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To date the majority of disease- and trait-associated variants 
emerging from genome-wide association studies (GWAS)  
of neurologic and psychiatric diseases lie within nonprotein 

coding sequences. Several lines of evidence suggest that a propor-
tion of such variants are involved in transcriptional regulatory 
mechanisms, including modulation of enhancer elements1. Many 
regulatory elements are cell-type-preferential2,3, and therefore 
sequence variants with functional consequences are expected to 
manifest their effects more strongly in the cell type(s) most relevant 
to a specific disease phenotype.

Here we focused on systematically identifying all noncoding 
regulatory elements transcriptionally active in a morphologically, 
functionally, and biochemically distinct neuronal archetype: dopa-
mine neurons of the substantia nigra pars compacta in human 
midbrain. We hypothesized that genetic variation associated with 
diseases involving dopaminergic neurotransmission exerts its 
effects through modulation of enhancers functionally active in this 
particular type of neurons. Perturbations of the dopaminergic sys-
tem are important in the pathogenesis and treatment responses of 
many increasingly prevalent complex genetic diseases, including 
Parkinson’s disease (PD), which affects 0.5 million people4, schizo-
phrenia, which affects 2.2 million people5, and addiction, which 

affects 23.5 million people6 (all numbers are for the United States 
alone). In healthy people, these dopaminergic neurons shape how 
we conduct our everyday lives, encoding activities related to moti-
vation and reward. Signals from these neurons to the striatum have 
a profound impact on action learning and automatic movements, 
while projections to hippocampus and prefrontal cortex influence 
memories and behavior7.

Our analysis is powered by an integrated hardware–software 
solution for comprehensively detecting noncoding transcription in 
one single and minuscule RNA sample and mapping the variation  
in noncoding transcription to genetic variation within dopamine 
neurons across multiple individuals. This method combines the 
base-pair resolution and a comprehensive genome-wide view 
afforded by ultradeep, total RNA-sequencing with the positional and 
cytoarchitectural precision afforded by traditional light microscopy.

Results
Identification of noncoding elements actively transcribed in 
dopamine neurons of human brain. To systematically identify 
noncoding elements actively transcribed in dopamine neurons of 
human brain, we used laser-capture microdissection total RNA-
sequencing (lcRNAseq). Beyond traditional mRNA sequencing,  
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all polyadenylated and non-polyadenylated transcripts were 
ultradeeply sequenced using ribodepleted RNAs from ~40,400 
neurons laser-captured from 99 human postmortem brains and 
seven non-neuronal cell-type samples with an average of 178 mil-
lion reads per sample, yielding 2.0 ×​ 1010 pair-ended RNA-seq reads 
(Supplementary Table 1). Melanized neurons from the midbrain 
substantia nigra pars compacta of 86 high-quality human brains 
(dopamine neurons), pyramidal neurons from layers V/VI of the 
middle temporal cortex of ten brains, and pyramidal neurons from 
the primary motor cortex of three brains (pyramidal neurons) were 
laser-captured as described8–10 (Fig. 1a). Human fibroblasts from 
four individuals and peripheral blood mononuclear white cells 
(non-neuronal cells) from three individuals were analyzed in the 
same pipeline (Supplementary Figs. 1a and 2 and Supplementary 
Table 2). Cumulatively, we found that at least 64.4% of the human 
genome was transcribed to produce detectable RNAs in dopamine 
neurons of the human brain (Fig. 1b and Methods), consistent 
with observations from the Encyclopedia of DNA Elements project 
(ENCODE) in cultured cells11. More than half of these reads (54.7%) 
mapped to intergenic or intronic regions (Fig. 1c), indicating a  
massive hidden layer of active noncoding transcription in human 
brain neurons.

Enhancer RNA (eRNA) expression is a marker for active enhanc-
ers12–14 and can be used to estimate enhancers active in a particu-
lar cell type at given time13. Genetic enhancer elements control 
the cell-type-specific activation of gene expression. We designed 
a sophisticated method to systematically identify noncoding ele-
ments, including known and novel candidate enhancers that are 
significantly expressed in dopamine neurons, pyramidal neurons, 
and non-neuronal cells, using a stringent six-step filter (Fig. 1d and 
see Methods for details). We required aggregated reads for each cell 
type to achieve local peak read densities (‘summits’) with detection 
P values <​ 0.05 compared to randomly sampled background; with-
out overlap with exons from annotated genes and transcription start 
site-proximal regions; with a minimal element length of 100 bp; and 
without splicing junction reads (to avoid multiexon noncoding 
RNAs). We then rigorously determined the statistical significance 
of each of these candidate transcribed noncoding elements across 
multiple independent samples of the same cell type (for example, 
across 86 independent samples for dopamine neurons) with a  

family-wise adjusted P ≤​ 0.05 taken as evidence of statistically  
significant expression.

We discovered 71,022, 37,007, and 19,690 transcribed noncod-
ing elements (TNEs) in dopamine neurons, pyramidal neurons, 
and non-neuronal cells, respectively, with detection P values equal 
or better than the Bonferroni-corrected significance thresholds of 
7.0 ×​ 10−7, 5.1 ×​ 10−7, and 6.6 ×​ 10−7 for each of the three cell types, 
respectively (Supplementary Table 3). The length distribution of 
TNEs peaked around 400 bp (Supplementary Fig. 3a), consistent 
with that of the eRNAs previously reported by FANTOM513 and of 
activity-regulated eRNAs found in mouse cortical neurons12. Unlike 
promoter regions, TNEs showed a GC content distribution similar 
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Fig. 1 | Identification of noncoding elements actively transcribed 
in dopamine neurons of human brain. a, lcRNAseq was used to 
systematically identify noncoding elements transcribed in dopamine 
neurons and pyramidal neurons of human brains. We analyzed dopamine 
neurons of the substantia nigra from 89 high-quality autopsy brains, 
pyramidal neurons from temporal cortex of ten brains and from motor 
cortex of three brains, and fibroblasts from four individuals and peripheral 
blood mononuclear white cells (non-neuronal cells) from three individuals. 
b, Cumulatively, 64.4% of the human genome was transcribed in dopamine 
neurons of human brain. c, More than half (54.7%) of reads mapped to 
intergenic or intronic genome sequences. d, Schematic of the method for 
identifying TNEs: a stringent six-step filter was applied to the RNA-seq 
reads aggregated from dopamine neurons, pyramidal neurons, and non-
neuronal cells. Briefly, a putative TNE site was defined as a genomic region 
with RNA-seq reads density higher than the background transcriptional 
level (black dashed line) and the peak unique reads per million (RPM; 
vertical arrow) achieving a local detection P ≤​ 0.05. TNEs were required 
to exceed 100 bp; known genes and splice junctions were excluded. Finally, 
TNEs were required to achieve Bonferroni-corrected expression P ≤​ 0.05 
across all samples of one cell type (indicated by multiple copies of the 
schematic) compared to length-matched, randomly selected background 
regions using a binomial distribution. See Methods and Supplementary  
Fig. 14 for details. e, Venn diagram with TNEs detected in dopamine 
neurons, pyramidal neurons, and non-neuronal cells.
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to that of random genomic background regions, and this is incon-
sistent with PCR bias (Supplementary Fig. 3b). The vast majority of 
TNEs (92%) localized to intronic regions (Supplementary Fig. 3c) 
and tended to be positionally biased toward the 5′​ end of gene body, 
a pattern opposite to that of partial RNA degradation, which prefer-
entially degrades 5′​ ends (Supplementary Fig. 3d). TNEs accounted 
for 31.42% and 32.35% of reads transcribed in dopamine and pyra-
midal neurons, respectively, compared to 21.08% in peripheral 
cells; and 26.38% of dopamine neuron TNEs were also presented in 
pyramidal neurons (Fig. 1e; Fisher’s exact test P <​ 2.2 ×​ 10−16, odds  
ratio =​ 3.22), but only 7.85% in peripheral cells. Subprograms of 
protein-coding mRNAs and noncoding RNAs (ncRNAs) expressed 
in dopamine neurons, pyramidal neurons, and non-neuronal cells 
were also characterized (Supplementary Fig. 4, Supplementary 
Table 4, and Methods).

TNEs identify putative enhancers active in dopamine neurons. 
Of the 71,022 TNEs active in dopamine neurons, 23,625 (33%) coin-
cided with enhancers defined by one or more genomic or epigenetic 
features (Fig. 2 and see Methods). These features included DNase I 
hypersensitivity sites (DHS)15, characteristic histone modifications 
(such as high H3K27ac, high H3K4me1, and low H3K4me3)16, 
capped analysis of gene expression (CAGE)13-defined enhancers, 
transcriptional coactivator P30017 binding sites, transcription fac-
tor ‘hotspots’18, and sequence conservation19. Of the 71,022 TNEs, 
20,505 coincided with chromatin-state-defined putative active 
enhancers from Roadmap Epigenomics20 and 1,212 TNEs coincided 
with CAGE-defined putative active enhancers13. The overlap was 
significantly higher than expected by chance alone (P <​ 2.2 ×​ 10−16 
by permutation test; Supplementary Table 5).

We performed two experiments to directly benchmark TNE 
to putative enhancers predicted by two other methods applied to 
the same source (Fig. 2b). Of the TNEs called by our pipeline in 
the human cortex dataset from PsychENCODE21, 44.1% (14,904 of 
the 33,762 TNEs) overlapped with a strong transposase-accessible 
chromatin assay sequencing (ATAC-seq) peak (which maps chro-
matin accessibility22) identified in the same samples (Fig. 2b). This 
was a significantly higher than expected by chance (P <​ 2.2 ×​ 10−16 
by permutation test). In SK-N-SH (human neuroblastoma cell 
line) cells, 21.7% of called TNEs (11,465 of 52,733) overlapped 
with putative enhancer features (Fig. 2b; for example, H3K27ac, 
H3K4me3, transcriptional regulator CCCTC-binding factor 
(CTCF) chromatin immunoprecipitation sequencing (ChIP-seq), 
P300 ChIP-seq, DNase I hypersensitivity, and transcription factor 
hotspots) delineated by ENCODE in this cell line (P <​ 2.2 ×​ 10−16  
by permutation test), similarly to the 25% overlap previously 
reported between CAGE-defined and chromatin state-predicted 
putative enhancers13.

