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A B S T R A C T

Background: Welding involves exposure to fumes, gases and radiant energy that can be hazardous to human
health. Welding fumes (WFs) comprise a complex mixture of metallic oxides, silicates and fluorides that may
result in different health effects. Inhalation of WFs in large quantities over a long periods may pose a risk of
developing neurodegenerative diseases (NDGDs), but the nature of this risk is poorly understood. To address this
we performed transcriptomic analysis to identify links between WF exposure and NDGDs.
Methods: We developed quantitative frameworks to identify the gene expression relationships of WF exposure
and NDGDs. We analyzed gene expression microarray data from fume-exposed tissues and NDGDs including
Parkinson's disease (PD), Alzheimer's disease (AD), Lou Gehrig's disease (LGD), Epilepsy disease (ED) and
multiple sclerosis disease (MSD) datasets. We constructed disease–gene relationship networks and identified
dysregulated pathways, ontological pathways and protein–protein interaction sub-network using multilayer
network topology and neighborhood-based benchmarking.
Results: We observed that WF associated genes share 18, 16, 13, 19 and 19 differentially expressed genes with
PD, AD, LGD, ED and MSD respectively. Gene expression dysregulation along with relationship networks,
pathways and ontologic analysis indicate that WFs may be linked to the progression of these NDGDs.
Conclusions: Our developed network-based approach to analysis and investigate the genetic effects of welding
fumes on PD, AD, LGD, ED and MSD neurodegenerative diseases could be helpful to understand the causal
influences of WF exposure for the progression of the NDGDs.

1. Introduction

Welding processes can expose an operator fumes, gases and radiant
energy, often in a confined space. Thus, welding fumes (WFs) are re-
cognised as a particular health hazard (Antonini, 2003), comprising
complex mixtures of metallic oxides, silicates and fluorides as well as
heavy metal contaminants such as cadmium, aluminium, chromium,
copper and lead (Rana et al., 2018; Khan, 2007). A welder may inhale
these fumes in significant quantities over an extended period of time,
and an in addition to the risk of developing pulmonary ailments other
very significant disease risks are emerging, notably neurodegenerative
diseases (NDGDs) (Antonini, 2003; America, 2015).

NDGDs are a collective term for a heterogeneous group of disorders
that are incurable and characterized by the progressive degeneration of
the function and structure of the central nervous system (Sharma et al.,
2017). NDGDs primarily affect the neurons of the central nervous
system and progressively damage their function. Neurons are very
vulnerable to injury and normally do not divide or replace themselves
directly, making damage repair slow (Golpich et al., 2017; Satu et al.,
2018). For this reason NDGDs can be devastating and permanent with
few options for treatment. To understand how this such damage can
occur we used a bioinformatic approach to investigate how welding
fume (WF) actions on tissues may influence development of PD, AD,
LGD, ED and MSD.
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PD is the second-most common neurologic disease that affects
neural cells in the brain which produce dopamine in the substantia
nigra (Poewe et al., 2017; Moni et al., 2018). There are several symp-
toms of PD include tremors, muscle rigidity, and changes in gait and
speech. Welding fumes contain Manganese that can develop Parkinson's
disease (Racette et al., 2012; Sakib et al., 2018). The AD is the most
common type of incurable dementia that causes problems with pro-
gressive memory loss and other cognitive abilities. Existing medical
treatments for AD produce only a modest improvement of symptoms
but there is currently no cure (Wang et al., 2017). Aluminum exposure
to welding is a risk factor to produce AD. LGD also cognizant as
amyotrophic lateral sclerosis (ALS), is a neurodegenerative disease that
progressively damages motor neurons and muscle atrophy controlling
voluntary muscle movement. The initial symptoms of LGD are muscle
weakness or stiffness, can bring death by progressive muscular paralysis
and respiratory system failure within 2–5 years. US Food and Drug
Administration (FDA) approved Riluzole and Edaravone drugs that may
prolong LGD survival. Nevertheless, there is no effective cure or pre-
vention for this devastating disease (Tokuda and Furukawa, 2017; Sun,
2017). ED is a heterogeneous group of neurodegenerative disorder that
affects neural cells in the brain which are recognized by recurrent sei-
zures or unusual behavior, awareness and sensations suffering over 60
million people in the world. AEDs are Current anti-epileptic drugs that
can minimize symptoms but there is no permanent cure or prevention
of ED (Alves et al., 2018). MSD is a severe neurodegenerative disorder
that attacks the neurons of the central nervous system in the spinal cord
and brain, on young adults most commonly (Sapko et al., 2018). The
symptoms of MSD include muscle weakness, trouble with sensation and
blindness. Medical treatments of MSD can prolong patient survival but

