed	 to	 select	 the	 reads	where	 at	 least	
one	of	each	paired	reads	overlapped	with	the	capture	panel.	Then,	 these	on-target	reads	were	
normalized	to	the	total	number	of	uniquely	mapping	reads	to	calculate	on-target	capture	rate.		
	
TPM	 abundance	 and	 relative	 enrichments	 of	 each	 gene	 and	 spike-in	 were	 calculated	 using	
RSEM67,	 while	 read	 counts	 per	 gene	 were	 calculating	 with	 htseq-count68	 version	 0.6.0	 using	
parameters	'--stranded=reverse	--type=exon	--idattr=gene_id	--mode=union'.		
	
To	calculate	splice-junction	reads	covering	annotated	introns,	we	first	isolated	the	mapped	reads	
spanning	 introns	 by	 filtering	 for	 reads	with	 a	 'N'	 in	 the	 CIGAR	 string.	 These	 BAM	entries	were	
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converted	to	BED	format	retaining	the	 intronic	region	and	then	overlapped	with	existing	 intron	
annotations	using	BEDTools	intersect	with	parameters	'-s	-F	1'.		
	
Fusion	detection	
Trimmed	 and	 de-duplicated	 reads	 were	 used	 to	 identify	 fusion	 genes.	 FusionCatcher	 version	
0.99.6a	beta46	was	used	with	standard	settings.	Reads	aligned	with	STAR	(as	above)	were	input	to	
STARfusion45.	As	STARfusion	and	FusionCatcher	often	reported	multiple	fusion	genes	per	sample,	
many	 of	 which	 were	 false	 positives,	 we	 added	 a	 number	 of	 filtering	 steps	 to	 increase	 our	
confidence	 in	 the	 fusion	 calls.	 First,	we	 restricted	 the	 fusion	 candidate	 list	 to	 those	where	 are	
least	 one	 of	 the	 fusion	 gene	 partners	 overlapped	with	 the	 capture	 panel.	 Second,	 fusion	 gene	
calls	 were	 removed	 if	 they	 matched	 a	 manually	 curated	 blacklist	 (Supplementary	 Data	 7)	 of	
fusion	genes	found	in	every	sample	(we	noted	that	the	identity	of	the	false	positive	fusion	calls	
were	predominantly	software-specific	and	that	these	fusion	genes	were	often	specific	to	sample	
type).	Third,	we	 required	each	 fusion	gene	 to	be	supported	by	at	 least	2	 reads,	and	 the	 fusion	
junctions	to	be	at	 least	10,000	nts	apart	 if	both	genes	were	 located	on	the	same	chromosome.	
Fourth,	we	 filtered	 the	 STARfusion	 and	 FusionCatcher	 lists	 to	 select	 the	 fusion	 genes	 found	by	
both	programs,	searching	for	overlapping	fusion	chromosomal	coordinates.	Finally,	we	manually	
curated	these	lists	to	separate	high-confidence	fusion	genes	(Supplementary	Data	3)	from	false	
positive	fusion	genes	(Supplementary	Data	8),	influenced	by	fusion	genes	with	strong	number	of	
supporting	reads	and	genes	known	to	be	active	in	the	cancer	subtype	specific	to	each	sample.	For	
those	samples	where	no	overlapping	fusion	genes	were	identified,	we	manually	searched	through	
the	 output	 from	 both	 algorithms	 for	 known	 fusion	 genes,	 paying	 specific	 attention	 to	 fusion	
genes	reported	in	the	specific	tumour	type,	to	ensure	that	no	fusion	genes	were	overlooked.		
	
In-gene	coverage	change	
For	each	gene,	the	GTF	entry	for	the	main	transcript	isoform	was	extracted	from	the	hg38	GTF	file	
using	grep	and	then	converted	to	a	BED	file.	The	number	of	read	5'	ends	falling	within	each	exon	
were	counted	using	BEDTools	coverage	and	normalized	to	exon	length	to	calculate	expression.		
	