We grouped 71,022 dopamine TNEs into three classes according 
to the presence or absence of supporting features (see Methods). 
Specifically, 11,835 TNEs coincided with multiple supportive fea-
tures (designated class I TNEs), i.e., a known DHS site plus at least 
one of five additional external features (enhancer chromatin state 
(chromHMM), CAGE-enhancer, P300 peak, transcription factor 
binding sites hotspot, and highly conserved noncoding elements 
between human and zebrafish; Fig. 2c,d). A second set of 11,790 
TNEs was supported by at least one of the five external features, 
but lacked additional DHS evidence (designated class II TNEs; 
Fig. 2c,d). A third set of 47,397 TNEs had no previously reported 
supporting external features (termed class III TNEs; Fig. 2c,d). 
Bidirectional transcription of select dopamine TNEs was seen 
using CAGE in substantia nigra of four of the same brains used for 
lcRNAseq (Supplementary Fig. 5a). Moreover, transcription factor 
binding sites were enriched in TNE sites, based on in silico analysis 
of ChIP-seq peaks and motif scanning (Supplementary Fig. 5b–d 
and Supplementary Note).

Replication of TNEs in independent cohorts. We replicated  
pyramidal neuron TNEs in three independent cohorts representing 
36, 498, and 795 human brain samples, respectively (Fig. 3a), and 
additionally confirmed select TNEs with two secondary methods 
(Fig. 3b and Supplementary Fig. 5a). Of the 37,007 pyramidal neuron 
TNEs discovered, 34,077 (92.1%) were replicated in an independent 
cohort of pyramidal neurons laser-captured from layer V/VI of 36 
new human autopsy brains (Fig. 3a). We identified 14,679 (39.7%) 
and 10,718 (29%) of 37,007 pyramidal neuron TNEs from ribode-
pleted total RNA-seq data of frontal cortex (PsychENCODE21) and 
four cortex areas (Accelerating Medicines Partnership–Alzheimer's 
Disease Consortium (AMP-AD)), respectively (Fig. 3a). Select 
brain cell-type-specific TNEs were confirmed with a secondary 
method, quantitative PCR (qPCR), in laser-captured dopamine 
neurons (Fig. 3b). As expected, qPCR analysis of control samples 
lacking template or reverse transcriptase showed no expression of 
TNE. Finally, we confirmed a subset of dopamine neuron TNEs by 
performing CAGE on four substantia nigra homogenate samples 
(Supplementary Fig. 5a and Methods).

TNE signatures accurately cluster dopamine and pyramidal  
neurons. A majority (57.5%; 40,846 of 71,022) of the detected TNEs 
were exclusively expressed in human dopamine neurons. They were 
not detected in pyramidal neurons or non-neuronal cells. Thirty-
nine percent (14,487 of 37,007) of pyramidal neuron TNEs were 
exclusive to this cell type; 64% (12,601 of 19,690) of non-neuronal 
TNEs were exclusively expressed in non-neuronal cells (Fig. 1e).  
A signature based on cell-type-exclusive TNEs clustered 106 indi-
vidual samples with 99.1% accuracy (Fig. 3c), similar to the classi-
fication accuracy afforded by mRNAs and ncRNAs (Supplementary  
Fig. 4). Normalized counts for the 100 most-abundant exclusive 
TNEs in each cell type are visualized in Fig. 3d. Cell-type-preferential 
expression of three dopamine neuron-exclusive TNEs, three pyra-
midal neuron-exclusive TNEs, and one TNE common to both dopa-
mine and pyramidal neurons (in intron 4 of the PD gene SNCA23,24; 
Supplementary Fig. 6a) were confirmed by qPCR in addition to 
lcRNAseq (Fig. 3b and Supplementary Fig. 6b). These TNEs were in 
close proximity to histone marks typical of active enhancers25 as well 
as multiple transcription factor occupancy sites25 (Fig. 3b).

In vivo validation of TNE enhancer activity in zebrafish, mice, 
and neuronal cells (Fig. 4). To determine whether TNEs can func-
tion as enhancers, we tested 15 TNEs (Supplementary Table 6) in 
vitro in human SK-N-MC neuroblastoma cells and non-neuronal 
HeLa cells. TNE sequences were inserted into a modified pGL4.10 
vector (as in ref.13), for example, upstream of an EF1a basal promoter 
separated by a synthetic poly-A signal or transcriptional pause site 
to avoid promoter effects. Eleven of the 15 TNEs (73%) significantly 
increased reporter activity in neuronal cells compared to control 
inserts representing random background sites (Fig. 4b). Eight TNEs 
induced more than a two-fold increase in reporter signal (Fig. 4b), 
and all but one TNE exhibited considerably higher enhancer activ-
ity in the neuronal cells compared to HeLa cells (Fig. 4b).

VMP1-TNE (chr17:57,863,430–57,864,538) is located in intron 7 
of the human VMP1 gene, a key regulator of autophagy. The VMP1-
TNE site is evolutionary conserved among vertebrates and actively 
transcribed in human brain dopamine neurons, pyramidal neu-
rons, and non-neuronal cells. VMP1-TNE was a class I TNE with a 
bimodal distribution of RNA-seq reads (centered on the DHS peak; 
Fig. 4a), bidirectional CAGE signal (Fig. 4a), occupancy by 90 TFs 
(Fig. 4a), and high levels of H3K4me1 and H3K27ac (Fig. 4a), and it 
was predicted as putative enhancer by ChromHMM26 in Roadmap 
Epigenomics20. It was highly active in neuroblastoma and HeLa cells 
in culture (Fig. 4b). To assess the activity of VMP1-TNE in vivo, 
transient transgenic reporter assays were carried out in zebrafish 
embryos. The PCR-amplified sequence was cloned upstream of 
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zebrafish gata227 minimal promoter, linked to an mRuby2 reporter 
gene in a modified pDB896 vector. A similarly sized sequence 
amplified from a nonconserved intergenic region with very low 

or no signal for enhancer marks was used to generate a control 
construct. Embryos injected with Has.VMP1-TNE:gata2:mRuby2 
(Fig. 4c–g) reporter construct showed reproducible enrichment 
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of enhancer activity in a specific subset of telencephalic neurons 
near the eyes and in cardiac cells proximal to the atrioventricu-
lar canal compared to embryos carrying control construct (Has.
control:gata2:mRuby2; Fig. 4c–g and Supplementary Table 7), con-
sistent with the expression pattern of miR-21 (http://zfin.org/), the 
putative target gene in the synteny block as suggested by compara-
tive genomics (Supplementary Fig. 7).

The VISTA consortium has established one of the largest reposi-
tories of in vivo enhancer screens during mouse development28. 
Sequences overlapping with 96 dopamine neuron TNEs were evalu-
ated by VISTA28, 63 (65.6%) of which were positive enhancers in 
vivo in mice, considerably more than expected by chance alone 
(P =​ 3.91 ×​ 10−3 by Fisher’s exact test; Fig. 4h). The enrichment for 
VISTA-validated enhancers was similar for class I and III TNEs 
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Medicines Partnership–Alzheimer's Disease Consortium; MSBB, Mount Sinai VA Medical Center Brain Bank; psychENCODE BrainGVEX (https://www.
synapse.org/#!Synapse:syn4590909); b, Cell-type-preferential expression of three dopamine neuron-exclusive TNEs, three pyramidal neuron-exclusive 
TNEs, and one TNE common to both dopamine and pyramidal neurons (in intron 4 of the PD gene SNCA; see also Supplementary Fig. 6a) was confirmed 
additionally by qPCR (box plots, top panel) in addition to lcRNAseq (pile graphs, bottom panels; Supplementary Fig. 6b). Relative mRNA abundance of a 
classical dopamine-neuron marker, the dopamine transporter gene SLC6A3 (DAT), was assayed as positive control (dopamine neuron samples (DA), n =​ 3; 
temporal cortex pyramidal neurons (TCPY), n =​ 3; primary human fibroblasts (FB), n =​ 2; human peripheral blood mononuclear white cells (PBMC), n =​ 2). 
Pile graph tracks show RNA-seq read densities in DA, PY, and non-neuronal cells (NN), as well as corresponding histone enhancer marks and transcription 
factor (TF) ChIP-seq peaks from ENCODE25. Box plots indicate the median (bold line), the 25th and 75th percentiles (box edges), and the most extreme 
data point no more than 1.5×​ the interquartile range from the box (whiskers). c, A signature based on cell-type-exclusive TNE clustered 106 individual 
samples with 99.1% accuracy by t-distributed stochastic neighbor embedding (t-SNE). d, The heatmap visualizes normalized counts for the 100 most-
abundant TNEs exclusively expressed in DA, PY, and NN.
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(Supplementary Fig. 6c). Notably, 35 of these 63 (55.6%) VISTA-
validated TNEs drove reporter gene expression in neuronal tissues, 
particularly midbrain, hindbrain, and the neural tube. For example, 
a neuron-specific TNE located in the intron of autism susceptibil-
ity candidate 2 gene (AUTS2) enhanced reporter activity specifi-
cally in the midbrain in 11 of 15 mouse embryos tested28 (Fig. 4i 
and Supplementary Fig. 6d). In comparison, of 31 exclusively non-
neuronal TNE evaluated by VISTA, 14 (45%) were positive enhanc-
ers, and only 9 (29%) were active in neuronal tissues. Collectively, 
these test cases show that select TNE sites enhance reporter gene 
expression in human neuronal cells and in neurons in the brains of 
zebrafish and in mice.

Variants associated with diseases of the dopamine system are 
over-represented in TNE actively transcribed in dopamine neu-
rons. GWAS variants for 61 diseases and traits were significantly 
enriched within noncoding elements functional in dopamine neu-
rons with P values below the Bonferroni-corrected significance 
threshold of 9.64 ×​ 10−6 by Fisher’s exact test (for example, 0.01 
divided by 1,037, the total number of traits in the NHGRI GWAS 
catalog29) compared to random background (Fig. 5a and Methods). 
By contrast, only 43 traits were significantly enriched in promot-
ers, 11 of them in exons (Fig. 5a). Consistent with our hypothesis, 
variants associated with 11 diseases and medications perturbing 
the dopamine system were significantly enriched in dopamine neu-
ron TNE sites (Fig. 5a,b). These included variants associated with 
schizophrenia (P =​ 1.75 ×​ 10−40), PD (P =​ 5.05 ×​ 10−9), addiction 
(P =​ 1.33 ×​ 10−8), and bipolar disorder (P =​ 5.05 ×​ 10−6). Moreover, 
pharmacogenetic variants associated with response to antipsychot-
ics were enriched in these TNE sites (P =​ 4.39 ×​ 10−14). Classical 
antipsychotics are dopamine receptor antagonists that are the stan-
dard treatment for schizophrenia. Variants associated with response 
to iloperidone, a specific antipsychotic medication for schizophre-
nia, were also enriched (P =​ 1.94 ×​ 10−6). Variants associated with 
response to the dopamine reuptake inhibitor methylphenidate (used 
to treat attention deficit hyperactivity disorder) were enriched in 
dopamine neuron TNE sites (P =​ 8.74 ×​ 10−9). By contrast, none of 
these trait variants were enriched in promoters or exons. Notably, 
traits relating to sleep phenotypes, which are modulated by dopa-
mine neurons (for example, refs.30,31) and perturbed in PD32, were 
highly enriched in these TNE sites (P =​ 2.6 ×​ 10−55; Fig. 5a,b).  
Strikingly, cardiovascular traits (Fig. 5a,b); diseases and traits 
clustering around obesity, weight, and diabetes (Fig. 5a,b); and 
brain-volume-related traits (Fig. 5a,b) were also over-represented 
in dopamine neuron TNEs compared to random genomic back-
ground. The enrichment density for dopamine system traits was 
similar for each of the three TNE classes (Supplementary Fig. 8a).

