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SUMMARY 

 

Alternative splicing (AS) is a widespread process underlying the generation of 

transcriptomic and proteomic diversity and is frequently misregulated in human 

disease. Accordingly, an important goal of biomedical research is the development of 

tools capable of comprehensively, accurately and efficiently profiling AS. Here, we 

describe Whippet, an easy-to-use RNA-Seq analysis method that rapidly – with 

hardware requirements compatible with a laptop – models and quantifies AS events of 

any complexity without loss of accuracy. Using an entropic measure of splicing 

complexity, Whippet reveals that one-third of human protein coding genes produce 

transcripts with complex AS events involving co-expression of two or more principal 

splice isoforms. We observe that high-entropy AS events are more prevalent in tumor 

relative to matched normal tissues, and correlate with increased expression of proto-

oncogenic splicing factors. Whippet thus affords the rapid and accurate analysis of AS 

events of any complexity, and as such will facilitate future biomedical research.  
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INTRODUCTION 

 

High-throughput RNA sequencing (RNA-seq) technologies are producing vast 

repositories of transcriptome profiling data at an ever expanding pace (Silvester et al., 

2018). This explosion in data has enabled genome-wide investigations of the role of 

alternative splicing (AS) in gene regulation and its dysregulation in human diseases 

and disorders. Initial investigations using RNA-seq data revealed that ~95% of human 

multi-exon gene transcripts undergo AS (Pan et al., 2008; Wang et al., 2008). These 

and more recent studies analyzing ribosome-engaged transcripts and quantitative mass 

spectrometry data suggest that AS is a major process underlying the generation of 

transcriptomic and proteomic complexity (Floor and Doudna, 2016; Liu et al., 2017; 

Sterne-Weiler et al., 2013; Weatheritt et al., 2016; reviewed in Blencowe, 2017). 

Furthermore, numerous AS events belonging to co-regulated and evolutionarily 

conserved exon networks have been shown to provide critical functions in diverse 

processes (Baralle and Giudice, 2017; Tapial et al., 2017).  

A major challenge confronting genome-wide investigations of AS is that existing 

methods for analyzing RNA-seq data require extensive computational resources and 

expertise. For example, widely employed tools involve alignment of reads to a 

transcriptome or reference genome, followed by quantification by downstream 

methods that estimate percent spliced in (PSI, <) values for each AS event, such as 

cassette exons, alternative 5´ and 3´ splice sites, and retained introns. These steps can 

be time-consuming and typically present a bottleneck when analyzing large datasets.  

Recent developments in transcript expression quantification have circumvented 

traditional alignment steps by extracting k-mers (i.e. all possible sequences of length 

k) from reads to identify possible transcripts of origin. Such methods can decrease 
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processing times by 10-100 fold (Bray et al., 2016; Patro et al., 2017). However, their 

accuracy relies on whole ‘transcript-level’ annotation models (i.e. models that record 

the precise location of intron and exon boundaries, and spliced junctions, for all 

transcripts), which are incomplete for the majority of species, and inconsistent among 

even the best annotated species. The lack of complete annotation models can thus 

confound the accurate detection and quantification of AS events when using 

transcript-level methods. More widely used methods for the RNA-seq analysis, 

focusing on the local detection and quantification of AS events, are referred to below 

as ‘event-level’ approaches (Figure S1A; Katz et al., 2010; Tapial et al., 2017; Wang 

et al., 2017). These methods can achieve considerable accuracy for simple AS events 

(Vaquero-Garcia et al., 2016), yet existing tools are computationally inefficient in 

comparison with transcript-level methods, and most utilize predetermined simple 

binary models (i.e. a single alternative exon surrounded by two constitutive exons), 

making them poorly suited for the analysis of complex AS patterns.   

In light of these challenges, an important goal for understanding how 

transcriptomes shape biological processes is to develop methods capable of the 

accurate analysing simple and complex AS patterns with high efficiency. To address 

these challenges, we have developed Whippet, an easy-to-use event-level software 

tool for the accurate and efficient detection, and quantification of AS events of any 

complexity. Whippet has computational requirements compatible with a laptop 

computer and is capable of analysing reads streamed from web-accessible data files 

by entering a file accession number. Another feature of Whippet is that it uses an 

entropic measure of AS to facilitate the accurate profiling of AS. We demonstrate the 

utility of Whippet in the discovery of previously uncharacterized AS complexity in 

vertebrate transcriptomes associated with the regulation of tandem domains and other 
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protein sequence features, as well as a remarkable increase in AS complexity in 

cancer transcriptomes. 

 

DESIGN 

 

Efficient quantification of alternative splicing using Whippet 

Whippet models transcriptome structure by building `Contiguous Splice 

Graphs` (CSGs). These are directed graphs whose nodes are non-overlapping exonic 

sequences, and edges (i.e. connections between nodes) represent splice junctions or 

adjacent exonic regions (Figures 1A and 1B). Splice graphs allow single isoforms to 

be represented as paths through nodes in the graph (Heber et al., 2002; Trapnell et al., 

2010; Vaquero-Garcia et al., 2016). Whippet’s CSGs extend the concept of splice 

graphs to a lightweight data structure that indexes the transcriptome for fast and 

modular alignment of raw RNA-seq reads across splice junctions (Figures 1B and 

1C). To facilitate indexing, Whippet defines incoming and outgoing boundary types 

(e.g. 5´ or 3´ splice sites, or transcription start or end sites; refer to Figure 1B legend 

for details) that specify the theoretical connectivity through the CSG for each node 

(Figure 1B; Figure S1B). For each 5´ or 3´ splice site boundary, Whippet’s CSG 

index records an upstream or downstream k-mer respectively, so as to enable efficient 

spliced read alignment across all possible splice junctions, including junctions that do 

not occur within annotated transcripts but which combine annotated donor or acceptor 

splice sites (Figures 1B-1D; Figure S1C-D; Methods for details). For example, 

Whippet’s CSG index for the human genome hg19 build can represent AS events 

from >1.3 million exon-exon junctions in >2.3 billion theoretically possible isoform 
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paths, whereas only ~100K of these paths are found in GENCODE v25 TSL1 

annotated transcripts.  

After alignment, a Whippet AS event is defined as the collective set of a 

node’s skipping or connecting edges (e.g. edge 1-3 skips node 2, and edges 1-2 and 2-

3 connect to node 2 in Figure 1E; see Methods). When enumerating paths through a 

node’s AS event, it is possible that multiple paths share common (i.e. ambiguous) 

edges (e.g. edges 1-2 and 3-4 are shared among multiple paths in Figure 1E). 

Therefore, to accurately quantify all AS events, the proportional abundance of each 

path is determined using maximum likelihood estimation by the expectation-

maximization (EM) algorithm (see Methods). The percent spliced in (PSI, <; range 

0.0 to 1.0) value of a node is then calculated as the sum of the proportional abundance 

of the paths containing the node (Figure 1E).   

 

RESULTS 

 

Whippet facilitates accurate analysis of alternative splicing  

To assess Whippet’s accuracy, we compared its < values with those measured 

from RT-PCR data, and commonly used RNA-seq event-level analysis tools (Irimia et 

al., 2014; Katz et al., 2010; Wang et al., 2017; Vaquero-Garcia et al., 2016) – which 

quantify < using reads that directly map to an AS event – as well as transcript-level 

tools (Trincado et al., 2018), which estimate < based on reads mapping across entire 

transcripts (see Methods S1 and Figure S2A-G for details of mapping 

benchmarking). RT-PCR- and RNA-seq-derived < values were both from adult 

mouse liver and cerebellum, as well as from stimulated and unstimulated human 

Jurkat T-cell line samples (Vaquero-Garcia et al., 2016). Notably, Whippet and the 
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other event-level tools display ~2.5 fold lower median error profiles compared to 

transcript-level methods, including SUPPA2 (Trincado et al., 2018) and 

Whippet_TPM, an approach developed in the present study to afford direct 

comparisons of transcript-level < estimates that maintain Whippet’s node definitions 

(Figure 2A; Table S1; Figure S2H and S3A-B; Methods). 

Benchmarking against RT-PCR < values, while informative, is limited by the 

relatively small sample set (n=162), the types of the events assessed, and possible 

intrinsic technical biases introduced by PCR. To address this, we assessed the 

accuracy of Whippet relative to other tools when comparing their < values against 

synthetic (i.e. ‘ground truth’) < values simulated from RNA-seq data obtained from a 

reference transcriptome annotation (GENCODE v25 TSL1 for hg19; Methods).  

In contrast to results from benchmarking against RT-PCR data, we find that 

transcript-level methods perform with similar accuracy to event-level approaches, 

including Whippet, when using simulated RNA-seq data (compare Figures 2A and 

2B). This discrepancy is likely due to the artificial nature of the simulation, where the 

exact transcript-annotations used to generate the reads are provided to the 

quantification software. In the analysis of RNA-seq data from biological samples, the 

quantification software will likely be challenged by discrepancies between the 

annotation model and the set of true transcripts present in the sample (e.g. Figure 2C 

shows that a large percentage of alternative splice junctions in vertebrate species are 

not annotated in Ensembl). To investigate such effects, we simulated RNA-seq reads 

with ground truth < values using one annotation set (RefSeq Release 84 for hg19), 

and created an index database for each quantification program using another 

annotation set (GENCODE v25 TSL1 for hg19). Notably, in this comparison (and the 

inverse comparison in Figure S3C) there is a 2-2.5 fold increase in error rate for 
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estimating < values using transcript-level methods, but minimal change in error rate 

for any of the event-level tools, including Whippet (Figure 2B; Figure S3D). We 

conclude that differences in transcript reference annotations can confound estimates 

for < values when using transcript-level methods, whereas event-based methods are 

largely insensitive to this issue.  

The analyses so far used widely employed transcript annotations from human 

and mouse, which are among the most complete for any species. To assess Whippet’s 

performance when analyzing species with less extensively annotated transcripts, we 

applied it to RNA-seq data (Brawand et al., 2011) from five of the same tissues from 

gorilla, chimp, opossom, chicken, as well as from mouse and human. While ~12% of 

alternative exon-exon junctions aligned by Whippet in human and mouse are 

unannotated, the percentage of unannotated AS junctions is in the range of 40-80% in 

the other species (Figure 2C). These observations further indicate that transcript-level 

tools, and event-level tools reliant on annotated AS events, fail to detect a 

considerable amount of unannotated transcript diversity in vertebrates. In contrast, 

Whippet can detect and accurately quantify AS events involving numerous 

unannotated splice junctions represented by pairings of combinations of splice sites 

from its CSG indices (see also below). 

 The benchmarks described so far focus on “simple” AS events, such as single 

cassette alternative exons flanked by pre-defined constitutive exons that have binary 

splicing outcomes. However, many AS events involve splice sites that are variably 

paired with two or more other sites. Whippet provides output metrics designed to 

quantify such AS complexity in two related ways. First, it classifies AS events into 

discrete bins of complexity based on the number of enumerated paths from the event 

(i.e. 𝑛 = ⌈𝑙𝑜𝑔2(𝑝𝑎𝑡ℎ𝑠)⌉, such that K(n) can produce at most 2n spliced outcomes for 
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K1, …, K6; Figure 2D). Second, it calculates a <-dependent measure of AS 

complexity using Shannon’s entropy (i.e., entropy = − ∑ Ψ𝑖𝑖 𝑙𝑜𝑔2Ψ𝑖  such that the 

maximum entropy for an event in K(n) is n; Figure 2E; Figures S4A and S4B). This 

entropic measure conveniently formalizes the total number of possible outcomes for 

an event, and the degree of their proportional contribution to the transcriptome in a 

read-depth and read-length independent manner (Figures S4C and S4D) 

To assess whether Whippet accurately quantifies AS events with increasing 

degrees of complexity and entropy, we simulated RNA-seq datasets and 

corresponding < values for events in the formalized categories (K1, …, K6) of 

increasing complexity and distributed entropy (Figures 2D-E; Figure S4E). In 

contrast to other methods tested, the accuracy of Whippet-derived estimates for < 

does not decrease as the complexity and entropy of the simulated AS events increases. 

This difference in performance is because Whippet has the unique feature among the 

event-level approaches tested of employing the EM algorithm to assign reads that are 

ambiguously shared between multiple paths through high entropy AS events. This 

capability translates as a ~2-3 fold greater accuracy for Whippet in the quantification 

of K2-K6 events compared to other tested methods (Figures 2E, 2F and S4F).  

To further assess Whippet’s performance relative to other methods, we next 

investigated whether transcript-level methods potentially achieve comparable 

accuracy when provided with a predefined annotation set that comprehensively 

represents complex events. To test this, we built a transcript annotation set from 

combinatorial Whippet graph paths (N4 annotation file, Methods). While this 

annotation set allows SUPPA2 to detect unannotated AS events, its error rate in 

estimating < values is still four-fold higher than Whippet’s (Figures 2F and Figure 

S4E-F). 
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To experimentally validate Whippet-derived predictions of high AS event 

entropy, RNA-seq data (Raj et al., 2014) from mouse neuroblastoma (N2a) cells were 

analyzed and 10 events with different predicted degrees of entropy and complexity 

involving tandem arrays of alternative exons were tested by RT-PCR (Methods). 

Notably, 56/61 (91.8%) of the amplified spliced products were predicted by Whippet, 

whereas five (8.2%) of the expected isoforms were not detected. Of the detected 

products, 32 (52.5%) are consistent with annotated isoforms and 24 (39.3%) 

correspond to novel isoforms (Figure 2G and Figure S5A). Collectively, these data 

demonstrate that Whippet is an accurate method for the analysis of both simple and 

complex AS events. 