Transcriptome	assembly	and	novel	exon	identification	
Following	STAR	mapping,	as	described	above,	only	on-panel,	uniquely	mapping	reads	were	input	
to	Stringtie	v1.3.3b69	using	parameters	'	--rf	-f	0.05	-a	20	-j	3',	guiding	the	assembly	with	a	custom	
annotation	 file	 combining	 the	 latest	 annotations	 -	 GENCODE	 v27	 GRCh38.p1052	 and	
miTranscriptome53.	 After	 transcript	 assembly	 for	 each	 patient	 sample,	 the	 resulting	
transcriptomes	 were	 first	 combined	 with	 'stringtie	 --merge'	 by	 cancer	 type	 and	 then	 merged	
across	 cancer	 types	 into	 a	 single	 representative	 cancer	 transcriptome.	 All	 further	 analysis	was	
limited	to	multi-exon	transcripts.		
	
Exons	 were	 classified	 as	 novel	 if	 there	 was	 no	 genomic	 overlap	 with	 the	 GENCODE	 +	
miTranscriptome	annotations,	 identified	using	BEDTools	 intersectBed	with	 the	 'intersectBed	 -v'	
option.	Novel	 exons	within	 targeted	 transcripts	were	 identified	using	BEDTools	 intersectBed	 to	
select	for	any	assembled	transcript	that	overlapped	with	the	annotated	target	gene.		
	
Immune	receptor	analysis	
After	 initial	 read	 trimming	 and	 removal	 of	 PCR	 duplicates,	 as	 described	 above,	 immune	
clonotypes	were	determined	with	IMSEQ	v1.1.051	using	standard	parameters	and	MiXCR	v2.1.350	
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using	 standard	 parameters,	 except	 for	 using	 '-OvParameters.geneFeatureToAlign=VRegion'	
during	the	initial	alignment	step.		
	
FISH	
FISH	was	performed	on	interphase	nuclei	on	3	μm	formalin-fixed	paraffin-embedded	(FFPE)	tissue	
sections	using	Vysis		break-apart	FISH	probe	kits	(Abbott	Molecular,	Abbott	Park,	IL,	USA).	The	FISH	
protocol	was	performed	following	the	manufacturers’	instructions,	except	that	Invitrogen	
pretreatment	solution	(Life	Technologies,	Carlsbad,	CA,	USA)	was	used	at	98–102°C	for	20	min.	
Image	was	cropped	from	larger	image	for	publication	with	no	alteration	of	signal	levels.		
	
RT-PCR	and	Sanger	sequencing	
TMPRSS2-ERG	was	detected	by	RT-PCR	using	a	forward	primer	located	in	exon	1	of	TMPRSS2	and	
a	 reverse	 primer	 located	 in	 exon	 6	 of	 ERG	 (TMPRSS2_RT-f:	 5’-CAGGAGGCGGAGGCGGA-3’;	
TMPRSS2:ERG_RT-r:	 5’-GGCGTTGTAGCTGGGGGTGAG-3’),	 analysed	 on	 an	 agarose	 gel	 and	
detected	with	GelRed	(Biotium,	#41033).	Positive	control	is	VCap	cell	line;	negative	control	is	PC3	
cell	line.	An	uncropped	gel	image	is	available	in	the	Source	Data	file.		
	
For	fusion	gene	validation,	cDNA	was	prepared	from	1	µg	total	RNA	using	standard	SuperScript	II	
(Invitrogen	#	18064014)	reaction	conditions.	PCR	from	1	µl	of	cDNA	was	performed	with	standard	
reaction	 conditions	 using	 300	 nM	 each	 primer	 and	 KAPA	 HiFi	 HotStart	 ReadyMix	 (KAPA	
Biosystems	 #KK2602).	 PCR	 bands	 were	 analysed	 on	 a	 2%	 agarose	 gel	 stained	 with	 GelRed,	
isolated	 and	 extracted	 using	 the	 Zymoclean	 Gel	 DNA	 Recovery	 kit	 (Zymo	 Research	 #D4001).	
Sanger	sequencing	was	performed	with	PCR	amplification	primers	by	Garvan	Molecular	Genetics	
at	the	Garvan	Institute	of	Medical	Research,	Sydney,	Australia.		
	