Dopamine neuron TNEs harbor a higher density of GWAS  
variants linked to traits of the dopamine system than enhancer 
predictions without cell-type-specificity. GWAS single-nucleotide 
polymorphism (SNP) density analyses showed a higher density of 
GWAS variants for dopamine system traits in TNE active in mid-
brain dopamine neurons compared to FANTOM5-predicted and 
ChromHMM-predicted putative enhancers, exons, promoters, 
introns, intergenic regions, and length-matched random regions 
(Supplementary Fig. 9).

Expression quantitative trait locus analysis reveals transcribed 
noncoding elements in synapse genes as main cell-autonomous 
effectors of cis-acting genetic variation. Expression quantita-
tive trait locus (eQTL) analysis for TNEs, ncRNAs, and mRNAs 
was—for the first time to our knowledge—performed across cell-
type-specific transcriptomes from 84 human brains (Fig. 5c). We 
measured or imputed 4,283,750 SNPs and associated them with 
normalized TNE expression using Matrix eQTL33 (see Methods).  

Of these, 8,676 cis-acting TNE eQTLs achieved a false discovery  
rate of less than or equal to 0.05, comprising 3,461 unique expres-
sion-associated SNPs (eSNPs) and 151 unique TNEs (Fig. 5c). On 
average, 23 eSNPs were associated with expression changes in one 
TNE. Furthermore, 3,381 ncRNA eQTLs were significant (FDR 
≤​ 0.05), comprising combinations of 3,320 unique eSNPs and 
52 unique expressed ncRNA genes (Fig. 5c and Supplementary  
Fig. 10). By contrast only 1,150 mRNA eQTLs reached statistical 
significance (FDR ≤​ 0.05), comprising combinations of 676 unique 
eSNPs and 46 unique associated expressed protein-coding genes 
(Fig. 5c and Supplementary Fig. 10).

These 151 cis-regulated TNEs physically localized to introns of 102 
host genes. These host genes were highly enriched in Gene Ontology 
(GO) terms related to synapse function (P <​ 4.79 ×​ 10−7 by enrich-
ment analysis using the hypergeometric test; see Methods and see 
Supplementary Table 8 for full results) and in medical subject head-
ing terms for brain disorders with P =​ 5.1 ×​ 10−10 (Supplementary 
Table 9). Mutations of several of these synapse-related host genes can 
cause abnormal brain development and function (Supplementary 
Fig. 10 and Supplementary Note). Taken together, this gene-regula-
tory analysis indicates that genetic variation is linked to variation in 
the activity of putative enhancers in synapse genes, including several 
loci linked to Mendelian brain disorders.

PD-associated variants cis-regulate a noncoding element in the 
KANSL1 gene. Leveraging 495,085 SNPs associated with one or 
more of 1,037 human diseases or traits (19,188 disease-associated 
SNPs from the NHGRI-EBI GWAS catalog29, extended via impu-
tation of proxy SNPs with r2 ≥​ 0.8), we identified 1,989 disease-
associated SNPs that influence expression of 19 TNEs, 4 ncRNAs, 
and 5 mRNAs in cis. To distinguish coincidental co-localizations of 
GWAS and eQTL associations, we used regulatory trait concordance 
(RTC) scores34, which assess whether a cis-eQTL and a trait associa-
tion are tagging the same underlying functional effect. Applying a 
stringent RTC threshold of 0.85, we identified 23 disease-associated 
TNE eQTLs for which the trait and TNE expression associations 
may be tagging the same effect in dopamine neurons (Fig. 5c and 
Supplementary Table 10). Of these, 17 disease-associated eQTLs 
were identified for ncRNAs and 1 for mRNAs.

Eight of these 23 TNE-eQTLs linked PD-associated variants to 
a putative eRNA expressed from intron 2 of the KANSL1 gene with 
P values as low as 1.57 ×​ 10−7 (Supplementary Table 10). The cor-
responding RTC scores were 0.91–1.00, indicating that the GWAS-
derived disease variants explain the eQTL observation. Six of the 
eight PD-associated eSNPs mapped to the exact same 712,000-bp-
long linkage disequilibrium (LD) block on chromosome 17q21  
(here termed LD2; Fig. 5d) and were significantly associated with 
upregulation of the same KANSL1-TNE1 in carriers of risk alleles 
(6.46 ×​ 10−7). Two additional eSNPs mapped to a nearby LD block 
(LD3; Fig. 5d). Conditional eQTL analysis adjusting for the lead 
GWAS variant rs17649553 suggested that some eSNPs in LD2 
and one in LD3 might carry an independent signal (Methods, 
Supplementary Fig. 11, and Supplementary Table 11). Chromosome 
17q21 is the second-most-important GWAS peak for sporadic PD 
(after SNCA) and unequivocally associated with susceptibility for 
PD, with P values as low as 2.23 ×​ 10−48 in a meta-GWAS of more 
than 100,000 cases and controls35. There is precedent that copy-
number variation in the KANSL1 locus causally impacts brain 
function, as microdeletions of the locus cause Koolen de Vries syn-
drome, a neurological disease with severe learning disability and 
developmental delay. In addition to upregulating the KANSL1-TNE, 
the same PD-associated variants in LD2 (but not those localized to 
LD3) were associated with downregulation of an expressed pseu-
dogene, LRRC37A4P (P =​ 2.36 ×​ 10−7; Supplementary Table 10).  
LRRC37A4P is localized near KANSL1 under the chromosome 
17q21 GWAS peak. By contrast, eQTL associations for MAPT 
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Fig. 4 | In vivo validation of TNE enhancer activity in zebrafish, mice, and neuronal cells. a, VMP1-TNE in intron 7 of human VMP1. This evolutionary 
conserved TNE is supported by classical epigenetic features: a putative active enhancer including open chromatin (DNase)20, high levels of H3K4me1 and 
H3K27ac25, and bidirectional CAGE signal13. b, Enhancer reporter assays for TNE-defined putative enhancers in HeLa S3 (cyan) and SK-N-MC neuroblastoma 
line (magenta) cells. TNE regions are labeled Pxxx (see Supplementary Note for details); C001 and C002, enhancers from FANTOM5 (positive controls)13; 
R001, random genomic background region (negative control); n =​ 4 transfections were independently performed and analyzed for each TNE in HeLa S3 and 
another n =​ 4 independent transfections in SK-N-MC cells. *P <​ 0.05; **P <​ 0.01; ***P <​ 0.001; two-tailed Student’s t test. Box plots as in Fig. 3. c–g, Group 
view of embryos injected with control:gata2:mRuby2 and VMP1-TNE:gata2:mRuby2. Enhanced reporter activity was observed in the embryos injected 
with VMP1-TNE-containing reporter construct (d) compared to the control element (c). In addition, embryos injected with VMP1-TNE:gata2:mRuby2 (d) 
show tissue-specific reporter expression in a group of telencephalic neurons in proximity to the eye (arrows) and atrioventricular canal (arrowheads). 
Background (ectopic) activity (stars) predominantly in skin yolk muscle and autofluorescence from blood and eye pigmentation (stars) was observed in 
both VMP1-TNE:gata2:mRuby2- and control:gata2:mRuby2-injected embryos. Scale bars, 200 µ​m. (e) A brightfield reference image of the embryo regions 
shown in f,g. (f,g) High-magnification view on the head and heart region of ETvmat2:gfp transgenic embryos injected with control:gata2:mRuby2 and VMP1-
TNE:gata2:mRuby2. GFP reporter expression in these embryos was used as marker for the heart ventricle (dashed line). Expression in the telencephalic 
neurons (arrows) and atrioventricular canal (arrow heads) in VMP1-TNE:gata2:mRuby2 injected embryos can be seen. Stars, ectopic activity. The experiment 
was repeated independently with similar results four times, with 478 and 408 embryos screened in total for VMP1-TNE and control constructs, respectively 
(see Supplementary Table 7 for details). Scale bars, 100 µ​m. h, Putative enhancers evaluated in mice by VISTA28. Of 1,789 putative enhancers tested in mice 
by VISTA (left two bars), 929 (52%) were active in mice. By contrast, 63 (66%) of 96 TNE-defined putative enhancers were found to be active enhancers  
in mice (*P =​ 3.91 ×​ 10−3, hypergeometric test). i, Reporter activity of a neuron-specific intronic TNE located in the AUTS2 gene is seen in the midbrain  
(red insert) and neuronal tube (blue insert) of mouse embryonic day (E) 11.5 embryos by VISTA28. Embryos have an average crown–rump length of 6 mm.
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mRNA, a biological candidate in this region, did not reach genome-
wide significance (Fig. 5e–g). The inverse eQTL relations between 
the lead GWAS-derived SNP, rs17649553, and KANSL1-TNE1 and 
LRRC37A4P, respectively, were confirmed by a second method, 
cell-type-specific qPCR (Supplementary Fig. 12a). Moreover, 
this association was independently replicated in a second cohort 
of neurons laser-captured from 31 high-quality control brains 
(Supplementary Fig. 12b and Supplementary Table 12). Third, the 
rs17649553–LRRC37A4P eQTL association was further confirmed 
in 56 substantial nigra and 96 frontal cortex samples from the 
Genotype-Tissue Expression Consortium (GTEx; Supplementary 
Fig. 12c,d), which used a poly-A+ selection protocol that does not 
allow for assaying KANSL1-TNE1 RNA.

Discussion
eRNA expression is a feature of active enhancers12–14 and can 
be used as a marker to estimate their activity in a particular cell 
type13. Genome elements with enhancer chromatin marks that are 
transcribed into eRNAs have substantially higher validation rates 
in in vitro enhancer assays than enhancers defined exclusively by 
chromatin states13. Moreover, in transgenic mouse reporter assays, 
over half of putative enhancers identified on the basis of deep RNA-
sequencing functioned as enhancers with reproducible activity 
in the predicted tissue36. Many chromatin-defined enhancers are  
not regulatorily active in a particular cellular state, but may be  
active in other cells37 or are premarked for fast regulatory activity 
upon stimulation38.