 

Efficiency of Whippet  

To assess Whippet’s efficiency, we benchmarked speed and memory usage 

relative to published AS quantification methods. When analyzing several paired-end 

RNA-seq datasets from HeLa cells with increasing read depth (~15M, ~25M and 

~50M), Whippet quantifies AS from a raw paired-end 25M RNA-seq read dataset in 

43 minutes while using less than 1.5GB of memory on a typical computer with a 

single core (Dual-Core AMD Opteron(tm) Processor 8218, 2.5 GHz, 60GB RAM, 

1,024KB cache). This represents a considerable increase in performance over other 

tested event-level tools, and is of comparable performance to transcript-level methods 

(Figures 2H and S5B-C; Table S2). For example, MISO, the most highly-cited 

event-level tool, in combination with the read aligner STAR, took days and used 30 

GB of memory to analyze the same data (Figure 2H; Figure S5C), whereas the 

fastest transcript-level methods took approximately 20 minutes. It is important to note 

that when provided with annotation sets for complex AS events (e.g. N4 annotation 
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file) the runtime and memory usage of transcript-level methods were greater than that 

of Whippet (Figure 2H; Figure S5C). Moreover, on a personal laptop with a solid-

state hard drive (Macbook Pro 3.1 GHz Intel i7), Whippet quantified the ~25M 

dataset in 15 minutes using downloaded data files, and in 31 minutes when streaming 

data from the internet after inputting the SRA identifier. The considerably longer time 

taken to analyze the same data by MISO and some of the other event level tools may 

be influenced by the hardware used to run these programs. The unique features of 

Whippet thus obviate the use of high-performance computational clusters for the 

quantitative profiling of AS using RNA-seq data.  

Taken together with the assessment of accuracy, the results indicate that 

Whippet offers advantages over other methods in terms of its capacity to reliably and 

efficiently detect and quantify AS events.  

 

Detection of high-entropy, tissue-regulated AS events 

Because previously described tools were not designed for the formalized 

quantitative profiling of AS complexity, we used Whippet to investigate the 

prevalence and possible biological relevance of high-complexity AS events in 

mammalian transcriptomes. To this end, we applied Whippet to an analysis of 60 

diverse human and mouse tissue RNA-seq datasets (Table S3; Figure 3A and S6A). 

Remarkably, of more than 13,000 analyzed human protein coding genes, 42.68% 

harbor an AS event predicted to have an entropy > 1.0 (i.e. two or more expressed 

isoforms) in at least one tissue (Figure S6B; see Methods). Moreover, 4,101 (30.1%) 

of these genes co-express at least two major isoforms at similar levels in one or more 

of the same tissue (Figure 3B, Figure S6C; Methods). The majority (~20%) of the 

events are predicted to undergo substantial tissue-dependent changes in splicing 
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entropy (Figure 3C), without concurrent changes in expression of the corresponding 

genes (Figure 3D; R2 = 0.074, Pearson correlation). These results contrast with 

previous proposals that the vast majority of mammalian genes express a single, major 

splice variant (Gonzalez-Porta et al., 2013; Tress et al., 2017), and instead are 

consistent with data indicating that a substantial fraction of genes express multiple 

major isoforms either within or between different cell and tissue types (Tapial et al., 

2017; Vaquero-Garcia et al., 2016; Wang et al., 2008). However, new isoforms 

generated by high entropy AS events detected by Whippet further increase the 

estimated fraction of genes predicted to express multiple major isoforms compared to 

previous estimates (e.g. up to ~40% vs. ~18% in Tapial et al. 2017). Supporting the 

possible biological relevance of these AS events, the corresponding genes are 

enriched in functions associated with the cytoskeleton, extracellular matrix 

organization, cell communication, signaling and muscle biology (Figure 3E, p-values 

< 0.05; corrected FDR).  

To further investigate the possible significance of high-entropy AS events 

detected by Whippet, we analyzed their evolutionary conservation using RNA-seq 

data from six of the same tissues from seven vertebrate species (Brawand et al., 

2011), comparing entropy values for the orthologous exons (1,304 ‘low-entropy’ [< 

1.0] and 369 ‘high-entropy’ [>1.5] exons, Figure 4A, Figure S6D-E) in each species. 

This revealed a significantly greater concordance in both < and entropy values for 

orthologous AS events between the analyzed species than expected by chance, when 

compared to randomly-permuted sets of exons from the same data (Figures 4B-C, 

low-entropy AS events: p < 2.2 x 10-16; high-entropy AS events: p < 4.3 x 10-4, 

Kolmogorov–Smirnov test; Figure S6F-G; see Methods). Thus, overall, the degree 

of entropy of low- and high-complexity AS events detected and quantified by 
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Whippet is conserved across vertebrate species, implying that these patterns may 

often be functionally important.  

We next asked whether these events are potentially translated. Due to the 

extremely limited coverage of currently available mass spectrometry data (Blencowe, 

2017), Whippet was applied to RNA-seq data from HeLa mono- and polysomes, as 

well as from whole cell, nuclear, and cytosolic fractions (Floor and Doudna, 2016). 

This analysis reveals comparable distributions of AS event entropy across all samples 

(Figure 4D; d < 0.25, Cohen’s D statistic, Nuclear vs. High Polyribosome), 

suggesting that high-entropy AS events contribute substantially to the translated 

transcriptome. Furthermore, the enrichment of high entropy AS events within the 

5´UTRs of transcripts (Figure S6H, p < 4.37 x 10-38, Fisher’s exact test) suggests 

possible roles in the regulation of translation. 

 

High-entropy alternative splicing regulates genes with extensive domain repeats 

and disordered regions 

Given previous evidence for important roles of AS in rewiring protein-protein 

interaction networks among other functions (Buljan et al., 2012; Ellis et al., 2012; 

Yang et al., 2016), we next investigated whether increasing levels of AS event 

entropy are associated with specific protein structural features. We observe a 

significant monotonic increase in the frequency of overlap with intrinsically 

disordered regions as a function of increasing entropy of AS events (Figure 5A; p < 

1.02 x 10-43, Mann-Whitney U test, low-entropy [<1.0] vs highest-entropy [> 2.0] 

events; Figure S7A). As expected, an inverse trend is observed for overlap with 

structured domains (Figure 5A, p < 1.78 x 10-41, Mann-Whitney U test). However, an 

interesting exception is that highest-entropy AS events (entropy > 2.0) display 
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significant overlap with tandem repeat domains (Figure 5A p < 2.14 x 10-05, Mann-

Whitney U test; Figure S7A), particularly nebulin-like and epidermal growth factor 

(EGF)-like domains (p-values < 0.05, Fisher-exact test). Further analysis of the 

highest-entropy  (>2.0) AS events overlapping tandem protein domain repeats reveals 

that they are significantly more likely to arise from exon duplication than lower-

entropy (<2.0) events (Figure 5B, p < 4.57 x 10-42, Fisher’s exact test; Figures S7B-

C). As an example, high-entropy AS events overlap two classes of tandem repeat 

domains, LDL-receptor class A and EGF-like domains, within the low-density 

lipoprotein receptor-related protein 8 (Lrp8). These events were confirmed by RT-

PCR analysis (Figure 5C). Moreover, supporting their likely functional importance, 

one of them is differentially regulated by the neural and muscle-enriched splicing 

factor Rbfox2 (Figure 5D). These data thus provide evidence for important roles for 

Whippet-detected, high-entropy AS events in the expansion of proteomic diversity, 

principally through changes to intrinsically disordered protein regions and 

combinatorial changes to the composition of tandem arrays of specific-classes of 

protein domains. 

 

High-entropy AS events display prototypical alternative splicing signals 

We hypothesized that high-entropy AS events may be associated with specific 

sequence features that facilitate their complex patterns of regulation. To investigate 

this, we binned AS events by entropy and compared the strengths of their 3´- and 5´-

splice sites, flanking intron lengths, and exonic splicing enhancer (ESE) and silencer 

(ESS) motif densities. Interestingly, the highest-entropy AS events show significant 

decreases in 3´- and 5´-splice site strength compared to low-entropy AS events 

(Figure 6A; p < 3.73 x 10-4 and 1.83 x 10-3, Mann-Whitney U test). Additionally, we 
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observe monotonic decreases in flanking intron length (Figure 6B, p < 1.78 x 10-18, 

Mann-Whitney U test, highest vs lowest entropy events) and ESS motif density 

(Figure 6C; ESS: p < 6.06 x 10-05; Mann-Whitney U test, highest vs lowest entropy 

events) as a function of increasing entropy. In contrast, the density of ESE elements 

displayed a monotonic increase between low- and high- entropy AS events (Figure 

6C; ESE: p < 4.20 x 10-06, Mann-Whitney U test, lowest vs highest entropy events). 

These results suggest that weak splice sites, reduced intronic length, and altered 

frequencies of exonic splicing elements, are important features underlying the 

regulation and function of high-entropy AS events (Figure 6D).     

 

Global increases in high-entropy AS in cancer  

Aberrant splicing is a hallmark of cancer and contributes to numerous aspects 

of tumor biology (Ladomery, 2013; Oltean and Bates, 2014). Cancer associated 

changes in AS have been linked to altered expression of RNA binding proteins, some 

of which are oncogenic or act as tumor suppressors, as well as to splicing-sensitive 

disease mutations that impact the levels or activities of other cancer-associated genes 

(Sebestyen et al., 2016; Sterne-Weiler and Sanford, 2014). Despite extensive evidence 

for altered AS in cancer (Climente-Gonzalez et al., 2017; Dvinge et al., 2016), the 

extent to which these changes relate to altered levels of splicing complexity has not 

been previously determined. Accordingly, we applied Whippet to compare AS 

entropy using RNA-seq data (Table S3) from 15 matched tumor and control liver 

samples of patients with hepatocellular carcinoma (HCC), the third leading cause of 

cancer deaths worldwide. Remarkably, this analysis revealed a significant and 

reproducible (i.e. between replicate samples) increase in AS event entropy and 

number of unannotated alternative exon-exon junctions detected in tumor compared 
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to control samples (Figures 7A-7C; Figure S7D; 4.30 x 10-18, Mann-Whitney U test) 

with only a relatively small degree of correlating change in the expression levels of 

the corresponding genes (Figure S7E; R2 = 0.412, Pearson Correlation Coefficient). 

Genes with the largest AS entropy changes display significant enrichment for 

functions known to be dysregulated in liver cancer, including DNA repair and cell-

cycle regulation (Figure 7D; p-values < 0.05; corrected FDR).  

Further investigation revealed AS events previously identified as aberrant in 

cancer samples (Figure 7E), including those associated with over-expression of the 

splicing regulator SRSF1 (Anczukow et al., 2015; Das and Krainer, 2014). Consistent 

with this observation, differential gene expression analysis revealed a number of RNA 

binding proteins, including SRSF1, that are significantly over-expressed in tumor 

compared to control samples (Figure 7F-7G; Figure S7F; DESeq2, False Discovery 

Rate-adjusted p-values < 0.01). To further investigate the possible role of SRSF1 

over-expression in the expansion of AS entropy observed in the cancer samples, we 

used Whippet to analyze RNA-seq data (Anczukow et al., 2015) from an MCR-10A 

cell line over-expressing SRSF1. This revealed a significant increase in high-entropy 

AS events associated with SRSF1 over-expression (Figure 7H; p < 9.41 x 10-9, 

Mann-Whitney U test, compared to control) and a significant overlap with events 

differentially regulated between tumor versus normal tissues (Figure 7I; p < 2.09 x 

10-5, Fisher’s exact test). These data thus indicate that overall splicing entropy 

increases in specific tumor types in response to changes in the expression of 

oncogenic splicing regulators, such as SRSF1. These results further illustrate how 

Whippet’s unique capacity for the efficient and quantitatively accurate profiling of 

high entropy AS patterns can provide insight into how transcriptomes are altered in 

different biological contexts.  
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DISCUSSION 
 

Advancements in RNA-seq analysis have involved the generation of tools that 

estimate < values from transcript-level expression information (Trincado et al., 

2018). While such methods are efficient, we observe that they are subject to increased 

error rates as a result of inaccuracies in standard transcript annotation models. In 

contrast, event-level tools are insensitive to most annotation inaccuracies since they 

only consider reads that directly map to splice junctions, exons, or introns forming an 

AS event. In the present study, we describe Whippet, a graph- and indexing-based 

event-level approach for the rapid and accurate quantitative profiling of AS. Whippet 

applies the concept of lightweight algorithms (Bray et al., 2016; Patro et al., 2014) to 

splicing quantification using RNA-seq data. As such, it eliminates the requirement for 

extensive computational resources typically required for read alignment steps. It 

further affords an unprecedented degree of accuracy in the profiling of complex AS 

events, in part through the use of entropy as metric for the formalized analysis of AS 

complexity. Collectively, these attributes of Whippet facilitated the discovery and 

characterization of transcriptomic complexity and associated features in the present 

study.  

Our results indicate that high-entropy AS events occur more frequently in 

vertebrate transcriptomes than previously appreciated (Nellore et al., 2016; Vaquero-

Garcia et al., 2016), affecting up to 40% of human genes. In contrast to previous 

proposals that the vast majority of mammalian genes express a single major splice 

isoform (Gonzalez-Porta et al., 2013; Tress et al., 2017), our results from employing 

Whippet reveal that at least one-third of human and mouse genes simultaneously 

express multiple major isoforms. The results further suggest that many of these events 
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are biologically significant since their AS entropy levels are frequently tissue-

regulated, conserved, and the corresponding variant transcripts are highly expressed.  