there is no permanent cure or prevention strategy for MSD. Manganese
exposure to welding is thought to be an important risk factor on the
progression of LGD, ED and MSD (Proudfoot et al., 2017).

Our study employed a systematic and quantitative approach to
identify welding fume-responding genes (WFGs) which may indicate a
link to development of NDGDs. For these purposes, we studied several
NDGDs including PD, AD, LGD, ED and MSD. To understand the effects
of WFs on NDGDs, we examined gene expression dysregulation, disease
association network, dysregulated pathway, gene expression ontology
and protein-protein interaction. We also investigated the validation of
our study by using the gold benchmark databases (dbGAP and OMIM).

2. Materials and methods

2.1. Datasets employed in this study

To investigate the effects of WFs on NDGDs at the molecular level,
we used gene expression microarray data. In this study, we used Gene
Expression Omnibus from the National Center for Biotechnology
Information (NCBI) (http://www.ncbi.nlm.nih.gov/geo/). We analyzed
6 different datasets for our study with accession numbers GSE62384,
GSE19587, GSE28146, GSE833, GSE22779 and GSE38010 (Stanam,
2018; Lewandowski et al., 2010; Blalock et al., 2011; Dangond et al.,
2004; Carlet et al., 2010; Han et al., 2012). The WF dataset (GSE62384)
is a result of gene expression analysis of fresh welding fumes influence
on upper airway epithelial cells (RPMI 2650). This Data is collected
from the people with spark-generated welding fumes at high (760 g/
m3) and low (85 g/m3) concentrations. The donors inhaled welding
fumes for 6 hours continuously, followed by zero hours or four hours

Fig. 1. Flow-diagram of the analytical approach used in this
study.

Fig. 2. Disease network of welding fume-responding genes
(WFGs) with Parkinson's disease (PD), Alzheimer's disease
(AD), Lou Gehrig's disease (LGD), Epilepsy disease (ED) and
multiple sclerosis disease (MSD). Red colored octagon-shaped
nodes represent different categories of disease, and round-
shaped sky blue colored nodes represent commonly up-regu-
lated genes among WFGs with the other NDGDs. A link is
placed between a disorder and a disease gene if mutations in
that gene may lead to (or otherwise has an association with)
the specific disorder. (For interpretation of the references to
color in this figure legend, the reader is referred to the web
version of this article.)
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post-exposure incubation. The PD dataset (GSE19587) is taken from 6
postmortem brains of PD patients and from 5 control brains. The AD
dataset (GSE28146) is a microarray data on RNA from fresh frozen
hippocampal tissue blocks that contain both white and gray matter,
potentially obscuring region-specific changes. The LGD dataset
(GSE833) is an Affymetrix Human Full Length HuGeneFL [Hu6800]
Array. In this data, postmortem spinal cord grey matter from sporadic
and familial ALGD patients are compared with controls. The ED dataset
(GSE22779) is a gene expression profiles of 4 non-leukemic individuals
(1 healthy and 3 with epilepsy) is generated from the mononuclear cells
isolated from the peripheral blood samples before, and after 2, 6, and
24 hours of in-vivo glucocorticoid treatment. The MSD dataset
(GSE38010) is a microarray data of multiple sclerosis (MS) patients
brain lesions compared with control brain samples.