Graphics	
Metagene	 plots	 were	 created	 using	 the	 ngsplot	 package70	 with	 genome-mapping	 reads	 and	
parameters	'-G	hg38	-R	genebody	-F	rnaseq	-SS	same	-L	100'.	Gene	structure	figures	are	based	on	
screenshots	 from	 the	UCSC	Genome	Browser71.	Nucleotide	 frequency	plots	were	 created	using	
"WebLogo	 3[http://weblogo.threeplusone.com/]",	 plotting	 probability	 on	 the	 y-axis.	
Dendrograms	and	heatmap	were	generated	using	pheatmap	version	1.0.1272.	All	other	plots	were	
created	in	RStudio73	using	ggplot274	and	cowplot75	packages.	All	plots	representing	the	number	of	
fusion	reads	were	prepared	using	spanning	and	junction	read	counts	from	STARfusion.		
	
	
DATA	AVAILABILITY	
Sequencing	data	have	been	deposited	in	the	NCBI	Sequence	Read	Archive	(SRA)	with	the	
BioProject	code	"PRJNA484669[https://www.ncbi.nlm.nih.gov/sra/PRJNA484669]".		
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FIGURE	LEGENDS	

Figure	 1.	Overview	of	 targeted	RNAseq	and	panel	 validation.	 a)	 Schematic	of	 targeted	RNAseq	
process.	b)	Scatterplot	of	targeted	RNAseq	enrichment	for	ERCCs	included	on	(blue)	or	excluded	
from	 (orange)	 the	 blood	 panel.	 c)	 Abundance	 of	 captured	 ERCCs	 before	 and	 after	 targeted	
sequencing	on	blood	panel.	d)	Metagene	plot	of	K562	targeted	RNAseq	read	coverage	across	all	
genes	on	the	blood	panel.	TS	=	Transcript	Start	site;	TE	=	Transcript	End	site.	

Figure	2.	Validation	of	targeted	RNAseq	for	fusion	gene	detection.	a)	Diagram	of	BCR-ABL1	fusion	
gene	and	transcript,	depicting	spanning	and	junction	reads	used	to	identify	fusion	genes.	b)	Bar	
charts	 comparing	 abundance	 of	 fusion	 reads	 from	 targeted	 and	 canonical	 RNASeq	 libraries	 in	
K562	(top)	and	RDES	(bottom)	cell	lines.	c)	Scatterplot	of	observed	(blue	dots)	and	expected	(red	
dots)	BCR-ABL1	read	counts	in	K562	dilution	series.	d)	Scatterplot	of	fusion	sequin	junction	reads	
versus	input	concentration.	

Figure	 3.	 Fusion	 identification	 in	 clinical	 cohort	 samples.	 a)	 FISH	 identification	 of	 ROS1	
rearrangement	 in	 lung	 cancer	 sample	MO-16-000393.	 Positive	 signal	 is	 1	 fused	 set	 of	 red	 and	
green	dots	and	≥	1	 isolated	green	dots	per	cell.	White	arrows	point	 to	 fused	dots;	grey	arrows	
point	 to	 green	 dots.	 b)	 FISH	 identification	 of	ALK	 rearrangement	 in	 lung	 cancer	 sample	 SP-15-
11000.	Positive	signal	is	1	fused	set	of	red	and	green	dots,	1	isolated	red	and	1	isolated	green	dot	
per	cell.	 	White	arrows	point	to	fused	dots;	grey	arrows	point	to	isolated	red	and	green	dots.	c)	
RT-PCR	 analysis	 to	 diagnose	 TMPRSS2-ERG	 fusion	 genes	 in	 prostate	 samples.	 *	 indicates	
TMPRSS2-ERG	bands.	Source	data	are	provided	as	a	Source	Data	file.	d)	Overview	of	fusion	gene	
identification	in	all	clinical	cohort	samples;	each	oval	represents	one	patient.	Other	blood	cancers	
includes	 chronic	 lymphocytic	 leukaemia,	 multiple	 myeloma	 and	 uncategorized	 blood	 cancer	
patients.	BMA	=	Bone	Marrow	Aspirate;	PB	=	Peripheral	Blood;	FFPE	=	Formalin-Fixed	Paraffin-
Embedded.	e)	Read	coverage	across	EZR	and	ROS1	genes	in	lung	cancer	patient	sample	MO-16-
000393.	Dotted	line	marks	fusion	junction	of	EZR-ROS1	fusion	gene.	