Previously documented examples of high entropy AS events include those that 

control of the biophysical properties of giant proteins that form muscle fibers (Buck et 

al., 2010; Li et al., 2012). Many of the high entropy events detected by Whippet are 

also reminiscent of well-studied examples in other systems, such as the splice variants 

generated by tandem arrays of alternative exons in the Drosophila DSCAM gene 

(Bolisetty et al., 2015). In this example, high-entropy AS events overlap tandemly 

repeated immunoglobulin-like domains that function as interaction surfaces in neural 

circuit assembly (Hattori et al., 2008). Our results suggest that targeting of tandemly 

repeated domains by high-entropy AS may represent a widely used mechanism to 

modulate the functions of multi-domain proteins. We further provide evidence that 

large repertoires of transcripts from high-entropy AS events is particularly prominent 

in post-mitotic tissues, and likely contributes to intricate networks of regulation and 

cell-cell interactions in these tissues.  

Alterations in splicing by spliceosomal gene mutations and over-expression of 

RBPs contribute to the transcriptomic dysfunction characteristics of myelodysplastic 

syndromes and related cancers (Inoue et al., 2016). We demonstrate a significant 

increase in AS event entropy in hepatocellular carcinoma, affecting genes that 

function in DNA damage and spindle formation, and relate these changes to the mis-

regulation of the splicing factor SRSF1. These data may reflect an overall loss of 

splicing fidelity in cancers and exemplify how the formalization of AS entropy is 

important when evaluating changes in global splicing patterns (Ritchie et al., 2008). 

For example, such measures of entropic splicing change may be valuable in future 

diagnostic techniques for precision medicine.  
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In summary, Whippet enables the efficient and accurate profiling of simple to 

complex AS events. As such, it is expected to significantly facilitate future 

biomedical research. Whippet’s ability to rapidly quantify raw read data as a stand-

alone software package on a personal computer further renders genome-wide analyses 

of AS more accessible to the scientific community. In this regard, we believe that 

Whippet will represent a valuable tool until long-read sequencing protocols (Byrne et 

al., 2017; Tilgner et al., 2017) offer comparable sequencing depth and efficiency as 

short read analysis methods.  

 

Limitations 

A limitation of Whippet is that it only detects and analyses AS events 

represented by splice sites in a CSG index. However, it can detect and quantify 

previously unknown AS events representing novel combinations of splice junctions 

derived from the indexed splice sites. Moreover, CSG indices can be supplemented 

beyond standard annotation sets with new splice sites (and therefore novel exons) 

mined using de novo spliced read aligners (Dobin et al., 2013; Kim et al., 2015); see 

Methods S1 and Figure S1E). This approach is expected to be useful in the analysis 

of AS from poorly annotated species, as well as disease-altered transcriptomes 

harboring aberrant splicing patterns.  

 

ACKNOWLEDGEMENTS 

We gratefully acknowledge M. Irimia and P. Melsted for valuable suggestions and 

testing of the Whippet software. We also thank G. Bader, N. Barbosa-Morais, U. 

Braunschweig, S. Gueroussov, T. Gonatopoulos-Pourtnatzis and B. Harpur for helpful 

discussions and comments of the manuscript. This work was supported by grants from 



 20 

the CIHR and Canada First Excellence Fund to B.J.B.. Additional support was 

provided by CIHR postdoctoral fellowships (T.S.W., R.J.W., A.B.), a C.H. Best 

Postdoctoral Fellowship (T.S.W.), Marie Curie IOF Fellowship (R.J.W.), and EMBO 

Long-Term Fellowship (A.B.), Ontario Graduate Scholarship, and CIHR Frederick 

Banting and C.H. Best Canada Graduate Scholarship (K.C.H.H). B.J.B holds the 

University of Toronto Banbury Chair in Medical Research. 

 

AUTHOR CONTRIBUTIONS 

T.S.W conceived, designed, and implemented the Whippet software, with 

contributions from R.J.W. T.S.W., R.J.W.; K.C.H.H. simulated data and benchmarked 

accuracy and performance. R.J.W. and T.S.W. designed and performed computational 

analyses, with input from B.J.B. A.B. performed experimental validations. T.S.W, 

R.J.W and B.J.B. wrote the manuscript with input from the other authors.  

 

DECLARATION OF INTERESTS 

The authors declare no competing interests 

 

References: 

Anczukow, O., Akerman, M., Clery, A., Wu, J., Shen, C., Shirole, N.H., Raimer, A., 
Sun, S., Jensen, M.A., Hua, Y., et al. (2015). SRSF1-Regulated Alternative Splicing 
in Breast Cancer. Molecular cell 60, 105-117. 
Baralle, F.E., and Giudice, J. (2017). Alternative splicing as a regulator of 
development and tissue identity. Nat Rev Mol Cell Biol. 
Blencowe, B.J. (2017). The Relationship between Alternative Splicing and Proteomic 
Complexity. Trends Biochem Sci 42, 407-408. 
Bodenhofer, U., Kothmeier, A., and Hochreiter, S. (2011). APCluster: an R package 
for affinity propagation clustering. Bioinformatics 27, 2463-2464. 
Bolisetty, M.T., Rajadinakaran, G., and Graveley, B.R. (2015). Determining exon 
connectivity in complex mRNAs by nanopore sequencing. Genome biology 16, 204. 
Brawand, D., Soumillon, M., Necsulea, A., Julien, P., Csardi, G., Harrigan, P., Weier, 
M., Liechti, A., Aximu-Petri, A., Kircher, M., et al. (2011). The evolution of gene 
expression levels in mammalian organs. Nature 478, 343-348. 



 21 

Bray, N.L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal 
probabilistic RNA-seq quantification. Nature biotechnology 34, 525-527. 
Buck, D., Hudson, B.D., Ottenheijm, C.A., Labeit, S., and Granzier, H. (2010). 
Differential splicing of the large sarcomeric protein nebulin during skeletal muscle 
development. J Struct Biol 170, 325-333. 
Buljan, M., Chalancon, G., Eustermann, S., Wagner, G.P., Fuxreiter, M., Bateman, 
A., and Babu, M.M. (2012). Tissue-specific splicing of disordered segments that 
embed binding motifs rewires protein interaction networks. Molecular cell 46, 871-
883. 
Byrne, A., Beaudin, A.E., Olsen, H.E., Jain, M., Cole, C., Palmer, T., DuBois, R.M., 
Forsberg, E.C., Akeson, M., and Vollmers, C. (2017). Nanopore long-read RNAseq 
reveals widespread transcriptional variation among the surface receptors of individual 
B cells. Nature communications 8, 16027. 
Climente-Gonzalez, H., Porta-Pardo, E., Godzik, A., and Eyras, E. (2017). The 
Functional Impact of Alternative Splicing in Cancer. Cell reports 20, 2215-2226. 
Das, S., and Krainer, A.R. (2014). Emerging functions of SRSF1, splicing factor and 
oncoprotein, in RNA metabolism and cancer. Molecular cancer research : MCR 12, 
1195-1204. 
Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., 
Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. 
Bioinformatics 29, 15-21. 
Dosztanyi, Z., Csizmok, V., Tompa, P., and Simon, I. (2005). IUPred: web server for 
the prediction of intrinsically unstructured regions of proteins based on estimated 
energy content. Bioinformatics 21, 3433-3434. 
Dvinge, H., Kim, E., Abdel-Wahab, O., and Bradley, R.K. (2016). RNA splicing 
factors as oncoproteins and tumour suppressors. Nat Rev Cancer 16, 413-430. 
Ellis, J.D., Barrios-Rodiles, M., Colak, R., Irimia, M., Kim, T., Calarco, J.A., Wang, 
X., Pan, Q., O'Hanlon, D., Kim, P.M., et al. (2012). Tissue-specific alternative 
splicing remodels protein-protein interaction networks. Molecular cell 46, 884-892. 
Ferragina, P., Manzini, G., Mäkinen, V., and Navarro, G. (2004). An Alphabet-
Friendly FM-Index. In String Processing and Information Retrieval: 11th 
International Conference, SPIRE 2004, Padova, Italy, October 5-8, 2004 Proceedings, 
A. Apostolico, and M. Melucci, eds. (Berlin, Heidelberg: Springer Berlin Heidelberg), 
pp. 150-160. 
Floor, S.N., and Doudna, J.A. (2016). Tunable protein synthesis by transcript 
isoforms in human cells. eLife 5. 
Frazee, A.C., Jaffe, A.E., Langmead, B., and Leek, J.T. (2015). Polyester: simulating 
RNA-seq datasets with differential transcript expression. Bioinformatics 31, 2778-
2784. 
Gonzalez-Porta, M., Frankish, A., Rung, J., Harrow, J., and Brazma, A. (2013). 
Transcriptome analysis of human tissues and cell lines reveals one dominant 
transcript per gene. Genome biology 14, R70. 
Grant, G.R., Farkas, M.H., Pizarro, A.D., Lahens, N.F., Schug, J., Brunk, B.P., 
Stoeckert, C.J., Hogenesch, J.B., and Pierce, E.A. (2011). Comparative analysis of 
RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM). 
Bioinformatics 27, 2518-2528. 
Hattori, D., Millard, S.S., Wojtowicz, W.M., and Zipursky, S.L. (2008). Dscam-
mediated cell recognition regulates neural circuit formation. Annu Rev Cell Dev Biol 
24, 597-620. 



 22 

Hansen, K.D., Brenner, S.E., and Dudoit, S. (2010). Biases in Illumina transcriptome 
sequencing caused by random hexamer priming. Nucleic acids research 38, e131. 
Heber, S., Alekseyev, M., Sze, S.H., Tang, H., and Pevzner, P.A. (2002). Splicing 
graphs and EST assembly problem. Bioinformatics 18 Suppl 1, S181-188. 
Inoue, D., Bradley, R.K., and Abdel-Wahab, O. (2016). Spliceosomal gene mutations 
in myelodysplasia: molecular links to clonal abnormalities of hematopoiesis. Genes & 
development 30, 989-1001. 
Irimia, M., Weatheritt, R.J., Ellis, J.D., Parikshak, N.N., Gonatopoulos-Pournatzis, T., 
Babor, M., Quesnel-Vallieres, M., Tapial, J., Raj, B., O'Hanlon, D., et al. (2014). A 
highly conserved program of neuronal microexons is misregulated in autistic brains. 
Cell 159, 1511-1523. 
Katz, Y., Wang, E.T., Airoldi, E.M., and Burge, C.B. (2010). Analysis and design of 
RNA sequencing experiments for identifying isoform regulation. Nature methods 7, 
1009-1015. 
Ke, S., Shang, S., Kalachikov, S.M., Morozova, I., Yu, L., Russo, J.J., Ju, J., and 
Chasin, L.A. (2011). Quantitative evaluation of all hexamers as exonic splicing 
elements. Genome research 21, 1360-1374. 
Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner with 
low memory requirements. Nature methods 12, 357-360. 
Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S.L. (2013). 
TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions 
and gene fusions. Genome biology 14, R36. 
Ladomery, M. (2013). Aberrant alternative splicing is another hallmark of cancer. Int 
J Cell Biol 2013, 463786. 
Letunic, I., Copley, R.R., and Bork, P. (2002). Common exon duplication in animals 
and its role in alternative splicing. Human molecular genetics 11, 1561-1567. 
Letunic, I., Doerks, T., and Bork, P. (2015). SMART: recent updates, new 
developments and status in 2015. Nucleic acids research 43, D257-260. 
Li, B., and Dewey, C.N. (2011). RSEM: accurate transcript quantification from RNA-
Seq data with or without a reference genome. BMC bioinformatics 12, 323. 
Li, S., Guo, W., Schmitt, B.M., and Greaser, M.L. (2012). Comprehensive analysis of 
titin protein isoform and alternative splicing in normal and mutant rats. J Cell 
Biochem 113, 1265-1273. 
Liu, Y., Gonzalez-Porta, M., Santos, S., Brazma, A., Marioni, J.C., Aebersold, R., 
Venkitaraman, A.R., and Wickramasinghe, V.O. (2017). Impact of Alternative 
Splicing on the Human Proteome. Cell reports 20, 1229-1241. 
Love, M.I., Hogenesch, J.B., and Irizarry, R.A. (2016). Modeling of RNA-seq 
fragment sequence bias reduces systematic errors in transcript abundance estimation. 
Nature biotechnology 34, 1287-1291. 
Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change 
and dispersion for RNA-seq data with DESeq2. Genome biology 15, 550. 
Nellore, A., Jaffe, A.E., Fortin, J.P., Alquicira-Hernandez, J., Collado-Torres, L., 
Wang, S., Phillips Iii, R.A., Karbhari, N., Hansen, K.D., Langmead, B., et al. (2016). 
Human splicing diversity and the extent of unannotated splice junctions across human 
RNA-seq samples on the Sequence Read Archive. Genome biology 17, 266. 
Oltean, S., and Bates, D.O. (2014). Hallmarks of alternative splicing in cancer. 
Oncogene 33, 5311-5318. 
Pachter, L. (2011). Models for transcript quantification from RNA-Seq. In ArXiv e-
prints. 