We showed a highly specific program of enhancer elements that 
are actively transcribed in physiologically and morphologically dis-
tinct, disease-relevant dopamine and pyramidal neurons, in situ, 
in human brains. Nearly two-thirds (64.4%) of the genome were 
cumulatively transcribed in dopamine neurons, including 71,022 
noncoding elements, many of which were consistent with histone-
state and CAGE-defined active enhancers, as well as with in vivo 

regulatory functions in zebrafish and mouse neurons. We pro-
vided mechanistic evidence that some of these elements function 
as enhancers of transcription in zebrafish brain, in the midbrain 
of mice, and in human cultured neuronal cells using genetics and 
reporter assays. Moreover, multiple independent lines of evidence—
including chromatin state, CAGE expression, and transcription 
factor binding analyses— support the view that these transcribed 
noncoding elements are putative enhancers specifically active in 
dopamine neurons.

Variants associated with 11 diseases or medications perturbing 
the dopamine system were enriched in dopamine neuron-specific 
TNE sites, much more so than in promoters and or exons (Fig. 5a,b). 
Risk alleles associated with major disorders of dopaminergic neuro-
transmission, schizophrenia, PD, addiction, and bipolar disorder 
overlocalized to active TNE sites. Compellingly, even pharmacoge-
netic variants linked to treatment response were enriched in active 
enhancers. These observations suggest that GWAS variants might 
modulate enhancers active in dopamine neurons and thereby regu-
late the transcriptional program underlying susceptibility for these 
neuropsychiatric diseases. Finally, risk alleles associated with sleep-
related phenotypes were enriched in TNE sites (P =​ 2.6 ×​ 10−55). 
Indeed, dopamine neurons have a role in sleep regulation30,31, and 
REM sleep behavior disorder is an early sign of PD32.

eQTL analysis for putative eRNAs was performed across cell-
type-specific transcriptomes from 84 human brains (Fig. 5c). We 
thereby uncovered transcribed noncoding elements in synapse 
genes as a main cell-autonomous effector of cis-acting genetic  
variation in dopamine neurons. Notably, the number of TNE  
eQTLs greatly surpassed the number of mRNA eQTLs and ncRNA 
eQTLs identified.

The second most significant GWAS locus for sporadic PD is 
located on chromosome 17q21. This locus shows unequivocal  
evidence for association with PD. The regulated gene has not been 
established, but MAPT has been commonly assumed to be the 

Fig. 5 | Putative enhancers active in dopamine neurons link genetic variation to neuropsychiatric disease. a, GWAS diseases and traits with variants 
significantly enriched in dopamine TNEs, exons, promoters, and random background regions. Variants for 61 diseases and traits were enriched within  
TNE-defined putative active enhancers in dopamine neurons with P values below the Bonferroni-corrected significance threshold of 9.64 ×​ 10−6 by  
one-sided Fisher’s exact test compared to 71,022 random genomic background regions (see Methods). The largest share of traits (n =​ 11) enriched within 
putative active enhancers clustered around perturbations of the dopamine system (pink). By contrast, only 43 traits were enriched in promoters (including 
two involving the dopamine system), 11 in exons, and none in random background regions. b, Diseases and traits significantly enriched in TNE-defined 
putative enhancers in dopamine neurons. Variants associated with eleven diseases or medications perturbing the dopamine system (horizontal pink 
bars) were dramatically over-localized in dopamine neuron TNEs. The number of disease-variants colocalizing to dopamine TNEs for each trait as well as 
odds ratios (in parenthesis) are shown next to each bar. X axis, P values by one-sided Fisher’s exact test (–log10 scale); y axis, diseases and traits. ADHD, 
attention deficit hyperactivity disorder; ASD, autism spectrum disorder; MDD, major depressive disorder; ANCA, antineutrophil cytoplasmic antibody; 
ALL, acute lymphoblastic leukemia; COPD, chronic obstructive pulmonary disorder; QRS duration, a feature on an electrocardiogram. c, eQTL analysis 
reveals transcribed noncoding elements in synapse genes as main cell-autonomous effectors of cis-acting genetic variation in human brain dopamine 
neurons. Manhattan plots for TNE eQTLs (top), ncRNA eQTLs (middle), and mRNA eQTLs (bottom) are shown. Diamonds, eSNPs with RTC ≥​ 0.85; colors 
indicate different groups of diseases. Gene symbols of the host loci for these eSNPs are shown (n.a., intergenic regions). Y axis, P values of eSNP-transcript 
associations from Matrix-eQTL linear regression model (n =​ 84). A false-discovery rate (FDR) of 0.05 was considered significant (red dashed line);  
QT interval, another feature on an electrocardiogram. d, PD-associated variants cis-regulate a noncoding element in the KANSL1 gene in dopamine 
neurons. The locus plot visualizes P values (y axis) and chromosomal location (x axis) of genetic variants associated with susceptibility for PD in the 
chromosome 17q21 GWAS peak35 (chr17:43,000,000–45,300,000 in hg19). Red diamond, lead susceptibility variant rs17649553; other PD-associated 
variants in the locus are represented by circles (r2 with the lead SNP is color-coded). Forty-five RefSeq genes are physically localized under this GWAS 
peak (box). LD blocks are shown as red horizontal bars. P values extracted from http://www.pdgene.org for GWAS meta-analysis of 13,708 PD cases 
and 95,282 controls are shown. e,f, Increased expression of KANSL1-TNE1 (right, red) and decreased expression of LRRC37A4P (left, blue) in dopamine 
neurons of individuals carrying one (CT) or two (TT) copies of the risk allele (CT/TT) compared to individuals without the risk allele (CC). e, Pile graphs 
of average RNA-seq reads density aligning to the exon (E) 3–E2 and E2–E1 junctions of LRRC37A4P are visualized for individuals carrying (navy) or not 
carrying (cyan) the risk allele. f, Genomic landscape of KANSL1-TNE1 expression in noncarriers (red-brown) and carriers (red) of the risk allele. KANSL1-
TNE1 is expressed from intron 2 of the KANSL1 gene (chr17:44,218,414–44,219,042). Note nearby KANSL1-TNE2 and -TNE3 showing similar expression 
patterns. KANSL1-TNE1 is expressed from a chromatin-state-defined enhancer. Lower tracks display DNase uniformed signal (Roadmap20); stacked 
H3K27ac, H3K4me1, and H3K4me3 signals (ENCODE25); chromHMM-predicted enhancer based on histone modifications (Roadmap20); and transcription 
factor ChIP-seq peak clusters (ENCODE25). g, Boxplots representing the eQTL relation between the lead PD-associated rs17649553 variant and transcript 
abundance of KANSL1-TNE1, LRRC37A4P, and MAPT in dopamine neurons. Box plots as in Fig. 3b. P values from Matrix-eQTL linear regression model, 
n =​ 84 biologically independent samples.
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prime candidate. Using eQTL analysis, we provide striking evidence 
pointing at regulation of a putative eRNA expressed from intron 2 
of the KANSL1 gene as a gene-regulatory mechanism for this sus-
ceptibility locus. The KANSL1 locus is important for normal brain 
function. Microdeletions cause Koolen de Vries syndrome, a neu-
rological disease with severe learning disability and developmental 
delay39. The KANSL1-TNE1 eQTL association was confirmed by 
cell-type-specific qPCR and replicated in an independent cohort. 
By contrast, eQTL associations for MAPT did not reach statistical 
significance in dopamine neurons (P =​ 0.32). Long-read sequenc-
ing and larger datasets will be required to comprehensively illumi-
nate the relation between structural variation and transcriptional 
function in this complex locus.

The KANSL1-TNE1 eQTL appears to be a ‘super-eQTL’ of vari-
ants associated with eight dopaminergic, radiographic, pulmonary, 
and dermatologic traits all localized to the same LD2 block on chro-
mosome 17q21 and all associated with KANSL1-TNE1 upregula-
tion (Fig. 5c). Six of these seemingly disparate traits are clinically 
implicated in multisystem features of PD. Progressive supranuclear 
palsy (trait 2) leads to neurodegeneration of dopamine neurons 
(Fig. 5c and Supplementary Table 10). Men with early-onset male 
pattern baldness (trait 3) have a 28% higher risk of developing  
PD40. Genetic variants for intracranial volume (traits 4 and 5) are 
related to PD41, and PD patients are prone to reduced bone min-
eral density (trait 6)42,43. Thus, PD and seven clinically related traits  
with variants localizing to an LD block on chromosome 17q21 
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are associated with KANSL1-TNE1 expression through a uniform 
gene-regulatory mechanism.

This study was powered by innovations both in wet and dry 
lab methods and provides an online resource of mRNAs, ncRNAs, 
and TNE expression in dopamine and pyramidal neurons, as well 
as dopamine neuron-specific mRNA, ncRNA, and TNE eQTLs 
(BRAINcode, http://www.humanbraincode.org). Our method 
allows detection of the full complement of mRNAs, ncRNAs, and 
active enhancers in a single and minuscule RNA sample and com-
bines the base-pair resolution and a comprehensive genome-wide 
view afforded by ultradeep total RNA-sequencing with the posi-
tional and cytoarchitectural information afforded by traditional 
light microscopy. It can be transferred to other morphologically or 
regionally defined brain and peripheral cells of critical relevance to 
health and disease. Moreover, the three-in-one approach (detect-
ing three types of RNAs: TNEs, mRNAs, and ncRNAs) offers sim-
plicity and noise reduction compared to approaches relying on 
separate methodologies, experiments, and source materials for 
assaying enhancers and mRNAs. lcRNAseq offers advantages to 
RNA sequencing of brain region homogenates (a suspension of all 
types of glial, neuronal, immune, and vascular cells resident in a  
tissue block) or of sorted nuclei without precise information on 
their three-dimensional origins in human brain and morphologi-
cal features44,45. Conversely, fluorescent in situ sequencing (FISSEQ) 
and other in situ hybridization-based methods preserve valuable 
positional information, but the number of transcripts probed has 
been limited46.

This analysis showed that putative enhancers active in dopamine 
neurons link genetic variation to neuropsychiatric traits. It has clear 
applications for the genetics of more than 20 million patients in the 
United States alone with perturbed dopamine systems, in narrow-
ing the search window for functional associations and therapeutic 
nodes, and for defining the regulatory networks that underpin this 
archetype of a human brain neuron.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41593-018-0223-0.
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Methods
Sample collection and processing. We started with 107 high-quality frozen 
postmortem human control brain samples identified from Banner Sun Health 
Institute, Brain Tissue Center at Massachusetts General Hospital, Harvard Brain 
Tissue Resource Center at McLean Hospital, University of Kentucky ADC Tissue 
Bank, University of Maryland Brain and Tissue Bank, Pacific Northwest Dementia 
and Aging Neuropathology Group (PANDA) at University of Washington 
Medicine Center, and Neurological Foundation of New Zealand Human Brain 
Bank. Detailed quality measures and demographic characteristics of these 
samples are shown in Supplementary Table 1. Median RNA integrity numbers 
(RIN) were 7.8, 7.8, and 7.2 for substantia nigra samples (used to laser-capture 
dopamine neurons), temporal cortex (used to laser-capture temporal cortex 
pyramidal neurons), and motor cortex samples (used to laser-capture motor cortex 
pyramidal neurons), indicating high RNA quality. Median postmortem intervals 
were exceptionally short, with 3 h for substantia nigra, 3 h for temporal cortex, 
and 13 h for motor cortex samples, further consistent with highest sample quality 
(Supplementary Table 1).