2.2. Overview of analytical approach

We used systematic and quantitative approach to identify the effect
of WFs on the progression of the NDGDs using different sources of
available microarray datasets. The graphical representation of this ap-
proach is shown in Fig. 1. This approach included gene expression,
signaling pathway, gene ontology (GO) and protein–protein interaction
analyses. This approach also used Gold benchmark data to verify the
validity of our study.

2.3. Analysis methods

Gene expression analysis using microarrays is a global and popular
method to develop and refine the molecular determinants of human
disorders that have proven to be a sensitive method. We used these
technologies to analyze the gene expression profiles of Parkinson's

Fig. 3. Disease network of welding fume-responding genes
(WFGs) with Parkinson's disease (PD), Alzheimer's disease
(AD), Lou Gehrig's disease (LGD), Epilepsy disease (ED) and
multiple sclerosis disease (MSD). Red colored octagon-shaped
nodes represent different categories of disease, and round-
shaped green colored nodes represent commonly down-regu-
lated genes among WFGs and ND. A link is placed between a
disorder and a disease gene if mutations in that gene is linked
to the specific disorder. (For interpretation of the references
to color in this figure legend, the reader is referred to the web
version of this article.)

Table 1
Pathways Associated with significantly common differentially expressed genes
of the PD with WFs.

Pathway Genes in the
pathway

Adjusted p-value

Glutamate neurotransmitter release
cycle

GLS 2.02E−02

Sphingolipid de novo biosynthesis VAPB 2.77E−02
Intrinsic pathway for apoptosis PMAIP1 3.51E−02
Kinesins pathway KIF1A 3.68E−02
Neurotransmitter release cycle GLS 4.25E−02

Table 2
Pathways associated with significantly common differentially expressed genes
of the AD with WFs.

Pathway Genes in the pathway Adjusted p-value

Circadian rhythm pathway BHLHE40 2.23E−02
Sphingolipid metabolism pathway SGMS2 3.47E−02
Amyotrophic lateral sclerosis (ALS) MAP2K3 3.76E−02
MAPKinase signaling pathway MAP2K3 4.12E−02

Table 3
Pathways associated with significantly common differentially expressed genes
of the LGD with WFs.

Pathway Genes in the pathway Adjusted p-value

Signaling pathways in Glioblastoma CDKN1A, PLCG1,
PRKCZ

1.48E−05

MAPK signaling pathway CD14, PRKCZ 4.38E−03
TRIF-mediated programmed cell

death
CD14 5.99E−03

EPO signaling pathway PLCG1 6.58E−03
Rap1 signaling pathway PLCG1, PRKCZ 6.82E−03
P53 signaling pathway CDKN1A 4.06E−02

Table 4
Pathways associated with significantly common differentially expressed genes
of the ED with WFs.

Pathway Genes in the pathway Adjusted p-value

Ectoderm differentiation NUMA1, SERPINB6 6.82E−03
NR3C signaling EGR1 1.70E−02
Glycogen metabolism PHKB 3.19E−02
Neurotransmitter release cycle NAAA 4.49E−02
Keratinocyte differentiation ETS1 4.67E−02
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Table 5
Pathways associated with significantly common differentially expressed genes of the MSD with WFs.

Pathway Genes in the pathway Adjusted p-value

Steroid biosynthesis LIPA, TM7SF2 1.44E−04
Metabolism of lipids and lipoproteins CDS1, NCEH1, SEC24D, TM7SF2 2.47E−03
Cholesterol biosynthesis TM7SF2 2.05E−02
Endocrine and other factor-regulated calcium reabsorption ATP2B1 4.15E−02
Mineral absorption ATP2B1 4.49E−02

Table 6
Gene ontologies associated with the significantly common dysregulated genes of the PD with WFs.