Figure	4.	Fusion	junction	diversity	and	gene	expression.	a)	Schematic	of	BCR-ABL1	fusion	isoforms	
+/-	 BCR	 exon	 14.	 b)	 TMPRSS2	 and	 ERG	 gene	 structures	 and	 TMPRSS2-ERG	 fusion	 isoform	
prevalence.	Bar	charts	on	the	right	indicate	the	number	of	samples	expressing	each	isoform.	For	
simplicity,	junctions	beyond	exon	1	are	depicted	utilizing	exon	1a.	Black	line	represents	retained	
intronic	sequence.	c-d)	Schematic	of	EZR-ROS1	and	ACLS3-ETV1	fusions	and	quantification	of	read	
count	 expression	 across	 the	 endogenous	 genes	 in	 lung	 cancer	 sample	 MO-16-000393	 and	
prostate	 cancer	 sample	 12543,	 respectively.	 Horizontal	 lines	 indicate	 mean	 expression	 levels;	
colored	 dots	 represent	 expression	 from	 the	 fused	 alleles	 plus	 nonrearranged	 alleles,	while	 the	
grey	dots	represent	expression	of	the	canonical,	nonrearranged	alleles.	
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Figure	 5.	 Novel	 findings	 in	 transcriptomic	 analysis.	 a)	 Schematic	 of	 immune	 receptor	 capture	
probe	 design	 across	 the	 T	 cell	 receptor	 β	 (TCRβ)	 locus	 and	 a	 transcript	 expressed	 post-V(D)J	
rearrangement.	 b)	 Immune	 receptor	 clonotypes	 in	 cell	 lines	 and	 clinical	 patient	 samples	
quantified	using	MiXCR.	Each	colour	 represents	a	 single	clonotype.	 c)	Novel	ETV6	 exons	shown	
underneath	GENCODE	v27	annotation.	Red	arrows	 indicate	exons	 found	 in	 lymphoma	samples,	
blue	arrows	indicate	exons	found	in	leukaemia	samples.	 	
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TABLES	

	

Table	1.	Summary	of	cell	line	fusion	genes	and	mapping	statistics.		

Panel	 Cancer	
type	

Sample	 Detected	fusion	genes	 Uniquely	
mapped	reads	

(million)	

On-target	
capture	rate	

(%)	

Blood	 Bone	
marrow	

K562	RNASeq	 BCR-ABL1,	NUP214-XKR3	 46.0	 3	

	 	 K562	 BCR-ABL1,	NUP214-XKR3	 10.7	 98	

	 	 K562	1:10	 BCR-ABL1,	NUP214-XKR3	 49.7	 72	

	 	 K562	1:100	 BCR-ABL1,	NUP214-XKR3	 4.9	 91	

	 	 K562	1:1,000	 BCR-ABL1,	NUP214-XKR3°	 29.0	 81	

	 	 K562	1:10,000	 BCR-ABL1°	 11.4	 87	

	 T-cell	 KARPAS45	 KMT2A-FOXO4	 16.9	 97	

	 WT	 GM12878	 -		 10.4	 98	

Solid	 Sarcoma	 143B	 EXOC2-MET,	PAFAH1B2-FOXR1,	
ERG-LINC00240	

27.5	 92	

	 	 GOT3	 GPC6-WIF1,	WNK1-ERC1,	PPARD-
IRF2BP2	

27.1	 93	

	 	 MLS1765-92	 FUS-DDIT3,	CREB1-METTL21A	 20.1	 93	

	 	 RDES	RNAseq	 EWSR1-FLI1	 31.0	 5	

	 	 RDES	 EWSR1-FLI1,	SMC04-EWSR1,	FUS-
DDIT3	

30.4	 88	

°	indicates	fusion	gene	identified	by	either	STARfusion	or	FusionCatcher,	but	not	both.	
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Table	2.	Fusion	genes	found	within	the	clinical	cohort.		
Panel	 Cancer	type	 Fusion	genes	detected	with	targeted	RNAseq	 FISH	&	