The 107 brain samples represented 93 subjects without clinicopathological 
diagnosis of a neurodegenerative disease meeting the following stringent 
inclusion and exclusion criteria. Inclusion criteria: (i) absence of clinical or 
neuropathological diagnosis of a neurodegenerative disease, for example,  
PD according to the UKPDBB criteria47, Alzheimer’s disease according to  
NIA-Reagan criteria48, or dementia with Lewy bodies by revised consensus 
criteria49; for the purpose of this analysis incidental Lewy body cases (not 
meeting clinicopathological diagnostic criteria for PD or other neurodegenerative 
disease) were accepted for inclusion; (ii) PMI ≤​ 48 h; (iii) RIN50 ≥​ 6.0 by Agilent 
Bioanalyzer (good RNA integrity); and (iv) visible ribosomal peaks on the 
electropherogram. Exclusion criteria were: (i) a primary intracerebral event as 
the cause of death; (2) brain tumor (except incidental meningiomas); (3) systemic 
disorders likely to cause chronic brain damage. We also included eight non-brain 
tissue samples as controls, including five samples of peripheral blood mononuclear 
cell (PBMC) and three fibroblasts (FB), provided by Harvard Biomarker Study and 
Coriell Institute. This study was approved by the Institutional Review Board of 
Brigham and Women’s Hospital.

We then performed laser-capture microdissection (LCM) on the brain 
samples to extract neurons from different brain regions. LCM was performed 
similarly to previously reported procedures by us and others8,51–53. For each 
substantia nigra sample, 300–800 dopamine neurons, readily visualized in 
HistoGene-stained frozen sections based on hallmark neuromelanin granules, 
were laser-captured using the Arcturus Veritas Microdissection System (Applied 
Biosystems). For each temporal cortex (middle gyrus) or motor cortex sample, 
about 300 pyramidal neurons were outlined in layers V/VI by their characteristic 
size, shape, and location in HistoGene-stained frozen sections and laser-captured 
using the Arcturus Veritas Microdissection System (Applied Biosystems). Total 
RNA was isolated and treated with DNase (Qiagen) using the Arcturus Picopure 
method (Applied Biosystems), yielding approximately 7–8 ng RNA per subject. 
Total RNA was linearly amplified into 5–10 µ​g of double-stranded cDNA using 
the validated, precise, isothermal RNA amplification method implemented in 
the Ovation RNA-seq System V2 (NuGen)54,55. Unlike PCR-based methods that 
exponentially replicate original transcript and copies, with this method only the 
original transcripts are linearly replicated54,55, and amplification is initiated at the 
3′​ end as well as randomly, thus allowing for amplification of both mRNA and 
nonpolyadenylated transcripts54,55. Sequencing libraries were generated from 500 ng 
of the double-stranded (ds) cDNA using the TruSeq RNA Library Prep Kit v2 
(Illumina), according to the manufacturer's protocol. The cDNA was fragmented, 
and end repair, A-tailing, adaptor ligation were performed for library construction. 
Sequencing library quality and quantity control was performed using the Agilent 
DNA High Sensitivity Chip and qPCR quantification, respectively. Libraries were 
sequenced (50 or 75 cycles, paired-end) on Illumina HiSeq 2000 and 2500 at the 
Harvard Partners Core.

Genotyping and imputation. Each sample was genotyped using the Infinium 
Omni2.5Exome-8 BeadChips (Illumina), which includes more than 2.5 million 
tagged SNPs from the HapMap and 1000 Genomes Project. The total 98 samples 
from 93 subjects were genotyped in three batches, with technical replicates for five 
subjects. We computed the pairwise IBD of genotypes between replicates using 
PLINK2, and reached an average proportion of 0.9991 IBD. Thus, we kept unique 
sample and replicates in batch 1 for further quality control analysis.

We applied PLINK256 (v1.9beta) and in-house scripts to perform rigorous 
subject and SNP quality control (QC; Supplementary Fig. 13a) that included  
(i) SNP GC score filtering, (ii) subject call rates, (iii) gender misidentification,  
(iv) genotype call rates, (v) Hardy–Weinberg equilibrium testing, (vi) test mishaps, 
(vii) heterozygosity outliers, and (viii) IBS/IBD filtering. In total, we excluded  
5,249 SNPs with GC <​ 0.25; 1,955 SNPs not in the genome assembly we used 
(hg19); 20,049 SNPs with call rates <​ 95%; 57 SNPs with Hardy–Weinberg 
equilibrium P <​ 10−6; 1,295,546 SNPs with MAF <​ 0.05; and two subjects with  
IBS/IBD PI_HAT >​ 0.9. In total, 91 subjects with 1,235,673 SNPs passed QC.

We employed SHAPEIT257 (v2.5) to perform pre-phasing and then IMPUTE257 
(v2.3.1) to impute the post-QC genotyped markers in autosomal chromosomes 

using reference haplotype panels from the 1000 Genomes Project (Phase 3), which 
include a total of 77.8 million SNPs in 2,504 individual samples. For genotyped 
markers in chromosome X, we used the 1000 Genomes Project Phase I Integrated 
Release Version 3 as reference haplotype in 1,092 individuals. The genotyped calls 
of imputed genotypes with posterior probability <​ 0.9 were marked as missing, 
and we kept biallelic genotypes for further analysis. After genotype imputation, we 
filtered out imputed SNPs with MAF <​ 0.05 and info metric <​ 0.5 that had been 
compared in a previous review58, which resulted in 4,889,047 imputed SNPs. In 
total 6,124,720 SNPs were passed to downstream eQTL analysis.

RNA sequencing data analysis pipeline. RNA-seq raw files in FASTQ format  
were processed in a customized pipeline. For each sample, we first filtered out 
reads that failed vendor check or were too short (<​15 nt), after removing the  
low-quality ends and possible adaptor contamination using fastq-mcf with options 
“-t 0 –x 10 –l 15 –w 4 –q 10 –u”. We then checked the quality using FastQC 
and generated k-mer profile using kpal59 for the remaining reads. Reads were 
then mapped to the human genome (GRCh37/hg19) using Tophat60 (v2.0.8) by 
allowing up to two mismatches and 100 multiple hits. Reads mapped to ribosomal 
RNAs or to the mitochondrial genome were excluded from downstream analysis. 
Gene expression levels were quantified using FPKM (fragments per kilobase of 
transcript per million mapped reads). Only uniquely mapped reads were used to 
estimate FPKM. To calculate normalized FPKM, we first ran Cuffquant61 (v2.2.1) 
with default arguments for genes annotated in GENCODE (v19), and then ran 
Cuffnorm with parameters “-total-hits-norm –library-norm-method quartile” on 
the CBX files generated from Cuffquant.

Sample QC based on RNA-seq data. We performed sample QC similarly  
to ‘t Hoen PA et al.62. In brief, we ran k-mer profiling for filtered reads using 
kpal59, and calculated the median profile distance for each sample. Samples with 
distances clearly different from the rest of the samples were marked as outliers 
(Supplementary Fig. 1c). We also calculated pair-wise Spearman correlations 
of gene expression quantification across samples and measured the median 
correlation (D-statistics) for each sample (Supplementary Fig. 1b,d). Samples 
with D-statistics markedly different from the rest of the samples were deemed 
outliers. Moreover, we tested for concordance between reported clinical sex and 
sex indicated by the expression of female-specific XIST gene and male-specific 
Y-chromosome gene (Supplementary Fig. 1e). Samples from the first batch with 
a relative low sequencing depth were also excluded. In addition to these samples 
used for cell-type-specific transcriptome analyses, we analyzed various additional 
control samples (for example, amplification controls, tissue homogenate) and 
technical replicates (Supplementary Fig. 1f–h). In the end, 106 of 115 samples 
passed QC and were used for downstream analysis (Supplementary Fig. 1a).

Defining the cumulative transcribed region by RNA-seq. Previously, ENCODE 
reported that, in cell lines, 62.1% (cumulatively) of the genome was transcribed 
with at least five mapped reads (Supplementary Table 11 of ref.11). In our study, 
we rigorously accounted for sequencing depth and thus considered a genomic 
sequence as transcribed only if it had a read coverage of more than 0.05 RPM 
(unique reads per million). This corresponds to approximately 10 mapped reads 
(considering that for each sample we had, on average, 178 million mapped 
reads). With this rigorous definition, we showed that the cumulative coverage of 
transcribed regions in the dopamine neuron samples is 64.4%.

Defining catalogs of expressed ncRNAs and mRNAs. Normalized expression 
values of the 106 samples that passed QC were used as input. We first excluded 
genes with FPKM of zero in all 106 samples. Next, surrogate variable analysis and 
batch adjustment was performed using the sva63 and ComBat64 packages in R. 
In brief, the FPKM values were log10-transformed after adding a pseudocount of 
0.0001. FPKM values within each group were adjusted for age, sex, and RIN, as 
well as hidden covariates, using frozen surrogate variable analysis (sva63). ComBat64 
was used to adjust for batch effects. Median expression values for each gene were 
calculated for each cell type. To rigorously exclude low-abundance genes, genes 
with median adjusted FPKM <​ 0.01 in a cell type were not considered expressed 
in that cell type. GENCODE genes meeting these criteria were used to create a 
detailed catalog of mRNAs and ncRNAs expressed in a cell type.

Genes ‘exclusive’ to dopamine neurons, pyramidal neurons, or non-neuronal 
cells, respectively, were defined as those that achieved a median adjusted  
FPKM ≥​ 0.01 in only one of these three cell types (with adjusted FPKM <​ 0.01 in 
each of the other two cell types). We used the t-SNE package in R for t-distributed 
stochastic neighbor embedding analysis and the heatmap2 package for clustering 
and visualization purposes of cell-type-exclusive ncRNAs and mRNAs.