GO term Pathway Genes in the pathway Adjusted p-value

GO:0001844 Protein insertion into mitochondrial membrane involved in apoptotic signaling pathway PMAIP1 5.94E−03
GO:1902043 Positive regulation of extrinsic apoptotic signaling pathway via death domain receptors PMAIP1 5.94E−03
GO:0006987 Activation of signaling protein activity involved in unfolded protein response VAPB 6.78E−03
GO:0001881 Receptor recycling LMTK2 8.47E−03
GO:0045837 Negative regulation of membrane potential PMAIP1 5.94E−03
GO:0043029 T cell homeostasis PMAIP1 9.31E−03
GO:0032463 Negative regulation of protein homooligomerization CRYAB 7.63E−03
GO:0032075 Positive regulation of nuclease activity VAPB 9.31E−03
GO:0016192 Vesicle-mediated transport LMTK2, ARAP3, KIF1A 4.73E−03
GO:1905906 Regulation of amyloid fibril formation CRYAB 7.63E−03
HP:0003677 Slow progression KIF1A, CRYAB 3.08E−03
HP:0007210 Lower limb amyotrophy KIF1A 8.47E−03
HP:0200073 Respiratory insufficiency due to defective ciliary clearance ZMYND10 7.63E−03
HP:0003323 Progressive muscle weakness VAPB 9.31E−03
HP:0003555 Muscle fiber splitting CRYAB 6.78E−03

Table 7
Gene ontologies associated with the significantly common dysregulated genes of the AD with WFs.

GO term Pathway Genes in the pathway Adjusted p-value

GO:0043619 Regulation of transcription from RNA polymerase II promoter in response to oxidative stress SESN2 6.73E−03
GO:0032055 Negative regulation of translation in response to stress SESN2 5.24E−03
GO:0006684 Sphingomyelin metabolic process SGMS2 7.48E−03
GO:0035414 Negative regulation of catenin import into nucleus WWTR1 7.48E−03
GO:1990253 Cellular response to leucine starvation SESN2 8.22E−03
GO:0032309 Icosanoid secretion ABCC4 8.97E−03
GO:0045859 Regulation of protein kinase activity MAP2K3, WWTR1 5.36E−03
HP:0001156 Brachydactyly syndrome NTNG1, BBS9 8.87E−03
HP:0002141 Gait imbalance BBS9 1.34E−02
HP:0007707 Congenital primary aphakia BBS9 1.34E−02
HP:0010747 Medial flaring of the eyebrow BBS9 1.56E−02
HP:0009806 Nephrogenic diabetes insipidus BBS9 1.49E−02
HP:0002370 Poor coordination BBS9 1.71E−02
HP:0006829 Severe muscular hypotonia IBA57 1.79E−02
HP:0001827 Genital tract atresia BBS9 1.93E−02

Table 8
Gene ontologies associated with the significantly common dysregulated genes of the LGD with WFs.

GO term Pathway Genes in the pathway Adjusted p-value

GO:2000737 Negative regulation of stem cell differentiation N4BP2L2, ZFP36L2 1.81E−05
GO:0034128 Negative regulation of MyD88-independent toll-like receptor signaling pathway CD14 4.79E−03
GO:0071364 Cellular response to epidermal growth factor stimulus PLCG1, ZFP36L2 1.06E−04
GO:1901988 Negative regulation of cell cycle phase transition ZFP36L2 4.19E−03
GO:1903708 Positive regulation of hemopoiesis N4BP2L2 4.79E−03
GO:1901991 Negative regulation of mitotic cell cycle phase transition CDKN1A, ZFP36L2 1.02E−03
GO:0071363 Cellular response to growth factor stimulus PLCG1, ZFP36L2 3.07E−03
GO:0050821 Protein stabilization CDKN1A, CCT5 3.65E−03
HP:0001738 Exocrine pancreatic insufficiency CDKN1A 1.13E−02
HP:0010832 Abnormality of pain sensation CCT5 1.49E−02
HP:0002717 Adrenal overactivity CDKN1A 1.79E−02
HP:0003431 Decreased motor nerve conduction velocity CCT5 1.79E−02
HP:0001258 Spastic paraplegia CCT5 1.84E−02
HP:0002936 Distal sensory impairment CCT5 3.66E−02