 23 

Pan, Q., Shai, O., Lee, L.J., Frey, B.J., and Blencowe, B.J. (2008). Deep surveying of 
alternative splicing complexity in the human transcriptome by high-throughput 
sequencing. Nature genetics 40, 1413-1415. 
Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., and Kingsford, C. (2017). Salmon 
provides fast and bias-aware quantification of transcript expression. Nature methods 
14, 417-419. 
Patro, R., Mount, S.M., and Kingsford, C. (2014). Sailfish enables alignment-free 
isoform quantification from RNA-seq reads using lightweight algorithms. Nature 
biotechnology 32, 462-464. 
Pellegrini, M., Renda, M.E., and Vecchio, A. (2012). Ab initio detection of fuzzy 
amino acid tandem repeats in protein sequences. BMC Bioinformatics 13 Suppl 3, S8. 
Raj, B., Irimia, M., Braunschweig, U., Sterne-Weiler, T., O'Hanlon, D., Lin, Z.Y., 
Chen, G.I., Easton, L.E., Ule, J., Gingras, A.C., et al. (2014). A global regulatory 
mechanism for activating an exon network required for neurogenesis. Molecular cell 
56, 90-103. 
Ritchie, W., Granjeaud, S., Puthier, D., and Gautheret, D. (2008). Entropy measures 
quantify global splicing disorders in cancer. PLoS computational biology 4, 
e1000011. 
Roberts, A., Trapnell, C., Donaghey, J., Rinn, J.L., and Pachter, L. (2011). Improving 
RNA-Seq expression estimates by correcting for fragment bias. Genome biology 12, 
R22. 
Sebestyen, E., Singh, B., Minana, B., Pages, A., Mateo, F., Pujana, M.A., Valcarcel, 
J., and Eyras, E. (2016). Large-scale analysis of genome and transcriptome alterations 
in multiple tumors unveils novel cancer-relevant splicing networks. Genome research 
26, 732-744. 
Silvester, N., Alako, B., Amid, C., Cerdeno-Tarraga, A., Clarke, L., Cleland, I., 
Harrison, P.W., Jayathilaka, S., Kay, S., Keane, T., et al. (2018). The European 
Nucleotide Archive in 2017. Nucleic acids research 46, D36-D40. 
Sterne-Weiler, T., Martinez-Nunez, R.T., Howard, J.M., Cvitovik, I., Katzman, S., 
Tariq, M.A., Pourmand, N., and Sanford, J.R. (2013). Frac-seq reveals isoform-
specific recruitment to polyribosomes. Genome research 23, 1615-1623. 
Sterne-Weiler, T., and Sanford, J.R. (2014). Exon identity crisis: disease-causing 
mutations that disrupt the splicing code. Genome biology 15, 201. 
Tapial, J., Ha, K.C.H., Sterne-Weiler, T., Gohr, A., Braunschweig, U., Hermoso-
Pulido, A., Quesnel-Vallieres, M., Permanyer, J., Sodaei, R., Marquez, Y., et al. 
(2017). An atlas of alternative splicing profiles and functional associations reveals 
new regulatory programs and genes that simultaneously express multiple major 
isoforms. Genome research 27, 1759-1768. 
Tilgner, H., Jahanbani, F., Gupta, I., Collier, P., Wei, E., Rasmussen, M., and Snyder, 
M.P. (2017). Microfluidic isoform sequencing shows widespread splicing 
coordination in the human transcriptome. Genome research. 
Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., 
Salzberg, S.L., Wold, B.J., and Pachter, L. (2010). Transcript assembly and 
quantification by RNA-Seq reveals unannotated transcripts and isoform switching 
during cell differentiation. Nature biotechnology 28, 511-515. 
Tress, M.L., Abascal, F., and Valencia, A. (2017). Most Alternative Isoforms Are Not 
Functionally Important. Trends Biochem Sci 42, 408-410. 
Trincado, J.L., Entizne, J.C., Hysenaj, G., Singh, B., Skalic, M., Elliott, D.J., and 
Eyras, E. (2018). SUPPA2: fast, accurate, and uncertainty-aware differential splicing 
analysis across multiple conditions. Genome biology 19, 40. 



 24 

Vaquero-Garcia, J., Barrera, A., Gazzara, M.R., Gonzalez-Vallinas, J., Lahens, N.F., 
Hogenesch, J.B., Lynch, K.W., and Barash, Y. (2016). A new view of transcriptome 
complexity and regulation through the lens of local splicing variations. eLife 5, 
e11752. 
Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, 
S.F., Schroth, G.P., and Burge, C.B. (2008). Alternative isoform regulation in human 
tissue transcriptomes. Nature 456, 470-476. 
Wang, J., Pan, Y., Shen, S., Lin, L., and Xing, Y. (2017). rMATS-DVR: rMATS 
discovery of differential variants in RNA. Bioinformatics 33, 2216-2217. 
Weatheritt, R.J., Sterne-Weiler, T., and Blencowe, B.J. (2016). The ribosome-
engaged landscape of alternative splicing. Nat Struct Mol Biol. 
Wootton, J.C. (1994). Non-globular domains in protein sequences: automated 
segmentation using complexity measures. Comput Chem 18, 269-285. 
Xiong, H.Y., Lee, L.J., Bretschneider, H., Gao, J., Jojic, N., and Frey, B.J. (2016). 
Probabilistic estimation of short sequence expression using RNA-Seq data and the 
positional bootstrap. bioRxiv. 
Yang, X., Coulombe-Huntington, J., Kang, S., Sheynkman, G.M., Hao, T., 
Richardson, A., Sun, S., Yang, F., Shen, Y.A., Murray, R.R., et al. (2016). 
Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing. 
Cell 164, 805-817. 
Yeo, G., and Burge, C.B. (2004). Maximum entropy modeling of short sequence 
motifs with applications to RNA splicing signals. Journal of computational biology : a 
journal of computational molecular cell biology 11, 377-394. 
 

 

MAIN FIGURES LEGENDS 

Figure 1 – Overview of Whippet algorithm 

(A) Example gene model with two alternative isoforms and Whippet’s node 

assignments, as indicated by number and separated by dashed lines. Gene models can 

be supplemented beyond standard annotation sets with new splice sites and novel 

exons mined using de novo spliced read aligners (see also Figure S1E). 

(B) The Contiguous Splice Graph (CSG) for the same gene model in (A). Each CSG 

node has two boundaries: an incoming (left side of node, label pointing upwards) and 

outgoing (right side of node, pointing downwards), and these have ‘Soft’ or ‘Hard’ 

alignment extension properties (see D). Boundary types are designated as Hard or 

Soft depending on whether or not genomic sequence separates two neighboring 

nodes, respectively. All 5c SpliceSite and 3c SpliceSite boundaries have k-mer indices 
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(colored lines) that are used for spliced read alignment (middle top). Lines with 

arrows indicate potential connectivity (edges) between nodes (middle bottom).  

(C) A single transcriptome Full-text index in Minute space (FM-Index) is built from 

concatenated CSG sequences, with solid lines indicating separation between each 

CSG (bottom). 

(D) Diagram of CSG alignment, which is seeded from a raw RNA-seq read, and then 

extended in both directions. Alignments can extend through Soft, but not Hard 

boundaries. The two read k-mers flanking a spliced node boundary are used to return 

the set of compatible nodes for spliced junction extension (see Methods for CSG 

alignment rules). 

(E) Example Whippet AS event (top) for a node N, defined as the set full set of 

spliced edges aligned (in an RNA-seq dataset) between the nodes farthest upstream or 

downstream for connecting (bolded labels) or skipping edges (regular labels). To 

determine Percent Spliced In (<) of some node N, all paths through the AS event are 

enumerated (bottom left), and quantified through convergence of the expectation-

maximization (EM) algorithm (bottom right) (see Methods). Paths including the node 

N are bolded.  mle, maximum likelihood estimate. 

  

Figure 2 – Whippet benchmarking against event-level and transcript-level 

approaches 

(A) Cumulative distribution plot comparing percent spliced in (<) values from RT-

PCR data with < values quantified from RNA-seq data. RT-PCR and RNA-seq data 

were generated from the same samples of mouse liver and cerebellum, as well as from 

stimulated and unstimulated human Jurkat T-cell line samples (Vaquero-Garcia et al., 

2016). By default, all benchmarked programs were supplied with the full Ensembl 
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GRCh37.73 annotation file, unless indicated otherwise (see Table S4). Cumulative 

distribution plots describe the proportion of data (y-axis) less than or equal to a 

specified value (x-axis). Dotted y-axis lines mark the lower quartile, median, and 

upper quartile (25%, 50%, 75%) values respectively. Cumulative Freq F(x), 

cumulative distribution function.  

(B) Bar plots showing the absolute error rate of quantification algorithm Ψ values 

compared to simulated ‘ground truth’ (i.e. known) Ψ values. Errors bars represent the 

standard error of the mean. RSEM, RNA-seq by Expectation Maximization (Li and 

Dewey, 2011). 

(C) Bar graph displaying the fraction of unannotated junctions (with two or more 

supporting reads) as a total of all junctions identified by Whippet across six vertebrate 

species (Brawand et al., 2011). “Error bars” represent the y-axis value range for a 

cumulative number of tissues, one (lower bound of the error bar) to five (height of the 

bar). Source of annotation (left to right): panTro4 Ensembl; monDom5 Ensembl; 

galGal4 Ensembl; gorGor3 Ensembl; hg19 GENCODE v27 tsl1; mm10 GENCODE 

VM11 Basic 

(D) Formalization of AS complexity into discrete categories K(n). n, theoretical 

number of alternative nodes and K(n) = 2n spliced-outcomes for a given AS event. 

Schematics of K(n) show constitutive exons (dark grey) and alternative exons (light 

gray) with curved lines representing all potential exon-exon junctions. 

(E) Cumulative distribution of entropy scores (i.e. entropy = − ∑ Ψ𝑖𝑖 𝑙𝑜𝑔2Ψ𝑖) detected 

by Whippet for simulated AS events of different categories of complexity according 

to (D). See Figure 2a legend for a description of cumulative distribution plots. 

(F) Comparison of the ability of different RNA-seq analysis methods to detect AS 

events from simulated reads (Methods) of complexity as defined in (D). Bar plots 
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show the absolute mean error rate as a function of increasing complexity of AS. Error 

bars indicate standard error. <, Percent Spliced In.  

(G) RT-PCR analysis confirms the numerous splice isoforms in N2a cells for AS 

events of increasing levels of complexity and matching Whippet predictions for the 

maximal complexity and entropy (far right). Boxes to right of gels display UCSC 

(left, blue) and Whippet (right, yellow) in silico predictions based on expected primer 

amplification products (Methods). Colored boxes (blue and yellow), correct 

predictions; black boxes, possible missed predictions. Diagrams below show exon 

structures of analyzed AS events with approximate positions of RT-PCR primers. 

Predicted constitutive and alternative exons are in dark and light gray, respectively 

(see legend in panel D).  

(H) Comparison of the log-scaled “core” time requirements (i.e. taking into account 

time spent using multiple cores) for running Whippet relative to published methods 

for RNA-seq splicing quantification when analyzing 15M, 25M or 50M paired-end 

RNA-seq read datasets (see Methods and Table S3).  

 

Figure 3 – Tissue-regulation of high entropy events detected using Whippet. 

(A) Symmetrical heatmap of pairwise correlations of normalized splicing entropy 

scores across multiple human tissues. Heatmap showing affinity propagation 

clustering of pairwise similarities between entropy scores. Colored bars surrounding 

heatmap indicate clusters defined by the dendrogram. Darker blue, stronger 

correlation in splicing entropy; lighter blue, weak or no correlation. r1, replicate 1; r2, 

replicate 2 

(B) Plot of ranked genes (x-axis) ordered by their maximum minor / major isoform 

relative expression ratio across all tissues (y-axis) at different minimum cut-offs 
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(color-scale), for the number of reads mapping to exon-exon junctions corresponding 

to the AS event. Dashed line, 45:55% ratio cutoff (equivalent to a minor / major ratio 

of 0.818; see Methods). 

(C) Bar plot displaying maximum variance of splicing entropy per gene (n = 11,421), 

revealing that >20% of genes exhibit extensive variance in AS entropy of AS across 

human tissues. Genes lacking major changes in entropy are not shown. 

(D) Scatter plots of change in AS entropy across tissues versus change in expression 

level of the corresponding genes. Red line, best-fit linear regression. R-squared value 

calculated using Pearson Correlation Coefficient.  

(E) Functional analysis for GO, REACTOME and KEGG functional categories of 

genes with large changes in splicing entropy (>2.0) across human tissues. P-value, 

corrected FDR hypergeometric test. 

 

Figure 4 – Alternative splicing entropy is evolutionarily conserved and high 

entropy events are potentially translated  

(A) Distribution of the number of unique conserved exons with genomic coordinate 

‘liftover’ across at least three vertebrate species (human, chimp, gorilla, mouse, 

opossum, platypus, and chicken). Conserved exons are counted in discrete bins by 

their maximum entropy in any of the species.  

 (B) Cumulative distribution plots comparing the cross-species variance of entropy 

values among the same tissue in seven vertebrates (at least three species present per-

event) as compared to a permuted null control. See Figure 2A legend for a 

description of cumulative distribution plots. 

(C) Distributions for the cross-species variance of entropy values (y-axis) for 

conserved exons, binned by maximal entropy values (x-axis), and compared to a 
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control set of the same data but with permuted AS event labels for each species 

(color-scale). All two-sided KS-test p-values are less than epsilon (2.2 x 10-16), except 

for the bin (1.5,3] whose p-value was 4.6 x 10-4. (bottom) Same as (top) except the 

distributions plotted contain the cross-species variance of <-values (y-axis) for the 

same conserved exons. All two-sided KS-test p-values are less than epsilon (2.2 x 10-

16), except for the bin [1.5,3] whose p-value was 4.3 x 10-2. Boxplots display the 

interquartile range as a solid box, 1.5 times the interquartile range as vertical thin 

lines, the median as a horizontal line, and the confidence interval around the median 

as a notch. 

 (D) Violin plots of the distribution of splicing entropy in different cellular 

compartments and ribosome (mono- and polysome) fractions. Kernel density is 

displayed as a symmetric curve, with white dots indicating the median, black box the 

interquartile range, and black lines the 95% confidence interval.  