Definition of TNE regions. A schematic of the TNE identification pipeline is 
shown in Fig. 1d and a flow chart in Supplementary Fig. 14a. TNE identification 
analysis was performed separately for dopamine neurons, pyramidal neurons, and 
non-neuronal cells. We first calculated the reads density values (in RPMs) at each 
genomic nucleotide position for all samples. We then calculated the aggregation 
signal for each cell type by computing the trimmed mean (for example, trimming 
the 10% highest and lowest data points) of RPMs across the total n samples 
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from the cell type of interest for each nucleotide position. We then scanned this 
aggregation signal in UCSC BegGraph format with a six-step filter:

	(1)	 Scan each nucleotide position to filter for (keep for analysis) genomic regions 
with RPMs higher than the background level. The background level is defined 
as the average read density across the nuclear genome (i.e., the sum of all 
RPMs in a cell type divided by the total number of base pairs comprising the 
nuclear genome, for example, 3,095,677,412 for hg19). The borders of the 
selected genomic regions for each candidate TNE site were thus defined by 
the first and the last nucleotide for each TNE site that met the RPM cutoff;

	(2)	 For each candidate region from step 1, require the summit RPM  
(i.e., maximal RPM in the region) to achieve a detection P ≤​ 0.05 compared 
to transcriptional background noise. The transcriptional background was 
defined by randomly selecting 1,000,000 single nucleotide positions outside 
of the EXCLUSION region (see Methods) and calculating the distribution 
of their RPMs. The background signal was fitted to a normal distribution 
using the fitdist(x,’norm’) function in R. See Supplementary Fig. 14b for the 
distribution of background signals. Neighboring regions were merged into 
one region if the genomic distance between them was less than 100 bp;

	(3)	 Exclude any regions overlapping with the EXCLUSION regions defined  
below (for example, known genes, CAGE-defined promoters, and genomic 
gap regions);

	(4)	 Require candidate regions to be longer than 100 bp;
	(5)	 Exclude candidate regions containing junction sites supported by more  

than ten spliced reads in each of at least five samples. Junction sites were 
combined from the junctions.bed files of Tophat output;

	(6)	 For candidate regions meeting these criteria, we then required statistically 
significant expression across samples. We first computed the mean RPM 
values of each candidate region and then estimate the significance (P value) 
compared to expression noise observed in random background regions  
of the sample. P values were computed by comparing the expression levels  
to the random background distribution of each sample, for example,  
P =​ 1 – Fn(x), where Fn(x) is the empirical cumulative distribution function 
of expression levels of the same number of background regions with matched 
length randomly picked up beyond the EXCLUSION regions. Then for each 
candidate region, we computed the number of samples ‘called’ with P ≤​ 0.05 
and calculated the probability of observing this number of called samples by 
chance alone using a binomial distribution with the population probability 
set at 0.05. Finally, we rigorously corrected the binomial P values for each 
candidate region for the total number of tests performed using Bonferroni 
corrections. Candidate regions with Bonferroni-corrected P ≤​ 0.05 were 
considered significantly expressed in the given cell type.

Regions excluded from the construction of random background regions. We 
defined ‘EXCLUSION’ as a set of regions to exclude when constructing the  
random background regions. The EXCLUSION regions included any known 
transcribed regions (i.e., [–500, +​500] bp of annotated exons from GENCODE 
(v19)65, UCSC known genes, lincRNA from NONCODE (v4)66, and rRNA from 
repeatMasker), FANTOM5 CAGE-defined promoters (i.e., [–500, +​500] bp  
regions flanking the CAGE-predicted TSS), and genomic gap regions in the  
UCSC hg19 assembly.

The n values of background regions picked for the analysis of dopamine 
neurons, pyramidal neurons, or non-neuronal cells equaled the n values of 71,022, 
37,007, and 19,690 TNEs detected in each of the three cell types, respectively. 
Background regions were randomly picked from the human genome (without the 
EXCLUSION regions) with length distributions matched to each TNE set.

Defining exclusive vs. shared TNEs. TNEs were further annotated into ‘shared’ 
and ‘exclusive’ classes depending on whether they overlapped (i.e., by at least 1 nt)  
with TNEs detected in the other cell types. Cell-type-exclusive TNEs were 
exclusively detected in one cell type. They did not overlap with TNEs detected in 
another cell type. TNEs detected in more than one cell type were termed shared. 
Infrequently, a dopamine neuron TNE overlapped with more than one pyramidal 
neuron TNE. Thus, in Fig. 1e the intersections between dopamine neuron TNEs 
and pyramidal neuron TNEs (or dopamine neuron TNE and non-neuronal 
TNE) show the number of dopamine neuron TNEs that physically overlap with 
any pyramidal neuron TNE (or non-neuronal TNE). Similarly, the intersections 
between pyramidal neuron TNEs and non-neuronal TNEs (not shared with 
dopamine neurons) show the number of pyramidal neuron TNEs that physically 
overlap with any non-neuronal TNE. The area-proportional Venn diagram was 
generated using eulerAPE67.

Characterization of TNEs using regulatory annotations. To explore the 
possible role of TNEs in gene regulation, we characterized TNEs with various 
known regulatory data in human brain (if available) or cell lines. For example, we 
used chromHMM ‘enhancer’ states in any of the ten human brain tissues in the 
Roadmap Epigenomics Project for histone-defined enhancers20,26. Enhancers are 
marked as the E6, E7, or E12 states from the 15-state chromHMM segmentation 
defined by five core marks: H3K4me3, H3K4me1, H3K36me3, H3K27me3, 

and H3K9me3. The ten brain tissues are hippocampus middle, substantia 
nigra, anterior caudate, cingulate gyrus, inferior temporal lobe, angular gyrus, 
dorsolateral prefrontal cortex, germinal matrix, fetal brain female, and fetal  
brain male. We used DNase-seq peak called in fetal brain of the Roadmap 
Epigenomics Project20 for DNase hypersensitivity sites. For TF binding, we used  
the TF ChIP-seq peak clusters (wgEncodeRegTfbsClusteredV3 from UCSC 
Genome Browser) from the ENCODE project25,68, which contains the most 
comprehensive TF ChIP-seq repository (to date). Other regulatory data include 
EP300 binding peaks from the ENCODE project23, CAGE-defined enhancers  
from the FANTOM5 project13, and sequence conservation score (phyloP)  
based on 100 vertebrate genomes comparison69.

By converting these features into binary codes (1 or 0) according to their 
presence or absence in TNE regions, we further built a simple classifier using  
these binary codes. For example, we defined a TF binding hotspot as a region 
containing at least 5 distinct TFs ChIP-seq peaks. An epigenomic enhancer  
was present if any of the chromHMM enhancer states (E6, E7, E12) overlapped  
with the region. For conservation, we overlapped TNEs with HCNEs (highly 
conserved noncoding elements) as defined in Ancora19 and defined ‘being 
conserved’ as a TNE overlapping with an HCNE between human and zebrafish 
with at least 70% similarity and 50 nt in length. We built the weighted classifier 
with relative two-fold higher weight for DNase signal and implemented it  
in R using the function daisy().

GWAS SNP enrichment analysis. We first downloaded the GWAS-associated 
SNPs from the NHGRI-EBI GWAS catalog70 (v1.0, downloaded on 4 November, 
2015), which includes 19,188 SNP–disease/trait associations after successfully 
porting it back to the hg19 assembly. We then extended this set to 495,085 
autosomal associations by including proxy SNPs imputed from the 1000 
Genomes project. Proxy SNPs were extracted using SNAP71 from either of three 
populations in the 1000 Genomes Pilot 1 dataset with distance limit of 250 kb 
and linkage disequilibrium (LD) r2 threshold of 0.8. Nonassociated SNPs were 
extracted from dbSNP (build 137). We calculated the number of trait-associated 
and nonassociated SNPs that physically localized (or did not localize) to TNE, 
promoters (unique locations of all GENCODE v19 protein-coding gene TSSs 
±​ 200 bp), exons (unique locations of all GENCODE v19 protein-coding gene 
transcript inner exons), or random regions (100,000 genomic regions of 400 bp 
randomly selected beyond the TNEs, FANTOM5 permissive enhancers, and 
EXCLUSION regions defined above), respectively. Only diseases/traits with more 
than three associated SNPs localizing to TNEs were considered for this analysis. 
For each genomic feature associated with a disease/trait with an odds ratio >​ 1, 
we performed a Fisher’s exact test. P values equal to or below 9.64 ×​ 10−6 (i.e., 0.01 
divided by 1,037, the total number of diseases/traits tested in NHGRI-EBI GWAS 
catalog as of 4 November, 2015) were considered statistically significant.

Validating enhancer activity in HeLa S3 and neuroblastoma cells. PCR primers 
for the amplification of TNE-defined enhancer candidates and control regions 
from genomic DNA were designed using the Primer3web (v4.0.0)72, and restriction 
sites SalI and BamHI were separately added to 5′​ end of the sense and antisense 
primer. Combined primer sequences were prevalidated with UCSC’s In-Silico PCR 
web tool and synthesized by Thermo Fisher Scientific. All primers sequences are 
listed in Supplementary Table 6.

The modified vector pGL4.10_mod3_EF1α​ was kindly provided by RIKEN, 
and its structure is also described in Supplementary Fig. 9d in their publication13. 
In brief, an EF1a basal promoter fragment was inserted into HindIII and NheI sites 
of the promoterless pGL4.10 (Promega) to construct the pGL4.10EF1a vector, and 
then the BamHI- and SalI-containing fragment (as the enhancer insertion site) was 
removed and reinserted at the SpeI site located upstream of the synthetic poly(A) 
signal/transcriptional pause site to generate modified versions of the pGL4.10EF1a 
vector. The poly(A) site was inserted between the enhancers insertion site and the 
basal promoter is to avoid read-through from the enhancer, since we expect that 
many of our test elements are transcribed.

The PCR reaction was performed in 50 µ​L reaction buffer to amplify each 
sequence of interest from 100 ng of human cerebellum tissue gDNA using a One 
Taq DNA polymerase Kit (New England Biolabs). The PCR product was digested 
with BamHI and SalI (New England Biolabs), and the restriction DNA fragment 
(insert) was isolated using agarose gel electrophoresis and purified by the MinElute 
Gel Extraction Kit (Qiagen). The pGL4.10_mod3_EF1α​ vector was also digested 
with BamHI and SalI, and the double-digested DNA (vector) was isolated and 
purified in the same way as the insert. Using T4 DNA Ligase (New England 
Biolabs), 100 ng of insert and 20 ng of vector were ligated in 10 µ​L reaction buffer; 
1 µ​L of ligation reaction buffer was transferred to 100 µ​L of DH5α​-competent cells 
(Invitrogen). Positive colonies were selected by colony PCR and correct insertion 
in the plasmid was confirmed by sequencing. Cloned plasmids for transfections 
were purified using the QIAamp DNA Midi Kit (Qiagen).