H.K. Rana et al. Neurotoxicology 71 (2019) 93–101

96



disease (PD), Alzheimer's disease (AD), Lou Gehrig's disease (LGD),
Epilepsy disease (ED) and multiple sclerosis disease (MSD) to find the
effects of welding fumes on them (Rahman et al., 2018a,b). To uniform
the mRNA expression data of different platforms and to avoid the
problems of experimental systems, we normalized the gene expression
data (disease state or control data) by using the Z-score transformation
(Zij) for each NDGD gene expression profile using

=

−

Z
g g

g

mean( )

SD( )
,i

i
ij

ij

where SD implies the standard deviation, gij represents the value of the
gene expression i in sample j. After this transformation we can directly
compare of gene expression values of various diseases under different
platforms. We applied two conditions for t-test statistic. We performed
unpaired t-test to identify differentially expressed genes in patients over
control data and selected significant genes. We have chosen a threshold
of at least 1 log2 fold change and a p-value of ≤1×10−2.

We applied the topological and neighborhood based benchmark
methods to find gene–disease associations. Gene–disease network
(GDN) was constructed by using the gene–disease associations, where
the nods in the network represent either gene or disease (Xu et al.,
2015; Moni and Liò, 2014). This network can also be characterized as a
bipartite graph. The diseases are connected in GDN when they share at
least one or more significant differentially expressed genes. These to-
pological and neighborhood based benchmark methods were adopted
from our previous studies (Moni and Liò, 2015).

Let D is a specific set of diseases and G is a set of dysregulated genes,
gene–disease associations attempt to find whether gene g∈G is asso-
ciated with disease d∈D. If Gi and Gj, the sets of significant dysregu-
lated genes associated with diseases Di and Dj respectively, then the
number of shared dysregulated genes n( )g

ij associated with both diseases
Di and Dj is as follows (Moni and Liò, 2017):

= ∩n N G G( )g
i jij (1)

The common neighbours are the based on the Jaccard Coefficient
method, where the edge prediction score for the node pair is as (Moni
and Liò, 2017):

=

∩

∪

E i j
N G G
N G G

( , )
( )
( )

i j

i j (2)

where G is the set of nodes and E is the set of all edges. We used R
software packages “comoR” (Moni and Liò, 2014) and “POGO” (Moni
and Liò, 2015) to cross check the genes–diseases associations.

To find molecular pathways of several NDGDs, we have analyzed
pathway and gene ontology using Enrichr (https://amp.pharm.mssm.
edu/Enrichr/), a comprehensive gene set enrichment analysis web-
based tool (Kuleshov et al., 2016). We used STRING (https://string-db.
org) for analyzing protein–protein interactions (Szklarczyk et al.,
2014).

3. Results

3.1. Gene expression analysis

To investigate the potential effects of WFs on NDGDs, we analyzed
the gene expression microarray data from the National Center for
Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/geo/
). We found that 903 genes were differentially expressed for WF ex-
posure with adjusted p≤ .01 and |logFC|≥ 1. Among them, 392 and
511 were up and down regulated respectively. Similarly, our analysis
identified the most significant differentially expressed genes for each
NDGD after various steps of statistical analysis. We identified differ-
entially expressed genes, 774 (263 up and 511 down) in PD, 565 (291
up and 274 down) in AD, 501 (296 up and 205 down) in LGD, 725 (350
up and down) in ED and 834 (455 up and 388 down) in MSD. The cross-
comparative analysis was also performed to find the common differ-
entially expressed genes between WFs and each NDGD. We observed
that WFs shares 18, 16, 13, 19 and 19 differentially expressed genes
with PD, AD, LGD, ED and MSD respectively. To find the significant
associations among these NDGDs with WF exposure, we built two se-
parate disease relationships networks for up and down-regulated genes,
centered on the WF-affected genes as shown in Figs. 2 and 3 . Two
diseases are associated with each if there exist one or more common
genes in between these diseases (Moni and Liò, 2014). Noticeably, 2
significant genes, N4BD2L2 and NAAA are commonly differentially
expressed among WF exposure, LGD and WD; one gene DAAM1 is
commonly dysregulated among WF exposure, ED and MSD.