  

Figure 5 – High entropy splicing events encode unique protein features 

(A) Cumulative distribution plots showing frequency of overlap of AS events (with 

different degrees of entropy) within intrinsically disordered regions (IDRs) of proteins 

(left) structured single protein domains (center), and structured tandemly repeated 

protein domains (right). See Figure 2A legend for a description of the cumulative 

distribution plots (n > 368). 

 (B) Bar plot showing frequency at which exons undergoing AS with different degrees 

of entropy (based on Whippet analysis of tissue RNA-seq data in Figure 3) show 

evidence of duplication. Numbers of AS events analyzed indicated above plots. See 

Figure 5A for color legend.  

(C) Domain diagram for Lrp8 (Low-density lipoprotein receptor-related protein 8) 
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based on SMART annotation. Dotted boxes describe area of proteins undergoing high 

entropy splicing in different tissues types. Domain diagram below illustrates exons 

undergoing splicing within N2a cells and position of primers for RT-PCR validation 

below. CNS, Central Nervous System; E, embryonic day; LDL, Low-Density 

Lipoprotein; EGF, Epidermal Growth Factor 

(D) RT-PCR analysis confirms the presence of putative Lrp8 spliced isoforms in N2a 

cells. Diagrams below show exon structures of analyzed AS events with approximate 

positions of RT-PCR primers indicated. See Figure S5 for full gel. 

 

Figure 6 – Exons within high entropy splicing events have unique splice site 

features 

(A) Plots showing the cumulative distribution of 3´-splice site (3´ss) strength (left) 

and 5´-splice site (5´ss) strength (right) estimated using MaxEntScan (Yeo and Burge, 

2004) and binned by maximum splicing entropy scores (bottom panels). The median 

3´ss strength for AS events with different degrees of splicing entropy are plotted as 

colored lines (top panels). See Figure 2A legend for a description of cumulative 

distribution plots (n >1064). 

(B) Boxplot displaying the distribution of exon length (top) and intron length (bottom) 

surrounding exons binned by maximum entropy of AS. See Figure 6A for color 

legend. nt, nucleotide. n as in Figure 6A. See Figure 4C for descriptions of boxplots. 

(C) Cumulative distribution plots of exonic splicing regulatory elements in AS events 

with different degrees of AS event entropy. Scores calculated based on the density of 

exonic splicing enhancers (top) and exonic splicing silencers (bottom) per nucleotide 

(see Methods). Motifs extracted from Ke et al. 2011. See Figure 6A for color legend, 

and Figure 2A legend for a description of cumulative distribution plots. n as in 
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Figure 6A. 

(D) Mechanistic model for the regulation of low-entropy (simple binary) AS events 

versus high-entropy (complex) AS events by cis-acting elements and other sequence 

features. Exons are represented by boxes and introns by lines, with cis-regulatory 

elements and relative splice site strength indicated by color.  

 

Figure 7 – Increases in high entropy splicing in cancer is associated with over-

expression of the essential splicing factor, SRSF1 

(A) Boxplot showing percentage of high entropy AS events (> 1.5) within each 

replicate identified from Whippet analysis of RNA-seq data comprising 15 matched 

tumor and control samples. Black dots represent individual data. See Figure 4C for 

descriptions of boxplots. 

(B) Cumulative proportion of unannotated alternative splice junctions (with two or 

more supporting reads) identified across matched tumor and control RNA-seq 

samples. See Figure 2A legend for description of cumulative distribution plots. 

(C) Heatmap of splicing entropy values for events with significant changes (p<0.05, 

Mann-Whitney U test) between tumor and control samples (n=657). 

(D) Bar plots of enriched functional categories for genes harboring AS events with 

significant entropy changes (p-values < 0.05, Mann-Whitney U test) from panel (C) 

identified from RNA-seq analysis of 15 matched tumor and control samples. P-values 

were corrected using false discovery rate (FDR) multiple hypothesis testing correction 

(n = 657). 

(E) Schematic diagrams of two genes showing significant changes in AS event 

entropy between tumor and matched control samples. Domain structure extracted 

from SMART database. Light blue arrows and boxes indicate increased occurrence of 
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splicing regulation in tumor samples. For BIN1, dashed boxes indicate protein regions 

predicted to be regulated by splicing in control (grey box) and cancer samples (cyan 

box). EZH2, Histone-lysine N-methyltransferase EZH2; BIN1, Myc box-dependent-

interacting protein 1 

(F) Differential gene expression analysis for selected RNA-binding proteins 

(GO:0000380) identified from RNA-seq analysis of 15 matched tumor and control 

samples. Genes with blue bars display reduced expression in cancer samples, red bars 

show increased expression in cancer samples, and gray bars show no significant 

difference between control and tumor samples. 

(G) Boxplot showing normalized read counts for SRSF1. See Figure 4C for 

descriptions of boxplots. 

(H) Boxplot showing relative complexity of transcriptomes, as measured by 

distribution of entropy scores for high quality AS events, between SRSF1 over-

expression (OE) sample and matched control (n=1,998). Statistical test = Mann-

Whitney U test. See Figure 4C for descriptions of boxplots 

(I) Bar plot showing percentage of events from plot (H) with differential splicing 

changes between SRSF1 OE (over-expression) and matched control samples that 

overlap with splicing changes in tumor samples from (C), as compared to the number 

of overlapping events expected by chance (n = 1,998). Statistical test = Fisher’s exact 

test. 

 

STAR METHODS: 

 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Requests should be directed to and will be fulfilled by Lead Contact Benjamin 
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Blencowe (b.blencowe@utoronto.ca). 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Cell lines and Cell Culture 

Neuro-2A (N2A) cells are a male, mouse neuroblastoma cell line, and were grown in 

DMEM supplemented with 10% FBS, sodium pyruvate, non-essential amino acids 

and penicillin/streptomycin. Cells were maintained at 37°C with 5% CO2. An 

authenticated N2A cell line was purchased from ATCC (catalog number: ATCC 

CCL-131). 

 

Short interfering RNA knockdown and RT-PCR 

Mouse Neuro2A (N2A) cells were transfected with SMARTpool siRNAs 

(Dharmacon) (50nM final concentration) using Lipofectamine RNAiMAX 

(Invitrogen), as recommended by the manufacturer. A non-targeting siRNA pool 

(siNT) was used as a control. Cells were harvested at 48 hours post transfection and 

total RNA was extracted using RNeasy columns (QIAGEN). Semi-quantitative RT-

PCR was performed using the QIAGEN One-Step RT-PCR kit as per the 

manufacturer’s instructions, using 50ng total RNA in a 20uL reaction. Products were 

resolved on 2-4% agarose gels and bands were quantified using Image Lab (BioRad) 

or ImageJ. Predictions of band sizes were based on in silico PCR using data from 

from the UCSC Genome Browser (http://genome.ucsc.edu) server after combining 

exons from Whippet predictions. Only predictions supported by multiple sources of 

evidence (i.e. RT-PCR, Whippet and UCSC) were included in figures (see Key 

Resources Table for details of primers used). 
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METHOD DETAILS 

RNA-seq simulation 

 To simulate RNA-seq reads transcriptome wide, we used RSEM (Li and 

Dewey, 2011) to quantify the benchmark dataset SRR2300536 (a ~25M read depth 

RNA-seq dataset from HeLa cell line).  With the RSEM parameters and gene 

expression distributions obtained from this quantification (RSEM 

estimated_model_file, estimated_isoform_results, and theta), we used RSEM’s rsem-

simulate-reads to simulate 50M paired-end reads for each of two hg19 annotation 

builds: Gencode v25 TSL1, and RefSeq Release 84.  In order to calculate ‘ground 

truth’ (i.e. known) < values for Whippet nodes, we used the Whippet_TPM method 

on the ground truth isoform TPM values provided by the RSEM simulator.  

 To investigate the accuracy and capability of AS quantification tools, we 

simulated transcripts with AS-events of increasing complexity.  To formalize AS 

events into discrete classes of complexity K(n) = 2n splicing-outcomes for K1 through 

K6, we randomly chose 500 CSGs of each complexity class with at least n total 

internal nodes (not including nodes with TxStart or TxEnd node boundaries).  From 

those CSGs, we randomly chose a set of n consecutive internal nodes and created 

partial transcript sequences from the first internal node to the last internal node, with 

all combinations of n internal nodes.  In the case of nodes with Soft boundary types, 

less than 2n total combinations were created, since nodes whose incoming edge is a 

Soft 5’ Splice Site cannot be included in the transcript unless the adjacent upstream 

node is also included. Similarly, a node whose outgoing edge is a Soft 3´SpliceSite 

requires the adjacent downstream node to be included.  Given the six sets of simulated 

events of complexity K(n) (where n = 1, ... ,6), we used polyester (Frazee et al., 2015) 
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(read length = 100, error rate = 0) to simulate RNA-seq reads from the simulated 

transcripts for each gene (see Methods S1 for extended details). 

 

Combinatorial gene model  

To investigate engineering de novo AS analysis capability for transcript-level 

methods, we utilized Whippet’s CSGs (in the Whippet/bin/simulation/whippet-

combinatorial.jl script) to enumerate combinatorial graph paths for each pair of 

TxStart and TxEnd boundaries.  While we successfully simulated combinatorial paths 

for a sliding window of four, five, six, eight, and ten nodes, we used four nodes 

throughout the manuscript (referred to as the ‘N4 annotation Gene Transfer Format 

[GTF]’).  This was the largest number of nodes in a sliding window for which, due to 

memory usage issues, we were able to successfully build indices using transcript-level 

methods.  

 

Benchmarking 

All genomic and transcriptomic sequences, as well as GTF files, were 

downloaded from the Ensembl database. The following genome builds were used: 

Hg19 GRCh37.p12 (v73) and Mm10 GRCm38.p4 (v84) using the full Ensembl 

GRCh37.73 annotations for all programs unless otherwise stated in the analysis or in 

the online instruction manual for that program (e.g. Figure 2A uses the full Ensembl 

annotation sets by default, while Figure 2B restricts each program to GENCODE v25 

TSL1 or RefSeq Release 84 as specifically stated; see Table S4).  Exon annotations 

(including genomic annotations) were downloaded from Ensembl using BioMart. 

All benchmarking was performed on a Sun Microsystem X4600M2 server 

with 8 AMD Dual-Core 8218 CPU @2.6GHz, total 16 cores and 64GB RAM. The 
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local hard disk was SATA 73GB, 10K RPM. Identical paired-end HeLa data of 

increasing read-depths were employed for all resource usage benchmarking (see 

Table S3). All programs were run with default settings with additional settings 

described in Table S4. The default linux package “time” (/usr/bin/time – e.g. 

http://man7.org/linux/man-pages/man1/time.1.html) was used to measure the resource 

usage of each program. See Methods S1 for extended details, and Tables S2 and S5 

for results. 

Benchmarking of mapping success was performed using the program 

Benchmarker for Evaluating the Effectiveness of RNA-Seq Software (BEERS) 

(http://www.cbil.upenn.edu/BEERS/) and simulated reads based on hg19 GRCh37.73 

Ensembl transcriptome data. Simulated reads were generated using 

“reads_simulator.pl” with substitution frequency (parameter “-subfreq”) error rates of 

0.001, 0.005 and 0.01, respectively and a read depth of 1,000,000. For resource and 

mapping benchmarks the program “time” was used (see above and Methods S1 for 

details, and Table S6 for results). 

RT-PCR and RNA-seq data used in comparisons of < values were generated 

from samples prepared from mouse cerebellum and liver tissue, as well as from 

stimulated and unstimulated human Jurkat T-cell line cells (Vaquero-Garcia et al., 

2016). ∆< values were calculated by comparing < values between the mouse 

cerebellum and liver tissues samples or between the stimulated and unstimulated 

human Jurkat T-cells. Only simple events (as defined by MAJIQ as involving a total 

of three exon-exon junctions) were included in the analysis. 

 

Tissue-wide analysis of splicing 
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Low-entropy AS events are defined by an entropy value less than 1.0. High 

entropy events (for description of entropy of AS events see Figure 2D, Figure S4C-

D and Methods S1) are defined as events with an entropy score of greater than 1.5, 

and differential entropy requires a change of entropy of greater than 1.0 (unless 

stated). Highest entropy events are defined as those greater than 2.0. Only events with 

a Whippet confidence interval width of less than 0.2, and < values of over 0.05 and 

under 0.95 were included in the analyses. Analyses were limited to core exons (CE), 

as defined by Whippet. An exception to this rule is when assessing the fraction of 

genes co-expressing two or more major isoforms. For this analysis, due to observation 

in Figure S6B, we used a minimum read cut-off of 20 in main text (see Figure 3B 

and  S6C for additional cut-offs).  

Tissue RNA-seq data analyzed in Figure 3 and Figure S6 were from the 

Illumina Bodymap2 dataset and supplemented with human tissue RNA-Seq data from 

Kunming Institute of Zoology (Table S3). The maximum change in splicing entropy 

between tissues is the comparison of the lowest entropy of an exon/node compared to 

the highest entropy for same exon/node between tissues. This is therefore not a 

measure of tissue-specificity but rather a measure of maximum variability for the 

number of well-expressed exon-exon junctions an exon may have across tissues.  

The analysis of how many genes co-express at least two isoforms at similar 

levels was calculated using the above tissue specific data. For an event to be 

considered as co-expressed the two principal isoforms must be expressed at similar 

levels (within a 10% range). Expression was assessed based on assigned reads. All 

types of splicing events were considered.  
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Tissue-wide heatmaps were generated by affinity propagation clustering using 

the R package (apcluster) with pairwise similarities as correlations (corSimMat and 

r=2) and negative correlations taken into account. 