RT-PCR	
Targeted	
RNAseq	

Blood	 Acute	lymphoblastic	
leukaemia	

KMT2A-AFF1,	AFF1-KMT2A,	RUNX1-RUNX1T1,	TCF3-
PBX1,	AFF1-MYC,	TAF15-ZNF384,	ZNF384-TAF15	

2/4	 5/5	

	 Acute	myeloid	leukaemia	 CBFB-MYH11,	NSD1-NUP98,	RUNX1-RUNX1T1,	
RUNX1T1-RUNX1,	KMT2A-MLLT3,	DEK-NUP214,	
NUP214-DEK,	MN1-ETV6,	ETV6-MN1,	DDX3X-
MLLT10,	KMT2A-SEPT9,	SEPT9-KMT2A,	PML-RARA,	
RARA-PML	

2/9	 9/15	

	 Chronic	myeloid	leukaemia	 BCR-ABL1,	RUNX1-RUNX1T1	 3/4	 5/5	

	 Lymphoma	 MYC-IGH,	IGH-BCL6	 3/4	 3/4	

	 Other	blood	cancers	 FGFR1-ZMYM2	 0/1	 1/3	

Solid	 Lung	 EZR-ROS1,	EML4-ALK	 2/2	 2/2	

	 Sarcoma	 TMPRSS2-ERG,	ACSL3-ETV1,	SP3-CTU2,	SLC45A3-
SKIL	

10/20	 14/20	

	 Prostate	 SS18-SSX1,	SS18-SSX2/2B,	FUS-DDIT3,	DDIT3-FUS,	
EWSR1-ERG,	EWSR1-FLI1,	PATZ1-EWSR1	

17/18	 16/18	

Columns	on	the	right	indicate	the	number	of	patient	samples	with	a	positive	fusion	gene	diagnosis	
from	prior	clinical	assessment	or	 targeted	RNAseq;	discrepancies	 in	 total	 sample	number	 reflect	
the	lack	of	available	clinical	data.	
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SUPPLEMENTARY	MATERIALS	

Diagnosis	of	fusion	genes	using	targeted	RNA	sequencing		

Heyer	et	al.		



Supplementary Figure 1. Overview of targeted RNAseq panel designs. a) A Venn diagram summarizing 
the relative sizes and overlap of the blood and solid targeted sequencing panels.  b) Distribution of target 
genes on the blood panel. c) Distribution of target genes on the solid panel.  
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Supplementary Figure 2. Targeted RNAseq panel validation. a) Scatterplot of targeted RNAseq enrichment 
for ERCCs included (blue) or excluded (orange) on the solid panel. b) Expression levels of targeted ERCCs 
in conventional RNAseq compared to targeted RNAseq with the solid panel. c) Boxplot comparing gene 
expression levels  in conventional RNAseq versus targeted RNAseq for both blood (K562) and solid (RDES) 
panels. The lower and upper hinges correspond to the 25th and 75th percentiles, respectively; middle lines 
correspond to the median; whiskers extend from hinges to the smallest or largest value no further than 
1.5*IQR(inter-quartile range). d) Metagene plot of RDES targeted RNAseq read coverage across all genes on 
the solid panel. TS = Transcription Start site; TE = Transcription End site. e) Percentage of on-panel annotated 
introns covered by splice-junction reads on the blood (K562) or solid (RDES) panels. 
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Supplementary Figure 3. Schematic of bioinformatic analytical pipeline. 
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Supplementary Figure 4. Read coverage across fusion genes in cell lines. a) Genome browser screen-
shot showing enhanced targeted RNAseq read coverage compared to canonical RNAseq for BCR and 
ABL1 genes. Dotted line marks location of fusion junction. b) Genome browser screenshot showing 
enhanced targeted RNAseq read coverage compared to canonical RNAseq for EWSR1 and FLI1 genes. 
Dotted line marks location of fusion junction. 
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a SS18 FISH assay
SP-14-002291 sarcoma patient