3.2. Pathway and functional association analysis

Pathways are the key to know how an organism reacts to pertur-
bations in its internal changes. The pathway-based analysis is a modern

Table 9
Gene ontologies associated with the significantly common dysregulated genes of the ED with WFs.

GO term Pathway Genes in the pathway Adjusted p-value

GO:0086069 Bundle of His cell to Purkinje myocyte communication DSP 8.07E−03
GO:0086073 Bundle of His cell-Purkinje myocyte adhesion involved in cell communication DSP 6.28E−03
GO:0030575 Nuclear body organization ETS1 7.18E−03
GO:0003223 Ventricular compact myocardium morphogenesis DSP 6.28E−03
GO:0002934 Desmosome organization DSP 8.07E−03
GO:0051639 Actin filament network formation COBLL1 8.07E−03
GO:1903708 Positive regulation of hemopoiesis N4BP2L2 7.18E−03
HP:0011902 Abnormal hemoglobin HBG2 1.25E−02
HP:0001663 Ventricular fibrillation DSP 8.97E−03
HP:0003445 EMG: neuropathic changes DCAF8 1.79E−02
HP:0011663 Right ventricular cardiomyopathy DSP 8.07E−03
HP:0001730 Progressive hearing impairment SERPINB6 1.70E−02

Table 10
Gene ontologies associated with the significantly common dysregulated genes
of the MSD with WFs.

GO term Pathway Genes in the
pathway

Adjusted p-
value

GO:0021795 Cerebral cortex cell migration EFHC1 6.28E−03
GO:0048678 Response to axon injury FLRT3 1.07E−02
GO:1902187 Negative regulation of viral

release from host cell
TRIM13 1.25E−02

GO:0014033 Neural crest cell differentiation KBTBD8 1.43E−02
GO:0006293 Nucleotide-excision repair,

preincision complex stabilization
CHD1L 1.96E−02

HP:0004311 Abnormality of macrophages LIPA 1.70E−02
HP:0001433 Hepatosplenomegaly LIPA 2.23E−02
HP:0100639 Erectile abnormalities FLRT3 2.84E−02
HP:0002612 Congenital hepatic fibrosis LIPA 3.37E−02
HP:0001522 Death in infancy LIPA 3.98E−02
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Fig. 4. Protein–protein interaction network of the significant genes dysregulated by the NDGDs and WF exposure.

Fig. 5. Disease network of WFGs with several NDGDs. Red
colored octagon-shaped nodes represent different categories
of NDGDs, Violet colored octagon-shaped nodes represent our
selected five NDGDs and round-shaped sky blue colored nodes
represent differentially expressed genes among WFGs. A link
is placed between a disorder and a disease gene if mutations
in that gene are known to lead to the specific disorder. (For
interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

H.K. Rana et al. Neurotoxicology 71 (2019) 93–101

98



technique to understand how different complex diseases are related to
each other by underlying molecular or biological mechanisms (Jin
et al., 2014). We analyzed pathways of the common differentially ex-
pressed genes using Enrichr, a comprehensive gene set enrichment
analysis web-based tool. Pathways of the commonly dysregulated genes
in between WFGs and each NDGD were analyzed using four databases
includes KEGG, WikiPathways, Reactome and BioCarta. We combined
pathways from four mentioned databases and identified the most sig-
nificant pathways of each disease after various steps of statistical ana-
lysis.