 

Feature analysis of high entropy AS events 

For all amino acid residues in a protein, a score for predicted intrinsic disorder 

is computed using IUPred (Dosztanyi et al., 2005). Amino acid residues with a score 

larger than 0.4 were considered as disordered. For each coding exon the proportion of 

total residues that are predicted to be disordered was estimated. Domain data 

extracted from SMART database (Letunic et al., 2015). 

MaxEntScan (Yeo and Burge, 2004) was used to estimate the strength of 3´ 

and 5´ splice sites. 5´ splice site strength was assessed using a sequence including 3nt 

of the exon and 6nt of the adjacent intron. 3´ splice site strength was assessed using a 

sequence including -20nt of the flanking intron and 3nt of the exon. Exonic splicing 

silencer or exonic splicing enhancer densities were extracted from motifs quantified in 

(Ke et al., 2011). To calculate exonic splicing enhancer and silencer densities, all 

motifs defined by Ke et al. were summed together and normalized by the number of 

exonic nucleotides.  

 

Analysis of cancer data 

Hepatocellular carcinoma (HCC) and control data were from a transcriptome 

profiling study undertaken by the University of Hong Kong (see Table S3). For 

Figure 7A, all events with sufficient reads (n>10) across multiple samples (more than 

2) that showed evidence of AS (0.05< <<0.95) were included in the analysis. These 

criteria were used throughout Figure 7, with the exception of Figure 7B, when all 
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exons required at least 3 reads to support identification. For Figure 7B, unannotated 

alternative exon-exon junctions were extracted from the Whippet ‘.jnc’ file.  

Differential complexity between control and tumour samples across 15 

replicates described in Figure 7C was assessed. Only samples with a significant 

difference (Mann-Whitney U test p < 0.01) and a median entropy difference between 

control and tumour samples of at least 0.5 were considered differential. To identify 

differentially expressed genes, read counts for transcripts (calculated by Whippet) 

were combined and DESeq2 (adjusted p-value < 0.05) was used.  SRSF1 over-

expression data (Anczukow et al., 2015) was analyzed by Whippet. Only events with 

high entropy (> 1.5) in either the control or over-expression study were included in 

the analysis. Events with detected aberrant splicing in Figure 7I are displayed in 

Figure 7C.  

 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Contiguous Splice Graph Index 

The central data structure underlying the alignment and quantification 

capabilities of Whippet is the Contiguous Splice Graph (CSG). This directed acyclic 

(i.e. except when circular splicing detection is enabled) graph structure is composed 

of all non-overlapping exon intervals, which are each defined as separate ‘nodes’.  

Nodes in the CSG are connected by edges, defined as either splice junctions or 

adjacent exonic regions. All nodes are arranged consecutively in a single sequence 

based on genomic coordinates (see Algorithm S1). As such, a CSG sequence built 

from a set of annotated transcripts may not necessarily resemble any of the individual 

transcript sequences. Each transcript sequence can however be defined by a sequential 
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series of nodes through the graph. Whippet defines node boundaries (one upstream 

and one downstream, flanking either side of the node sequence) to describe the 

incoming and outgoing connectivity to other nodes. Whether an edge can exist 

between two nodes is defined by their incoming and outgoing ‘boundary-types’.  

Node boundary-types are formally made up of two properties: a classification and an 

alignment property. The classification property can be a transcription start (TxStart), 

transcription end (TxEnd), donor splice site (5´SpliceSite), or acceptor splice site 

(3´SpliceSite) (Figure S1B and Table S7). The alignment property is one of two 

categories: ‘Soft’ or ‘Hard’. Soft boundaries are node boundaries adjacent to other 

nodes in the genomic sequence.  For example, in Figure 1B, nodes 3 and 4 have Soft 

outgoing and incoming edges, respectively. This is because in an annotated transcript 

they are part of the same exon (i.e. zero nucleotides exist between the end position of 

node 3 and the start position of node 4 in the genomic sequence).  In contrast, Hard 

boundaries exist when one or more genomic nucleotides separate the nodes. For 

example, there is a Hard boundary between nodes 2 and 3 in Figure 1B because 

genomic sequence separates the nodes. The compatibility of two boundary-types is 

determined by three simple rules: (1) All outgoing 5´SpliceSite boundaries are 

compatible with all incoming 3´SpliceSite boundaries, (2) Soft boundaries are 

compatible with adjacent neighboring Soft boundaries, and (3) no Hard boundary is 

compatible with any other boundary except in the case of Rule #1 (Methods S1 for 

extended details).  This distinction between CSG Hard and Soft boundaries allows 

boundary type-specific rules to be utilized for alignment extension. After building all 

CSGs, the CSG Sequences are concatenated into a single Multi-CSG sequence that is 

used to create a transcriptome Full-text index in Minute space (CSG FM-Index) 

(Ferragina et al., 2004) for full-text substring searches. 
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 Whippet aligns RNA-seq reads to the CSG index by performing ungapped 

extensions from alignment seed sequences mapped to the CSG FM-Index (Methods 

S1 and Algorithm S2 for details). Using the CSG index, Whippet is able to efficiently 

align spliced reads to any combination of nodes in a CSG.  To facilitate this, reads are 

aligned across spliced edges using nucleotide k-mers flanking annotated 5´ or 3´ 

splice-site node boundaries.  Each 5´ or 3´ splice-site flanking k-mer indexes each of 

two global hash-tables (i.e. associative maps) that link to a list of (gene, node) tuples, 

respectively (Figure 1D). Spliced read alignment uses read k-mers at an alignment 

node boundary to match compatible nodes from the same gene (note all nodes with 

outgoing 5´ splice sites are compatible with all nodes with incoming 3´ splice sites) 

(Figure 1D, Figure S1; see Methods S1 for extended details). Read alignment in this 

manner affords considerable efficiency by storing minimal data while supporting de 

novo AS event identification.  

 

AS event definition and PSI quantification 

 After all reads have been assigned full or partial (for multi-mapping reads) 

counts to the edges in a CSG (see Methods S1 for details of isoform-level 

quantification and multi-mapping read assignment), AS events are next built de novo 

to quantify AS.  In order to define an AS event for a node, the set of edges connecting 

to – and skipping over the target node (N) – are collected, where the read count of a 

skipping edge must be ≥ 1% of the maximal connecting edge read count.  The AS 

event built de novo for each node (referred to here as the ‘target node’ of the event) is 

initially defined by the span of the edges that directly connect or skip the target node.  

Whippet iteratively collects all edges that fall within the span of previously defined 

directly connecting or skipping edges (Figure 1E). Whippet then performs the same 
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procedure for each non-target node within the AS event, extending the AS event as 

necessary to encompass all auxiliary edges, including edges for non-target nodes that 

do not directly skip or connect to the target node (Figure 1E). The set of paths 

through the AS event are then enumerated using Algorithm S3 (see Methods S1). 

 In order to quantify the AS event paths i�I, we utilize the set of edges E in the 

event and the read count ce assigned to each edge e�E. Counts for each unique edge e 

that exist in only one path i are assigned fully. However, non-unique edges found in 

multiple paths have counts initially divided among their compatible paths with 

uniform probability, and then the maximum likelihood for the relative expression of 

each AS event path is estimated using the expectation-maximization (EM) algorithm.  

We define a compatibility matrix ye,i = 1 for an edge e existing in a path i, and ye,i = 0 

otherwise (Bray et al., 2016). We define the length of path i as proportional to the 

number of edges in the path such that: 𝑗𝑖 ∝  ∑  𝒚𝑒,𝑖 𝑒∈𝐸 (see Methods S1 for extended 

details).  The probability 𝛼 of observing reads from an AS event path i with relative 

expression level 𝜓𝑖  is then defined by 𝛼(𝑖) =  𝜓𝑖 𝑗𝑖
∑ 𝜓𝑝𝑝∈𝐼 𝑗𝑝

 . The following likelihood 

function is therefore iteratively optimized in the EM algorithm: 

ℒ(𝛼) ∝ ∏ (∑  𝒚𝑒,𝑖 
 𝛼(𝑖)

𝑗𝑖𝑖∈𝐼

)
𝑐𝑒

𝑒∈𝐸

  

In the M-step, the relative expression of each path (𝜓𝑖) is given by: 

𝜓𝑖 =  
∑ 𝛼(𝑒, 𝑖) 𝑐𝑒𝑒∈𝐸

𝑗𝑖
 

In the E-step, the probability 𝛼 of observing reads from an edge e and path i are: 

𝛼(𝑒, 𝑖) =  
 𝒚𝑒,𝑖 𝜓𝑖 

∑  𝒚𝑒,𝑝 𝜓𝑝𝑝∈𝐼
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The percent-spliced-in < of the node n is then calculated as the sum of the normalized 

relative expression of the paths containing the node {In � I}: 

Ψ𝑛 =  ∑ 𝜓̂𝑖𝑖∈𝐼𝑛  , where 𝜓̂𝑖 = 𝜓𝑖
∑ 𝜓𝑝𝑝∈𝐼

 .   

It’s important to note that the this represents a generative model for RNA-seq 

count data, assuming that counts from each edge are drawn independently from a 

multinomial distribution.  While this assumption will not always be satisfied (e.g. for 

reads that span multiple edges), assuming independence among edges simplifies the 

problem space considerably and in turn does not adversely affect the accuracy of the 

quantifications. 

 

Whippet_TPM 

To calculate PSI values for Whippet nodes from the Transcript Per Million 

(TPM) values calculated by transcript-level analysis tools such as Kallisto/Salmon 

(Bray et al., 2016; Patro et al., 2017) (in the Whippet/bin/simulation/whippet-quant-

bytpm.jl script, a.k.a ‘Whippet_TPM’), we utilize the quantification concepts 

described for SUPPA (Trincado et al. 2018).  Briefly, Ψ𝑛 =  
∑ 𝜏𝑖𝑖∈𝐼𝑛
∑ 𝜏𝑖𝑖∈𝐼

, where n is the 

node being quantified, I is the set of transcripts in the gene, In is the set of transcripts 

containing node n in the gene, and 𝜏𝑖 is the TPM of transcript i.  To simplify this 

script, only nodes guaranteed to be quantified correctly are used, i.e. Whippet_TPM 

only quantifies nodes with 3´SpliceSite incoming and 5´SpliceSite outgoing boundary 

types.  

 

Statistical Analysis 
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Gene function enrichment analysis (Figures 3b and 4d) was performed using 

g:Profiler (with the python package: gprofiler; http://biit.cs.ut.ee/gprofiler), which 

uses a hypergeometric test with multiple hypothesis testing correction, as originally 

described by Benjamini and Hochberg. Mann-Whitney U non-parametric statistical 

tests were used for comparing distributions (R query: Wilcox.test <default 

parameters>) in Figures 4A, 6B, 6C, 7A, 7C, 7H and, Figure S7. An exception was 

in Figure 2A and Table S1 when analyzing repeated measurements (e.g. in RT-PCR 

comparisons), in which case the Wilcoxon signed rank test was used (R query: 

Wilcox.test – signed=T). Kolmogorov–Smirnov (KS) tests were used in Figure S9. 

Fisher’s exact test (R query: fisher.test) was used for comparing two nominal 

variables in a small population in Figure 7I and Figure S6. DESeq2 (Love et al., 

2014) tested for differential gene expression using negative binomial generalized 

linear models with a multiple hypothesis testing correction, as originally described by 

Benjamini and Hochberg. The adjusted p-value cut-off was 0.05.  Heatmaps were 

generated using Affinity Propagation clustering with the R package “apcluster”. 

Clustering was based on either pairwise similarities of correlations (Pearson), or 

mutual pairwise similarities of data vectors, measured as the negative Euclidean 

distance. Correlations were assessed using Pearson Correlation Coefficient. 