e EWSR1 FISH
SP-14-019055 sarcoma patient

c SS18 FISH assay
SP-14-015923 sarcoma patientb SS18 FISH assay

SP-15-005675 sarcoma patient

d SS18 FISH assay
SP-16-012119 sarcoma patient

Supplementary  Figure  5.  Clinical  fusion  gene  identification  and  validation.  a-e) FISH fusion detection 
using breakapart probes for SS18 in samples SP-14-002291 (a), SP-15-005675 (b), SP-14-015923 (c) and  
SP-16-012119 (d) and EWSR1 in sample SP-14-019055. EWSR1 rearrangement detected in 30% of cells (e). 
Positive signal demonstrated by 1 fused probe set (white arrow) and 1 isolated red and 1 isolated green dot 
(grey arrows). f-k) Sanger sequencing validation of IGH-BCL6 fusion gene in lymphoma patient 3.17744 (f), 
BCR-ABL1 fusion gene in CML patient 18BP (g), BCR-ABL1 fusion gene in CML patient 37BR (h), PML-RARA 
fusion gene in AML patient 36EW (i), AFF1-MYC fusion gene in ALL patient 30RN (j), MN1-ETV6 fusion gene 
in AML patient 21ME (k). 

f Sanger sequencing validation
3.17744 lymphoma patient

BCL6 IGH

g Sanger sequencing validation
18BP CML patient
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h Sanger sequencing validation
37BR CML patient
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j Sanger sequencing validation
30RN ALL patient

AFF1 MYC

k Sanger sequencing validation
21ME AML patient

MN1 ETV6



a b

c

Supplementary Figure 6. Measuring reproducibility of targeted RNAseq assay. a-b) Scatterplots of fusion junction reads 
comparing either (a) replicates between individual capture events to visualize inter-run variability or (b) replicates within 
each capture event to visualize intra-run variability. c) Hierarchical clustering of gene expression for all genes captured on 
the blood panel. Top panel: dendrogram representing clustering between the samples. Middle panel: zoom of the lower 
dendrogram branch (indicated by grey boxes). Numbers indicate replicate and capture number per sample. Bottom panel: 
gene expression heatmap generated with read counts per gene normalized to library size; each row represents one gene. 
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Supplementary Figure 7. Examples of targeted RNAseq read coverage across fusion genes in clinical cohort 
samples. a) Read coverage across ACSL3 and ETV1 genes in prostate cancer patient sample 12543. Dotted line 
marks fusion junction of ACSL3-ETV1 fusion gene. b) Read coverage across TMPRSS2 and ERG genes in pros-
tate cancer patient sample 10738. Dotted line marks fusion junction of TMPRSS2-ERG fusion gene. c) Read 
coverage across RUNX1 and RUNX1T1 genes in AML patient sample 08FS. Dotted line marks fusion junction of 
RUNX1-RUNX1T1 fusion gene. d) Read coverage across AFF1 and MYC genes in ALL patient 30RN. Dotted line 
indicates location of AFF1-MYC fusion junction. 
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Supplementary Figure 8. Effects of sample source on alignment mapping. a) Boxplot comparing 
on-panel mapping percentages for sample types (Liquid = bone marrow aspirate and peripheral blood; 
Solid = FFPE and fresh-frozen tissue (FFT)). p = 5.8 x 10-16. b) Boxplot comparing on-panel mapping 
percentages versus tissue type. p = 0.50. p-values calculated using Wilcoxon rank sum test. For both 
plots, the lower and upper hinges correspond to the 25th and 75th percentiles, respectively; middle lines 
correspond to the median; whiskers extend from hinges to the smallest or largest value no further than 
1.5*IQR(inter-quartile range).
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Supplementary Figure 10. ROS1 expression and rearrangement. a) ROS1 gene expression levels 
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Supplementary Figure 11. Marker gene expression in clinical cohort samples processed on the solid panel. 
Lung = lung cancer patient samples; Pros. = prostate cancer patient samples; Sarc. = sarcoma patient sam-
ples. 
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Supplementary Figure 12. Marker, transcription and splicing factor gene expression in clinical cohort samples processed on the blood panel. ALL = acute 
lymphoblastic leukaemia; AML = acute myeloid leukaemia; CLL = chronic lymphocytic leukaemia; CML = chronic myeloid leukaemia; Lym = lymphoma; MM 
= multiple myeloma; Un = uncategorised blood cancer; WT = healthy individuals.  