We observed that PD has five significant pathways as shown in
Table 1. Among these pathways, ‘GLUTAMATE NEUROTRANSMITTER
RELEASE Cycle’ is responsible to release the glutamate from the pre-
synaptic neuron and its binding to glutamate receptors on the post-
synaptic cell to generate a series of events that lead to the propagation
of the synaptic transmission (Reactome, 2008a). The pathway ‘Sphin-
golipid de novo biosynthesis’ is responsible to provide signals in mo-
lecules that regulate various biological functions (Sasset et al., 2016).
The pathway ‘intrinsic pathway for apoptosis’ is responsible to manage
a variety of intracellular stress signal including DNA damage, growth
factor withdrawal, unfolding stresses in the endoplasmic reticulum and
death receptor stimulation (Wikipathways, 2018a). Kinesins are a
super-group of motor proteins based on microtubule that has various
functions in the transport of vesicles, organelles, chromosomes, and
regulate microtubule dynamics (Lawrence et al., 2004). The pathway
‘Neurotransmitter Release Cycle’ is responsible to control electrical
signals passing through the axons in the form of action potential.

We observed that AD has four significant pathways as shown in
Table 2. Among these pathways, ‘Circadian rhythm pathway’ is re-
sponsible to feed and influence clocks in other tissues by hormone se-
cretion and nervous stimulation from the brain (Reactome, 2008b).
Sphingomyelin synthesis appears to be regulated primarily at the level
of this transport process through the reversible phosphorylation of
CERT. ‘Amyotrophic lateral sclerosis (ALS)’ is responsible for most
common motor neuron disease (Pratt et al., 2012). ‘MAPKinase Sig-
naling Pathway’ is responsible for manage signals of reactions that
regulate cell proliferation and apoptosis (Reactome, 2012).

We observed that LGD has six significant pathways as shown in
Table 3. Among these pathways, ‘Rap1 signaling pathway’ is re-
sponsible for controlling a variety of processes, such as cell adhesion,
cell polarity and cell-cell junction formation (Wikipathways, 2018b).
‘P53 signaling pathway’ manages various stress signals, including ac-
tivated oncogenes, oxidative stress and DNA damage.

We observed that ED has five significant pathways as shown in
Table 4. Among these pathways, ‘neurotransmitter release cycle’ is re-
sponsible to control electrical signals passing through the axons in the
form of action potential. ‘Glycogen metabolismserves’ serves as a major
stored fuel for several tissues. The keratinocytes function is to form a
barrier against environmental damage by fungi pathogenic bacteria,
parasites, viruses, and UV radiation.

We observed that MSD has five significant pathways as shown in
Table 5. Among these pathways, ‘Endocrine and other factor-regulated
calcium reabsorption’ is essential for numerous physiological functions
including muscle contraction, intracellular signalling processes, neu-
ronal excitability and bone formation (Boros et al., 2009). ‘Mineral
absorption’ provides mineral in the neural cell to sustain life. ‘Choles-
terol biosynthesis’ controls cholesterol to the nucleus and activating
genes.

3.3. Gene ontological analysis

The Gene ontology (GO) refers to a universal conceptual model for
representing gene functions and their relationship in the domain of
gene regulation. It is constantly expanded by accumulating the biolo-
gical knowledge to cover regulation of gene functions and the re-
lationship of these functions in terms of ontology classes and semantic

relations between classes (Bioportal, 2016). GO of the significantly
dysregulated genes were analyzed using Enrichr, a comprehensive gene
set enrichment analysis web-based tool (Kuleshov et al., 2016). GO of
the commonly differentially expressed genes (i.e., dysregulated genes
common to WFGs and each NDGD) for each NDGD and WFGs were
analyzed using two databases of Enrichr including GO biological pro-
cess and human phenotype ontology. We combined ontologies from two
mentioned databases and identified the most significant GO term of
each disease after various steps of statistical analysis. We observed that
15, 15, 24, 19 and 17 gene ontology classes are associated with the
significantly commonly dysregulated (i.e., dysregulated genes linking
WFGs and each NDGD) genes for WFs with the PD, AD, LGD, Ed and
MSD respectively as shown in Tables 6–10.