HeLa-S3 cells were cultured in MEM (Gibco) supplemented with 10% FBS 
(Gibco), 100 U/mL penicillin and streptomycin (Gibco). SK-N-MC neuroblastoma 
cells were cultured in DMEM (Gibco) supplemented with 10% FBS (Nichirei 
Bioscience Inc.), MEM (WAKO) supplemented with 10% FBS (Gibco), and  
100 U/mL penicillin and streptomycin (Gibco). A total of 7.5 ×​ 103 cells per well 
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of HeLa-S3 cells and 4 ×​ 104 cells per well SK-N-MC cells were seeded in 96 well 
plates 24 h before transfection.

W cotransfected 190 ng of plasmids inserted with the PCR products and  
10 ng of pGL4.73 Renilla luciferase plasmid (Promega) into HeLa-S3 and 
SK-N-MC cells, respectively, using Lipofectamine 2000 (Invitrogen), according to 
the manufacturer’s instructions. Each transfection was performed independently 
three times. After 24 h, the luciferase activities were measured by a Gen5 
Microplate Reader (BioTek) using the Dual-glo luciferase assay system (Promega) 
according to the manufacturer’s instructions.

Validating enhancer activity in zebrafish. Selected TNEs with potential 
enhancer activity and one negative control element (a nonconserved intergenic 
sequence region with very low or no signal for enhancer marks such as DNase I 
hypersensitivity, H3K4me1, or H3K27ac) were amplified from human genomic 
DNA using primers (Supplementary Table 6). PCR products were purified 
using NucleoSpin Gel and a PCR Clean-up Kit (Macherey-Nagel) and cloned 
upstream of the zebrafish gata2 promoter73 linked to an mRuby2 reporter gene 
into a modified pDB896 vector (a gift from D. Balciunas, Temple University). 
The cloning procedures were performed using an In-Fusion HD Cloning Kit 
(Clontech) according to the manufacturer’s instructions, into a BamHI linearized 
vector. Plasmid DNA was purified using a Qiagen-tip 20 miniprep kit (Qiagen) and 
verified by restriction digest and sequencing.

Zebrafish stocks (Danio rerio) were kept and used according to Home Office 
regulations (UK) at the University of Birmingham. For these experiments, the 
enhancer trap transgenic line ETvmat2:GFP74 was used. Adults were crossed 
pairwise and eggs were collected and injected within 20 min after fertilization. 
Microinjection solutions contained 20 ng/μ​L of plasmid DNA and 0.1% of 
phenol red (Sigma). Injections were performed through the chorion and into the 
cytoplasm of zygotes using an analog microinjector MINJ-1 (Tritech Research). 
About 150–200 eggs were injected per construct, and experiments were  
replicated at least three times. Embryos were kept in E3 Medium containing  
50 µ​g/mL gentamicin (Thermo Fisher Scientific) and 0.003% phenylthiourea 
(Sigma) at 28.5 °C.

Injected embryos were screened for expression during the first 5 d 
postfertilization and group images were taken on Zeiss Axio Zoom V16 stereo 
microscope. Selected embryos showing specific expression pattern were imaged  
at the relevant developmental stage on a Zeiss Lightsheet Z1 microscope  
with 20×​ objective and 0.5 optical zoom. Stacks containing 250–300 slices  
with 2-μ​m thickness were acquired, and maximum intensity projections were  
made using Zeiss ZEN Black Software.

eQTL analysis pipeline. The eQTL analysis was performed for both GENCODE 
genes and TNEs using the 84 subjects for which lcRNAseq data from dopamine 
neurons as well as genotyping data were available. For genes, we first filtered for 
genes with FPKM >​ 0.05 in at least ten individuals, then transformed FPKM 
to rank-normalized gene expression. In brief, the FPKM values were log10-
transformed (adding a pseudocount of 0.01). The measurements for each gene 
were transformed into a normal distribution while preserving relative rankings 
(quantile normalization) and the mean and s.d. of the original measurement. 
For TNEs, the expression distribution was close to a normal distribution and 
thus quantile normalization was not indicated. Moreover, our TNE identification 
method already selected for TNEs pervasively expressed across multiple 
individuals. We then performed surrogate variable analysis (SVA) with the sva 
R package63 to adjust for the effects of known covariates, including batch, age, 
gender, RIN, PMI, and read-length. Adjusted expression values extracted from 
fsva() function were used for downstream eQTL analysis. We used RLE (relative 
log expression) plots to visually inspect the effects of covariate adjustment. We 
also filtered out SNPs with missing values or with MAF ≤​ 0.05 in the 84 subjects. 
Matrix-eQTL33 was applied for cis-eQTL analysis, with the cis window defined  
as 1 megabase between the SNP and the nearest end of a gene or TNE.  
Nominal P values were generated for SNP–gene pairs in linear regression  
mode. See Supplementary Fig. 13b for detail.

TNE–host gene function enrichment analysis. We found that 151 cis-regulated 
TNEs physically localized to introns of 102 host genes. Gene-set enrichment 
analysis was performed using the C5 gene sets (GO terms) implemented in the 
MSigDB database using the hypergeometric test. Each gene set contained genes 
annotated to the same GO term. For each gene set, the hypergeometric test was 
performed for k – 1, K, N – K, and n, where k is the number of TNE host genes 
that are part of a GO term gene set, K is the total number of genes annotated to the 
same GO term gene set, N is the total number of all known human genes, and n is 
the number of genes in the query set. The top 50 GO terms enriched in these TNE 
host genes are shown in Supplementary Table 8 (all with FDR q <​ 0.05).

We also evaluated whether there was specific enrichment among cis-regulated 
TNEs in genes associated with brain disorders. We used diseases in MeSH 
C10 (nervous system diseases) or F03 (mental disorders) for brain disorders, 
and associated disease to genes using GenDisNet database. The disease–gene 
association was extracted from DisGeNet75 (http://www.disgenet.org/) filtered with 
GDA >​ 0.1. For all annotated protein-coding genes, we performed Fisher’s exact 

test based on whether a gene was associated with brain disorder and a gene hosted 
a cis-eQTL TNE (Supplementary Table 9).

TF binding motif enrichment analysis. For TFs with ENCODE ChIP-seq, we 
extracted their peak coordinates from the wgEncodeRegTfbsClusteredV3 file 
downloaded from UCSC Genome Browser, which contains 4,380,444 TF binding 
peaks from 161 TFs in total. We also downloaded 579 nonredundant TF motifs 
in vertebrate from JASPAR (version 2018)76 and then scanned the whole genome 
with the motifs using the program FIMO77 (default parameters with P <​ 10−4) to get 
418,034,884 putative binding sites. For each TF, Fisher’s exact test was performed 
to determine whether observed occurrences of TF peaks (for ENCODE ChIP-
seq) or binding sites (for JASPAR motifs) in TNEs were significantly enriched 
more than expected. In brief, for each TF in JASPAR, we assigned the full set of 
putative binding regions of JASPAR motifs to one cell of the 2 ×​ 2 table according to 
whether a region was bound by the TF or not and whether it overlapped with TNE 
or not. So, each TF had a 2 ×​ 2 table for Fisher’s exact test. This was similarly done 
for ENCODE TF ChIP-seq peaks.

We also tested the TF motif enrichment against random genomic sequences 
that were GC- and length-matched. We first extracted the GC- and length-matched 
random genomic background regions using the GC_compo (http://opossum.
cisreg.ca/GC_compo/), and then tested motif enrichment using the AME program 
in the MEME suite for all 579 nonredundant TF motifs in vertebrates from  
JASPAR CORE 2018.

Causality analysis for TNE, ncRNA, and mRNA eQTLs. We used the relative  
trait concordance (RTC) method to integrate QTL and GWAS data to detect 
potential disease-causing cis-regulatory effects according to the method described 
in ref.34. Using this method, an RTC score of 1 or near-1 indicates a potentially 
causal cis-regulatory effect.

To reduce redundancy in the output of the RTC analysis due to SNPs in strong 
LD, we pruned the result using the following rules. If multiple eSNPs shared the 
same LD block with a GWAS SNP, we only took the eSNP with best RTC score 
for each GWAS variant–transcript pair. If multiple eSNPs achieved the exact same 
top RTC score and they included the GWAS-derived variant itself, we selected 
the GWAS variant as the top eSNP. If multiple variants achieved the exact same 
top RTC score (but did not include the GWAS-derived variant itself), then we 
arbitrarily picked one of these top-scoring eSNPs as a representative eSNP.  
The pruned result is shown in Supplementary Table 10.

Three haplotype blocks were defined for the chr17q21 locus by plink2  
(plink –blocks–blocks-max-kb 1000) using the CEU subpopulation (n =​ 99) in the 
1000 Genome Project. Conditional eQTL analysis was performed for the chr17q21 
locus by including the rs17649553 genotype as an additional covariate. All eQTL 
pairs for genes/TNEs and SNPs in the locus (chr17:43,000,000–45,300,000 in hg19) 
are displayed in Supplementary Fig. 11. The majority of significant eQTL SNPs 
became insignificant after conditional analysis of rs17649553, except for 31 SNPs 
in KANSL1 (green dots on the top right corner) and one SNP in NSF (red dot on 
the top right corner). The 31 SNPs are in the same LD block as rs17649553.

Confirming TNE and mRNA expression by qPCR. Quantitative PCR was 
performed using SYBR Green Master Mix (Life Technologies) on an ABI 7900HT 
instrument (Applied Biosystems). Primer sequences are shown in Supplementary 
Table 6. To confirm the expression of lcRNAseq-derived TNE and mRNAs 
in dopamine neurons and pyramidal neurons, relative abundances of target 
TNE or mRNAs were evaluated by qPCR in linearly amplified laser-captured, 
microdissected samples from human substantia nigra or temporal cortex, as well 
as in linearly amplified human fibroblast and PBMC samples (Fig. 3b). TNE and 
mRNA expression was further confirmed in SK-N-MC human neuroblastoma cells 
and Human Universal Reference RNA (not shown). The human reference gene 
GUSB was used to normalize for RNA loading. Control samples lacking template 
and those lacking reverse transcriptase showed virtually no expression of these 
target TNEs, and mRNAs indicating that primer dimers or DNA contamination 
did not materially influence results. Expression values were analyzed using the 
comparative threshold cycle method24. Equal amplification efficiencies for target 
and reference transcripts were confirmed using melting curve analysis.

qPCR evaluation of chromosome 17q21 eQTL in a second, independent cohort 
of 31 individuals. Postmortem brain samples from 31 individuals were analyzed. 
These individuals were without a clinical or neuropathological diagnosis of 
neurodegenerative disease and met the inclusion and exclusion criteria described 
in the "Sample collection and processing" section. These new brain samples were 
obtained from Banner Sun Health Institute, Brain Tissue Center at Massachusetts 
General Hospital, and University of Kentucky ADC Tissue Bank. Pyramidal 
neurons were laser-captured from the middle temporal gyrus of each of the  
31 individuals and linearly amplified as described in the "Sample collection and 
processing" section. These samples showed exceptional quality, as documented  
by a median RNA integrity number 7.7 and a median postmortem interval of  
2.9 h (Supplementary Table 12). Relative expression abundances of the two target 
transcripts, KANSL1-TNE1 and LRRC37A4P, were assayed using SYBR Green 
qPCR (Life Technologies). The geometric mean of two reference genes, EIF4A2 
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and RPL13, was used to control for RNA loading. Control samples lacking template 
and those lacking reverse transcriptase showed virtually no detectable expression. 
Relative expression abundance of each of the target genes was compared in subjects 
carrying one or two risk alleles (CT or TT) and those without risk allele (CC) at 
rs17649553. A two-tailed Student’s homoscedastic t test was used to determine 
statistical significance. Data are visualized in Supplementary Fig. 12.