 

Additional Resources 

Further benchmarking and methods details are described in Methods S1. Protocol is 

available at http://github.com/timbitz/Whippet.jl 

 

DATA AND SOFTWARE AVAILABILITY 
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Whippet is implemented in the high-level, high-performance dynamic programming 

language Julia (julialang.org) and is freely available as open-source software under 

the MIT license (Git repository: http://github.com/timbitz/Whippet.jl). The analysis 

scripts and simulated data used in this study are available at 

http://figshare.com/articles/Whippet_analysis_scripts/5711683 

 



 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Chemicals, Peptides, and Recombinant Proteins 
Lipofectamine RNAiMAX Invitrogen Cat# 13778030 
SMARTpool siRNAs Dharmacon N/A 
   
Critical Commercial Assays 
One-Step RT-PCR Qiagen Cat# 210210 
RNeasy Mini Kit Qiagen Cat# 74104 
   
Experimental Models: Cell Lines 
Human: HeLa N/A N/A 
Mouse: Neuro2A ATCC ATCC CCL-131 
   
Deposited Data 
Public RNA-seq data used in paper Table S3 Table S3 
   
Oligonucleotides 
Slmap: 
Forward:GAGCGCACTCAGGAAGAGTT 
Reverse: TTCCTTTGCTTTTGCCTGAT 

This paper N/A 

Slmap (Control): 
Forward:GAGCGCACTCAGGAAGAGTT 
Reverse:TTCCTGCTCAGTCATTTCAAAC 

This paper N/A 

Eps15l1: 
Forward:TTGGAACCCTAGACCCCTTT 
Reverse:CTTTTTCACTCTCCCGCTTG 

This paper N/A 

Asap1: 
Forward:GCCCGCGATGGAATAATG 
Reverse:TGAGGAAGAGGCACAGGTCT 

This paper N/A 

Eml4: 
Forward:TCCTGTATAACCAATGGAAGTG 
Reverse:CATTGTAATTGGCCGACCTC 

This paper N/A 

Atp8a1: 
Forward:CGGTCGTTACACAACACTGG 
Reverse:GGCCAAGTTCCTCATTCAGA 

This paper N/A 

Sfl1: 
Forward:TCATGCCTCACAAAACTGGA 
Reverse:CCATAGCCAGCCTCTGTACC 

This paper N/A 

Mapt: 
Forward:AATGGAAGACCATGCTGGAG 
Reverse:GCCACACTTGGAGGTCACTT 

This paper N/A 

Key Resource Table



Lrp8: 

Forward:CGGAGAGAAGGACTGTGAGG 
Reverse:CAGTGCAGATGTGGGAACAG 

This paper N/A 

Gtf2ird1: 
Forward:CCCCAACACCTATGACATCC 
Reverse:CGCTTGGGAATGTTGTCTTT 

This paper N/A 

Rbms3: 

Forward:GAGACAGGGTCAGAGCAAGC 
Reverse:AAACCGGAGGCCAACTAACT 

This paper N/A 

Cask: 
Forward:AGGGAAATGCGAGGGAGTAT 
Reverse:GTCATCCTTGGCTGGATCAT 

This paper N/A 

   
Software and Algorithms 
Whippet This paper https://github.com/timbitz/Whippet.jl 
Whippet_TPM This paper https://github.com/timbitz/Whippet.jl 
Supplemental scripts and 
simulated data 

This paper http://figshare.com/articles/Whippet_analy
sis_scripts/5711683 

Julia N/A http://www.julialang.org 
BioJulia N/A https://github.com/BioJulia 
MAJIQ (Vaquero-Garcia et al., 

2016) 
https://majiq.biociphers.org/ 

rMATS (Wang et al., 2017) http://rnaseq-mats.sourceforge.net/ 
MISO (Katz et al., 2010) http://genes.mit.edu/burgelab/miso/ 
VAST-TOOLS (Tapial et al., 2017) https://github.com/vastgroup/vast-tools 
BENTO (Xiong et al., 2016) https://github.com/PSI-Lab/BENTO-Seq 
SUPPA (Trincado et al., 2018) https://github.com/comprna/SUPPA 
Kallisto (Bray et al., 2016) https://pachterlab.github.io/kallisto/ 
STAR (Dobin et al., 2013) https://github.com/alexdobin/STAR 
HISAT (Kim et al., 2015) https://ccb.jhu.edu/software/hisat 
TOPHAT (Kim et al., 2013) http://ccb.jhu.edu/software/tophat 
BEERS (Grant et al., 2011) http://cbil.upenn.edu/BEERS/ 
Polyester (Frazee et al., 2015) https://github.com/alyssafrazee/polyester 
RSEM (Li and Dewey, 2011) https://github.com/deweylab/RSEM 
DESeq2 (Love et al., 2014) https://bioconductor.org/packages/release/b

ioc/html/DESeq2.html 
IUPred (Dosztanyi et al., 

2005) 
http://iupred.enzim.hu/ 

MaxEntScan (Yeo and Burge, 2004) http://genes.mit.edu/burgelab/maxent/Xma
xentscan_scoreseq.html 

apcluster (Bodenhofer et al., 
2011) 

https://cran.r-
project.org/web/packages/apcluster/index.h
tml 



PTRStalker (Pellegrini et al., 
2012) 

http://bioalgo.iit.cnr.it/index.php?pg=ptrs 

SEG (Wootton, 1994) http://www.biology.wustl.edu/gcg/seg.html 
Image Lab BioRad Cat# 1709691 
   
Other 
Parameters for software used Table S7 Table S7 
Supplemental Methods Methods S1 Methods S1 
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METHODS S1, Related to STAR METHODS and Figures 1, 2, 3 and 5 

 
Contiguous Splice Graph Index (Extended): 
 

To build a Contiguous Splice Graph (CSG) from the transcript annotations for 

a gene, let X represent the set of exon (start, end) intervals (a, b) from those 

transcripts (where a ≤ b for all intervals).  The start and end positions for all exons in 

the gene are also stored in four sets of sorted (in increasing order) positions: F, the 

first a position for each transcript, L the last b position for each transcript, A the rest 

of the a positions in the transcript, and B the rest of the b positions in each transcript. 

Next, we define a single ordered vector of all exon start and end positions V = {F ∪ L 

∪ A ∪ B}) where adjacent positions in V have monotonically increasing order (e.g. vi 

≤ vi+1 for all i in 1 to | V |, v∈V).  A CSG is built by iterating through the positions in 

V and building nodes and assigning boundary types based the set membership of 

adjacent positions vi and vi+1.  The pseudocode for a positive strand gene is provided 

as an example below (Algorithm S1): 

``` Algorithm S1. 
 
csg  = Vector(∅) 
 
For i in length(V) - 1: 
 If Is_exonic_interval(vi , vi+1): 
  incoming.position = vi 
  incoming.class = Boundary_class(vi) 
  outgoing.position = vi+1 
  outgoing.class  = Boundary_class(vi+1) 
 
  If i > 1 AND Is_exonic_interval(vi-1 , vi): 
   incoming.property = Soft 
  Else:  
   incoming.property = Hard 
 
  If i < length(V) – 1 AND Is_exonic_interval(vi+1 , vi+2): 
   outgoing.property = Soft 
  Else: 
   outgoing.property = Hard 
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  csg.Append( Node( incoming, outgoing ) )  
return csg 
 
 
Function Boundary_class( element ): 

If element in A: 
 return 3ʹSpliceSite 
Elseif element in B 

return 5ʹSpliceSite 
Elseif element in F 

return TxStart 
Elseif element in L 

return TxEnd 
 
Function Is_exonic_interval( start, end ): 
 If there exists an exon in X with subinterval(start , end): 
  Return True 
 Else: 
  Return False 
``` 
 
Unannotated Splice Sites from BAM: 

 Since many non-model organisms have poorly annotated genomes, CSG 

indexes built from standard annotation files may miss a considerable number of splice 

sites and exons.  In order to partially overcome this limitation, Whippet allows users 

to provide a spliced read alignment file in BAM (sorted and indexed) format from an 

independent de novo capable spliced read aligner (e.g. STAR, HISAT) using the `--

bam` parameter in `whippet-index.jl`.  Whippet iterates through the introns (CIGAR 

string intron operation `N`) of spliced reads within the boundaries of each gene’s 

annotated upstream and downstream transcription start and end sites (Vaquero-Garcia 

et al., 2016). In order to decrease artifacts due to ambiguities among overlapping gene 

annotations (e.g. head-to-head or tail-to-tail regions) with unstranded RNA-seq data, 

Whippet’s default is to require that each spliced read in the BAM file has a splice-site 

that is known (e.g. found in the annotation set, or novel but already added by an 

upstream read).  This stringency can be overridden using the `--bam-both-novel` 



parameter, allowing all splice-sites in a spliced read alignment to be novel, and also 

the `--bam-min-reads` parameter can be used to specify a minimum number of 

supporting reads for a splice site.  These can be used in order to make Whippet’s 

indexing behavior more closely matched to the defaults for other methods (Vaquero-

Garcia et al., 2016).  

Formally, building a CSG with supplemented splice-sites from BAM follows 

the same methodology as from GTF annotation, with a few exceptions.  Given a novel 

splice site i added to A or B (a 3’ splice site would be added to A and a 5’ splice site to 

B), and by definition therefore, added to V, the functions in Algorithm S1: 

`Is_exonic_interval(vi, vi+1)` and `Is_exonic_interval(vi-1, vi)` return true when the 

interval falls on the CIGAR string match operation `M` side of the spliced read 

alignment’s intron (e.g. not on the gap side the novel splice-site’s RNA-seq 

alignment).   

To test the performance of utilizing BAM supplemented indexes, we used the 

RSEM read simulator `rsem-simulate-reads` to generate a set of 5M paired RNA-seq 

reads (using GENCODE v25 TSL1, and the same parameters as used in Figure 2B) 

and aligned them (using the `--sam` output parameter to produce a BAM file) with 

Whippet to an index built with the same annotation file.  Filtering the annotation set 

for the genes with 500 or more simulated reads, we obtained a new annotation file for 

2,432 expressed genes with high simulated read coverage.  Supplying this filtered 

annotation file to `whippet-index.jl` alongside the BAM file (using the `--bam` 

parameter), Whippet identifies 66,888 annotated splice sites and erroneously finds 3 

“new” splice sites (false positives), at an FDR of 0.0048% (3 / 66,891), and 33 false 

positive splice sites with the `--bam-both-novel` flag, at an FDR of 0.049% (33 / 

66,921). Similarly applying Whippet using annotation files where the internal exons 



have been randomly removed at a variable rate (from 10% to 90%), we observe >95% 

Recall (also called True Positive Rate, TPR; TP / [TP+FN]) of splice-site 

identification with 30% exons down-sampled for the default settings, and nearly total 

Recall (>99%) at all levels of down-sampling using the `--bam-both-novel` flag. This 

analysis illustrates the effectiveness of GTF+BAM supplemented indices compared to 

GTF alone (Figure S1E).   

 
Contiguous Splice Graph alignment & seeding: 
 

Since a major computational bottleneck of read alignment is the full-text 

search for alignment seed location, we focused on making the seeding process as 

efficient as possible. Whippet therefore will not attempt to seed any window 

containing a FASTQ nucleotide entry with a QUAL score below the minimum 

threshold (Phred Q=4, P=0.398 by default), and will iteratively scan the read until a 

seed of acceptable QUAL distribution is obtained.  After choosing a seed of (constant 

seed-length n) at read offset i (Si,n), Whippet is very restrictive in the number of 

matching loci (Count(Si,n)) that a valid seed is allowed to have (by default 1 ≤ 

Count(Si,n) ≤ MaxLocations) in order to avoid exhaustive searching in highly 

repetitive sequence space (where the default for MaxLocations is 4; parameter `--

seed-tol`).  For failed seeds, the reverse complement of the seed is tried Si,n= 

RevComp(Si,n), and then if that fails, the read offset is incremented by a constant 

number of nucleotides specified by SeedIncrement  (parameter `--seed-inc`, default is 

18; Algorithm S2).  If the SeedIncrement is set to 1, all positions in the read can be 

seeded.  However, this is highly inefficient, given that the full-text search of a seed is 

the main computational bottleneck of read alignment, and the reason that a given seed 

will not have valid matches would be shared by most overlapping seeds.  Therefore, 

the default heuristic is to only search non-overlapping seeds.   



Seeds themselves can match across boundaries between adjacent nodes in a 

CSG. This may produce a slight potential for bias, as a seed can map across a 

constitutive junction, but not an alternative junction. This is due to the presence of 

constitutive junctions, but not alternative junctions, in the FM-Index. To decrease this 

potential form of bias, reads are not considered ‘spliced reads’ (i.e. to be used as 

evidence of splicing) until they are formally extended across a boundary using the 

CSG alignment k-mer logic. In theory, there would be a greater likelihood of mapping 

the first, and possibly second seed in a read for inclusion reads rather than skipping 

reads.  However, this bias is likely to be negligible, since an exclusion read that does 

not map with its first or second seed, will simply attempt another 

upstream/downstream seed, one of which should eventually map to the flanking exon 

and extend properly in the forward and reverse directions.  In this way, we have 

instituted the same rules for a constitutive inclusion alignment as an alternatively 

spliced read alignment. 

Since all genes in the CSG index are stored in positive-strand orientation, only 

the seed needs to be reversed to subsequently search the entire index for the opposite 

strand. For paired-end sequencing reads, the same principles apply, except that mate-

pair seeds (Mj,n) are locked into a relative orientation to one another (fwd_read & 

rev_mate by default, but can be changed by the user-defined parameter `--pair-same-

strand`), and only loci within the mate-pair mapping index distance (not genomic 

distance) where || Location(Si,n) – Location(Mj,n) || <= MaxMateDistance (user-

defined parameter `--pair-range` with default of 5000nt), are returned.  The 

pseudocode for the seeding procedure is provided in Algorithm S2 below: 

```Algorithm S2. 
 
user-defined constant MaxSeeds = 4 
user-defined constant MaxLocations = 4 



user-defined constant SeedIncrement = 18 
user-defined constant MinQual = 4 
 
i = 1 
seed_tries = 0 
While i+n-1 ≤ length(Read) AND seed_tries ≤ MaxSeeds: 
 If minimum( Quali,…,i+n-1 ) > MinQual: 
  seed_tries = seed_tries + 1 
  If 1 ≤ Count(Si,n) ≤ MaxLocations: 
   return Locations(Si,n), PositiveStrand 
  Elseif 1 ≤ Count( RevComp(Si,n) ) ≤ MaxLocations: 
   return Locations(RevComp(Si,n)), NegativeStrand 
 i = i + SeedIncrement 
``` 
 
Given a set of mapped transcriptome loci from seeding a sequencing read, Whippet 

performs ungapped extension of each alignment seed, storing only the offset of the 

alignment in the read, the offset of the alignment in the transcriptome, and the 

alignment’s path through CSG nodes.  An alignment path is defined as the vector of 

nodes, such that each node records the {Gene, Node, Score}, where the Score refers 

to a set of {Matches, Mismatches, and the Mismatch_probability_sum}. The 

Mismatch_probability_sum is a running sum of the probability of a correct base call 

for each mismatched nucleotide base quality q in the alignment (i.e. 1−!

10!!!!"#(!)/!"). This is a heuristic count used to fully penalize mismatches at FASTQ 

positions that have high quality, whereas low quality read positions (such as the 

IUPAC nucleotide N) are only partially counted towards the mismatch threshold. 