3.4. Protein–protein interaction analysis

Protein–protein interaction networks (PPINs) are the mathematical
representation of the physical contacts of proteins in the cell.
Protein–protein interactions (PPIs) are essential to every molecular and
biological process in a cell, so PPIs are crucial to properly understand
cell physiology in disease and healthy states (EBI, 2017). PPIs of the
differentially expressed genes were analyzed using STRING, a biological
database and web resource of known and predicted protein–protein
interactions. We constructed protein–protein interaction network of
significantly commonly dysregulated genes (i.e., dysregulated genes
common to WFGs and each NDGD) of all NDGDs using STRING. We
clustered into five different groups of interactions of five NDGDs as
shown in Fig. 4.

4. Discussion

We investigated the gene expression relationship of WF exposure
and neurodegenerative diseases (NDGDs) based on the associations of
genetics, signaling pathways, gene expression ontologies and pro-
tein–protein interactions network. For the purpose of our study, we
analyzed gene expression omnibus (GEO) microarray data from WFs,
Parkinson's disease (PD), Alzheimer's disease (AD), Lou Gehrig's disease
(LGD), Epilepsy disease (ED), multiple sclerosis disease (MSD) and
control datasets (Chowdhury et al., 2018). We found a good number of
significantly commonly dysregulated genes found among both WFGs
and NDGDs by gene expression analysis (Rahman et al., 2018). As there
have a good number of significantly commonly dysregulated genes
among WFGs and NDGDs, it indicates that WFGs are likely to have
influences on NDGD risk. Our two separate disease relationships net-
works for up- and down-regulated genes strongly indicated that WFGs
are linked to NDGDs as shown in Figs. 2 and 3 . The pathway-based
analysis is a new approach to understand how different complex con-
ditions can be related to each other through underlying molecular or
biological mechanisms (Hossain et al., 2018, 2018). We identified
pathways among dysregulated genes common to WFGs and each NDGD.
These identified pathways accorded that WF exposure could have a
strong association with NDGDs. Similarly, gene expression ontologies
and protein-protein interactions of common differentially expressed
genes determine that WF exposure may be a risk factor for several
NDGDs that may affect a welder's long term health.

We verified our results using the gold benchmark databases (dbGAP
and OMIM) and found that there are some shared genes between the
WFGs and NDGDs as shown in Fig. 5. We collected genes and disease
names from OMIM Disease, OMIM Expanded and dbGap databases
using differentially expressed genes among WFGs for cross checking the
validity of our study. We combined the diseases from three mentioned
databases and selected only neurodegenerative diseases (NDGDs) after
various steps of statistical analysis. Interestingly, we found our selected
five NDGDs among the list of collected NDGDs from the gold-bench-
mark databases as shown in Fig. 5. Moreover, we found our identified
genes in Fig. 5 had been shown in other studies to be associated with
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disease progression in NDGDs. Specifically, Liu et al. (2017) has shown
a link between NR4A2 and PD; Taguchi et al. (2005) found POU2F1 to
be linked to AD incidence; Häggmark et al. (2014) found SLC9A3R1
and SLC39A11 are associated with AD; Wang et al. (2017) found SCN1A
and FOS is associated with ED; Wang et al. (2017) showed SCN1A and
FOS to be linked to ED; and Mahurkar et al. (2017) showed GPC5 to be
linked to MSD. In summary, we have found that the welding fume as-
sociated genes have strong associations with progression of PD, AD,
LGD, ED and MSD and these findings are supported by previous work
on these neurodegenerative diseases by other researchers.

5. Conclusions

In this study, we have considered GEO microarray data from WFs,
PD, AD, LGD, ED, MSD and control datasets to analyze and investigate
the gene expression effects of WFs on neurodegenerative diseases
(NDGDs). We analyzed dysregulated genes, disease relationship net-
works, dysregulated pathways, gene expression ontologies and protein-
protein interactions of WFs and NDGDs. Our findings showed that WFs
have a strong association with genes dysregulated in NDGDs. This kind
of study will be useful for making genomic evidence based re-
commendations about the accurate disease prediction, identification
and therapeutic treatments. This study also will be useful indicate the
nature of dangerous effects that welding may pose to human health.
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