Technical confirmation of lcRNAseq eQTL results in laser-captured dopamine 
neurons by qPCR. We confirmed the lcRNAseq-based dopamine neuron eQTLs 
for KANSL1-TNE1 and LRRC37A4P, respectively, using SYBR Green qPCR  
(Life Technologies). The geometric mean of two reference genes, EIF4A2 and 
RPL13, was used to control for RNA loading. For this confirmatory experiment, 
laser-captured dopamine neuron samples from 35 substantia nigra samples (also 
used for lcRNAseq) were analyzed. Data are visualized in Supplementary Fig. 12.

Postmortem brain CAGE methods. Four human postmortem brains (healthy 
controls) were obtained from University of Maryland, University of Washington, 
and McLean Hospital, with the same inclusion/exclusion criteria as described 
above. Substantia nigra tissue samples were used for cap analysis gene expression 
(CAGE). We extracted 5 µ​g of total RNA from each sample using the RNeasy RNA 
Kit (Qiagen) with RNA integrity number (RIN) >​ 6. Use of postmortem samples 
for expression analysis was approved by the IRB of Brigham & Women’s Hospital.

Libraries were constructed using a published CAGEseq protocol adapted for 
next-generation sequencing78. Briefly, cDNA was synthesized from total RNA  
using random primers, and this process was carried out at high temperature  
in the presence of trehalose and sorbitol to extend cDNA synthesis through 
GC-rich regions in 5′​ untranslated regions. The 5′​ ends of messenger RNA  
within RNA–DNA hybrids were selected by the cap-trapper method and ligated to 
a linker so that an EcoP15I recognition site was placed adjacent to the start of the 
cDNA, corresponding to the 5′​ end of the original mRNA. This linker was used to 
prime second-strand cDNA synthesis. Subsequent EcoP15I digestion released the 
27-base pair (bp) CAGEseq reads. After ligation of a second linker, CAGEseq tags 
were polymerase-chain reaction amplified, purified, and sequenced on the HiSeq 
2000 (Illumina) using standard protocol for 50-bp single-end runs.

CAGEseq data were filtered for CAGEseq artifacts using TagDust79 (version 
1.12), removal of reads mapping to known ribosomal RNA genes and low-quality 
reads, mapping to the human genome (hg19) using Burrows–Wheeler Aligner 
(version 0.5.9) for short reads. Reads mapping to autosomes were used to minimize 
gender and normalization biases for subsequent analysis. Normalization was done 
based on the amount of reads per million sequence reads.

Data collection, statistical analysis, and data presentation. Sample sizes were 
based on the total number of available high-quality brain samples that met 
inclusion and exclusion criteria. No statistical methods were used to predetermine 
sample sizes, but our sample sizes are consistent with those recommended by the 
Genotype-Tissue Expression Consortium80. No randomization of data collection 
was performed in this study. Brains were selected based on predefined inclusion 
and exclusion criteria (see above). Sample outliers were rationally identified as 
described in the section “Sample QC based on RNA-seq data.” TNEs were defined 
in a rigorous six-step process as detailed in the section “Definition of TNE regions.” 
Data were not excluded based on arbitrary post hoc considerations. Data collection 
and analysis were not performed blind to the conditions of the experiments.  
Data distribution was assumed to be normal, but this was not formally tested, 
except that the normality of transcriptional background signal was checked  
by visual inspection.

R (The R Foundation for Statistical Computing, Vienna, Austria) was used  
for other statistical tests. Box plots were used to present multigroup comparisons. 
In all box plots, center line represents the median value; box limits, first and third 
quartiles; whiskers, the most extreme data point that is no more than 1.5 times the 
interquartile range from the box.

Statistical tests used in each figure: Fig. 4b, two-tailed Student’s t test; Fig. 4h, 
hypergeometric test; Fig. 5b, one-sided Fisher’s exact test; Fig. 5c, linear regression 
model in Matrix-eQTL; Fig. 5d, meta-GWAS from http://www.pdgene.org/;  
Fig. 5g, two-sided Student’s t test; Supplementary Fig. 5b–d, one-sided Fisher’s 
exact test; Supplementary Fig. 6c, hypergeometric test; Supplementary Fig. 10a, 
linear regression model in Matrix-eQTL; Supplementary Fig. 10b, linear regression 
model in Matrix-eQTL (for three-group comparisons) or two-sided Student’s t test 
(for two-group comparisons); Supplementary Fig. 11, linear regression model in 
Matrix-eQTL; Supplementary Fig. 12, two-sided Student’s t test.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Code availability. Custom code associated with this study is available upon 
reasonable request.

Data availability
RNA-seq and genotyping raw data have been deposited in dbGAP under 
accession number phs001556.v1.p1. The supporting data and eQTL results for the 

BRAINcode project can be queried at http://www.humanbraincode.org through 
a user-friendly interface. Other data supporting the findings of this study are 
available upon reasonable request.
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in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection All code for the data collection is available at https://github.com/sterding/BRAINcode.

Data analysis PLINK2 (v1.9beta), SHAPEIT2 (v2.5), IMPUTE2 (v2.3.1), fastq-mcf, FastQC, kpal, Tophat(v2.0.8), Cuffquant (v2.2.1), sva, ComBat, UCSC 
Kent Utilities, eulerAPE, Primer3web (v4.0.0), Marix-eQTL, TagDust (v1.12), BWA (v0.5.9), R (v3.4.4)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

BRAINcode RNA-seq and genotyping raw data have been deposited in dbGAP under accession number phs001556.v1.p1. The processed data and eQTL results for 
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BRAINcode project can be queried at http://www.humanbraincode.org through a user-friendly interface. The BRAINcode data sets submitted to dbGAP include the 
raw data used for figures: Fig. 1b-e, Fig. 2a,c,d; Fig. 3a,3c-d; Fig. 4a; and Fig. 5a-c,5e-g.  

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were based on the total number of available high-quality brain samples that met inclusion and exclusion criteria. No statistical 
methods were used to pre-determine sample sizes but our sample sizes are consistent with those recommended by the Genotype-Tissue 
Expression Consortium (GTEX consortium, Nature, 2017).

Data exclusions Inclusion criteria: (1) absence of clinical or neuropathological diagnosis of a neurodegenerative disease e.g. Parkinson’s disease according to 
the UKPDBB criteria45, Alzheimer’s disease according to NIA-Reagan criteria, dementia with Lewy bodies by revised consensus criteria. For 
the purpose of this analysis incidental Lewy body cases (not meeting clinico-pathological diagnostic criteria for PD or other neurodegenerative 
disease) were accepted for inclusion. (2) PMI ≤ 48 hours; (3) RIN48 ≥ 6.0 by Agilent Bioanalyzer (good RNA integrity); (4) visible ribosomal 
peaks on the electropherogram. Exclusion criteria were: (1) a primary intracerebral event as the cause of death; (2) brain tumor (except 
incidental meningiomas); (3) systemic disorders likely to cause chronic brain damage. We also included eight non-brain tissue samples as 
controls, including five samples of peripheral blood mononuclear cell (PBMC) and three fibroblasts (FB), provided by Harvard Biomarker Study 
and Coriell Institute. This study was approved by the Institutional Review Board of Brigham and Women’s Hospital.

Replication Attempts at replication were successful. Replication of TNE was performed in four independent cohorts as delineated in Fig. 3. Moreover, 
select TNE were confirmed by a second method, qPCR, as shown in Fig. 3. 
 
The inverse eQTL relation between the lead GWAS-derived SNP rs17649553 and KANSL1-TNE1 and LRRC37A4P, respectively, was confirmed 
by a second method, cell type-specific qPCR (Supplementary Fig. 12a). Moreover, this association was independently replicated in a second 
cohort of neurons laser-captured from 31 high-quality control brains (Supplementary Fig. 12b, Supplementary Table 12). Furthermore, the 
rs17649553-LRRC37A4P eQTL association was further confirmed in 56 substantial nigra and 96 frontal cortex samples from GTEx 
(Supplementary Fig. 12c,d), which used a polyA+ selecting protocol that does not allow for assaying KANSL1-TNE1 RNA. 

Randomization Allocation was not random and covariates (such as age, sex, PMI) were adjusted in the analysis. 

Blinding All samples were from controls (see eligibility criteria above). Blinding to case/control status is not applicable. 

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) HeLa and SK-N-MC cell lines were obtained from ATCC.

Authentication HeLa and SK-N-MC cells were used from ATCC and their identity was confirmed by microsatellite testing.

Mycoplasma contamination All cell lines tested are negative for mycoplasma contamination.
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Commonly misidentified lines
(See ICLAC register)

SK-N-MC cells were used from ATCC and their identity was confirmed by microsatellite testing.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Zebrafish (Danio rerio) were used. Both males and females, adults, and embryos were used. 

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve samples collected from the field.

Human research participants
Policy information about studies involving human research participants

Population characteristics Characteristics are shown in Supplemental Table 1. Briefly, the mean age at death (standard deviation) was 81 (10.2) for autopsy 
brains used for lcRNAseq of nigral dopamine neurons. The male:female ratio was 2:1. The median post-mortem interval (stdev) 
was 3 hours (6.6 hours). The median (stdev) RIN number was 7.8 (0.8).

Recruitment We started with 107 high-quality, frozen postmortem human control brain samples identified from Banner Sun Health Institute, 
Brain Tissue Center at Massachusetts General Hospital, Harvard Brain Tissue Resource Center at McLean Hospital, University of 
Kentucky ADC Tissue Bank, University of Maryland Brain and Tissue Bank, Pacific Northwest Dementia and Aging Neuropathology 
Group (PANDA) at University of Washington Medicine Center, and Neurological Foundation of New Zealand Human Brain Bank. 
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