Alignments are extended first in the forward and then in the reverse direction from a 

single position at the seed offset.  Alignments are ungapped and local, and extensions 

continue until either the edge of the read or a Hard boundary that fails spliced 

extension is reached, or the Mismatch_probability_sum exceeds the 

MismatchThreshold (default 3.0, parameter `-X`).  An alignment is considered valid if 

its score exceeds the MinimumScoreThreshold (default is Matches / read length = 0.6, 

parameter `--score-min`) or contains at least one spliced edge in its path.  Upon 



alignment extension past a Soft node boundary where splicing is possible (e.g. 

5ʹSpliceSite in the forward extension direction, and 3ʹSpliceSite in the reverse 

direction), the extension conditionally traverses past the boundary.  If the alignment 

ends in the neighbor node within a specified distance (k-mer size) from the node’s 

boundary, then the neighbor node is removed from the path, and k-mer spliced 

extension from the previously skipped Soft boundary is attempted (Figure S1D). If 

spliced alignment extension fails, the node is removed from the alignment and the 

alignment is truncated at the previous node boundary. This heuristic is intended to 

reduce potential for bias by requiring the same number of matches past an unspliced 

Soft boundary, as is required for a spliced extension utilizing k-mers. If multiple Soft 

boundaries are traversed before the alignment fails, k-mer spliced extension is 

attempted on each previous neighbor node. For spliced extension, the sorted list of 

(gene, node) tuples for the k-mer flanking the node boundary is intersected with the 

sorted list of (gene, node) tuples for the next adjacent k-mer (if sufficient read length 

exists).  Compatible (gene, node) tuples for intersection must share the same gene, 

where the node with an incoming 3ʹ SpliceSite boundary lies downstream of the 

current node in the CSG.  Spliced alignment extension continues to all compatible 

downstream nodes recursively, returning only the best scoring alignment path. If the 

circular splicing `--circ` parameter is enabled, Whippet is uniquely able (compared to 

other splice graphs approaches which are acyclic) to align reads from circular RNA 

products where the read is spliced from a downstream 5ʹ SpliceSite to an upstream 3ʹ 

SpliceSite.  In order to calculate Ψ for a circular splicing event, Whippet simply 

outputs the marginal distribution of the circular edge counts out of the total edges for 

a given outgoing 5ʹ SpliceSite. 

 



TPM quantification and multi-mapping reads: 

For each alignment seed, an alignment is returned.  Multi-mapping reads with 

multiple valid alignments whose scores are within 5% from the maximal scoring 

alignment are subsequently treated as repetitive alignments.  Since multi-mapping 

reads suggest that a sequencing read could have derived from one of multiple 

paralogous gene loci, we utilize the Expectation Maximization (EM) algorithm to 

iteratively maximize the likelihood of the relative abundance of all CSGs.  Since each 

CSG can produce paths of various lengths, we utilize the set of all transcript 

annotations T to quantify gene expression at the transcript-level.  The EM algorithm 

alternates between estimating the fraction of multi-mapping read counts belonging to 

each transcript (E-step) and calculating the relative abundance of all transcripts given 

the total and partial counts allocated to each (M-step) (Pachter, 2011). In the first step, 

the probability of observing a read from a given transcript i with relative expression 

level µi is given by ! ! =  !!!!
!!!!!∈!

 where !! refers to the approximate effective length 

of the transcript given an average read length ! and a transcript length !!, where 

!! = !! −! + 1.  We then define a multi-mapping compatibility matrix yr,i = 1 for a 

read r that maps to an annotated transcript i and yr,i = 0 otherwise (Bray et al., 2016). 

The probability of observing a specific multi-mapped read r from a transcript i in its 

compatible set of transcripts is then estimated in the (E-step) of the algorithm by: 

! !, ! =   !!,! !!
 !!,! !!!∈!

 

In the (M-step) of the algorithm, the relative abundance of each annotated transcript is 

calculated by summing all of the full and partial read counts over all reads R for each 

transcript i: 

!! =  ! !, !!∈!
!!

 



The likelihood function is given by: 

ℒ ! ∝  !!,! 
! !
!!!∈!!∈!

  

The transcripts-per-million (Li and Dewey, 2011) (TPM) of each transcript is then 

calculated as: 

     !! =  !!10!  where !! =  !!
!!!∈!

 
 
The TPM at the gene-level is thus the sum of the transcript TPMs in the gene. To seed 

the EM algorithm, a uniform probability across compatible transcripts is assigned for 

each read, followed by the standard M-step, and subsequent EM-steps until the end 

condition, (τi,iter - τi,iter-1) < 0.1 for all i, or a user-defined max-iterations is reached 

(default = 10,000; which was never reached in our testing).  Since a major bottleneck 

of each EM step is iterating through the set of reads, and since some sets of reads 

share transcript compatibility, we can decrease the number of EM iterations by 

grouping reads into equivalence classes (Bray et al., 2016; Pachter, 2011): sets of 

reads in R with the same transcript compatibilities yr,i for all i. Defining the set of 

equivalence classes Q, the read count for each equivalence class q∈Q as cq, and a new 

compatibility matrix where yq,i = yr,i for all reads in the equivalence class q, we can 

re-write the likelihood function as: 

ℒ ! ∝  !!,! 
! !
!!!∈!

!!

!∈!
  

In order to further decrease this computational bottleneck, we implement a separate 

convergence condition for each equivalence class based on the logic that while 

convergence of the entire set of transcripts may not yet be reached, it is possible that 

the relative assignments of a single equivalence class has already converged.  For any 

equivalence class that meets the end condition: absolute α(q,i)iter-1 -  α(q,i)iter < 0.0001 



for all transcripts i compatible with q, we fully assign the read count(s) and remove 

the specified read or equivalence class from further EM iterations.   

 

AS event path enumeration: 

After collecting all edges for an event E as a vector of connected nodes, where Ei 

refers to one edge in the AS event, we build a vector V that contains the minimum set 

of non-redundant paths (each path Vi  contains the set of nodes in the connected path) 

through the AS event using the edges in E.  To build the set of paths V through the AS 

event, we implement a speed and memory efficient variant of a Breadth-First graph 

enumeration algorithm (see Algorithm S3). 

```Algorithm S3. 
 
Function has_terminal_overlap( a, b ): 
 return first(a) == last(b) OR first(b) == last(a) ? True : False 
 
Function enumerate_paths( E, V=copy!(E) ): 
 R = Vector( ∅ ) 
            i = 1 
 While R does not equal V: 
  If i > 1: 
   V = R 
   R = Vector( ∅ ) 
 
  For j in 1 to length(V): 
   Added = False 
   For k in 1 to length(E): 
    If has_terminal_overlap( Vj, Ek ): 
     Added = True 
     push!( R, Vj ∪ Ek ) 
  
   Unless Added is True: 
    push!( R, Vj ) 

i = i + 1 
 return R 
``` 
 

	
	
AS event definition and PSI quantification (Extended): 



Unlike quantification at the transcript-level (as described above), PSI 

quantification uses only edge counts. Therefore to account for the length of 

enumerated AS event paths in nucleotides (analogous to the effective length of a 

transcript in nucleotides for transcript-level quantification), we consider that the 

number of positions a read of average length ! can map in order to cover an edge 

with k-mer length k is a constant ! − 2! + 1.  We next assume that this is the same 

for all spliced edges. Since spliced reads covering multiple edges are counted fully at 

each edge, and since the range of mappable positions for each edge can overlap for 

proximal neighboring edges, the length of the path in nucleotides is proportional to 

the number of edges in a path. We therefore define !! as the length of path i which is 

proportional to the number of edges in the path (using the compatibility matrix y) 

such that: !! ∝   !!,! !∈! (as used in the Methods).  

 For tandem UTR event types (e.g. TS: tandem transcription start site, TE: 

tandem transcription end site), Ψ values are calculated using all reads that map to the 

set of TS or TE nodes being quantified, and the effective length of the path in 

nucleotides is used directly.  For tandem UTR events, the likelihood function is 

therefore identical to that provided for the quantification of AS events with two 

exceptions: (1)  !! = !! −! + 1, so the length is equal to the full length of the path in 

nucleotides, and (2) E refers to the set of equivalence classes (not edges) for reads 

with the same path compatibility ye,i . 

Since the EM-algorithm provides only a point-estimate for Ψ without a depth-

dependent measure of variance, we utilize the conjugate posterior distribution of the 

binomial likelihood as a means to compute a read-count derived confidence interval 

(CI) over Ψ.  Given a total read depth for an AS event of N reads which can either 

support inclusion of node n, inc∈In, or support exclusion, exc∈{I - In}, the number of 



inclusion reads Ninc are binomially distributed such that Ninc ~Binomial(n=N, p=Ψ).  

Given a uniform prior distribution of P(Ψ) = Beta(α=1, β=1), we obtain a posterior 

distribution, P(Ψ|!!"#)  ∝  P !!"# Ψ P(Ψ), where P(Ψ|Ninc) = Beta(Ninc + α, Nexc + 

β).  A 90% confidence interval (between 5% and 95%) is then calculated through the 

quantile distribution of the posterior.  This output allows a user to more easily filter 

for a subset of nodes that have a minimum read depth to estimate Ψ within some 

range of expected confidence.  

 

Bias correction 

 RNA-seq protocols can result in a number of biases.  When comparing 

quantifications of RNA-seq libraries prepared using different kits or protocols, or 

from different batches, these biases can become pronounced and affect downstream 

analyses (Love et al., 2016).  While bias correction methods are not enabled by 

default, Whippet does correct for bias in RNA-seq data when the `--biascorrect` flag 

is enabled.  One source of bias is due to the generation of cDNA using random 

hexamer priming, which has been shown to induce sequence-specific biases at the 5ʹ 

end of Illumina reads (Hansen et al., 2010; Roberts et al., 2011). To account for this 5ʹ 

sequence bias, Whippet implements the method of Hansen et al. (Hansen et al., 2010), 

in which all read counts are adjusted after read-alignment but before any 

quantification takes place. Since AS event quantification is often based on only a 

small number of exon-exon junctions, unusually high or low GC-content in the 

regions flanking exon-exon junctions could also have a profound effect on 

quantification (Love et al., 2016).  Therefore, for AS event quantification only, 

Whippet will additionally correct for GC-content bias using a fast heuristic method.  

Briefly, Whippet corrects each read count by the ratios of the expected distribution of 



GC-content (for 50nt windows) to the observed distribution of GC-content as follows:  

The Whippet CSG index stores GC-content in 20 bins of 5% GC-content intervals (0-

5%, 6-10%, 11-15%, etc.) for all 50-mers in each annotated transcript.  After 

transcript-level expression quantification, a single expected distribution of GC-

content is calculated as the normalized expression-weighted sum of the distributions 

of all transcripts. Additionally, an observed distribution for GC-content is calculated 

as the normalized distribution of GC-content across sliding windows of 50-mers from 

all reads (or set of all read pairs). To correct GC-content bias, edge counts are 

subsequently adjusted by the mean of the (expected / observed) ratios for all of the 

GC-content windows stored for the reads in the edge. 

 

AS event types: 

In order to define the nature of an alternative node in an AS event, a number 

of discrete categories are utilized.  These include AS specific types for alternative 5´ 

or 3´ splice-sites, Core-exon nodes (which may be a whole exon or part of an exon 

with flanking alternative splice sites that are used), or a retained intron.  Additionally, 

alternative 5´ or 3´ ends are annotated as either alternative first or last exons, or 

tandem 5´ or 3´ untranslated regions (UTR). Table S7 provides a list of the two-letter 

symbols for each node type and their formal definition as a set of flanking boundary 

types. 

 

AS event complexity and RNA-seq simulation (Extended): 

To simulate AS-events with known Ψ-values using polyester (error rate = 0), we 

randomly subsampled one of the n alternative nodes from each gene and assigned it a 

random Ψ-value sampled from a Beta distribution. Since we simulate both low and 



high complexity events K1, … K6, we observe that at higher complexities, the 

assignment of a Ψ-value to one node has indirect effects on the Ψ-values of the 

neighboring n alternative nodes.  In order to achieve a near uniform coverage of total 

Ψ-values for each complexity K(n), the α and β parameters of the Beta distribution 

were selected ad hoc accordingly. For K <= 2, we used Beta(α=0.9, β=0.9) which 

produces a near uniform distribution over Ψ. For K(n) in the range of interval n ∈[3, 

5], it was necessary to use a distribution skewed more towards 0.0 and 1.0 (such as 

Beta(α=0.7, β=0.7)), since a uniform distribution of initial Ψ-values resulted in a bell-

shaped curve centered on Ψ=0.5.  For K ≥ 6, this effect was substantially increased, 

requiring a more skewed initial distribution, Beta(α=0.2, β=0.2). Transcripts 

containing the sampled exon were randomly assigned relative expression values such 

that their total expression would be proportional to the pre-assigned Ψ-value. 

Similarly, the remaining transcripts were randomly assigned expression values such 

that their total expression is proportional to (1 - Ψ). To simulate a controlled variable 

range of gene expression, each gene was randomly assigned a coverage multiplier 

value from a uniform distribution between 5x and 60x. Subsequently, RNA-seq reads 

of length 100nt were simulated for each transcript in both single and paired-end 

modes. For Figure S4C-S4D, read lengths of 50nt and 75nt were additionally 

simulated. 

 

Benchmarking (Extended): 

Resource usage benchmarks for STAR and TOPHAT included conversion to a 

sorted BAM file (as this step is required for majority of splicing quantification 

algorithms) whereas quantification time was removed for Whippet in comparison to 

alignment programs. The only exception to this rule was in Figure S2D when 



quantification time and time to produce sam output was included. When necessary, 

initial read alignment was done by STAR and same BAM output file used by all 

splicing quantification algorithms. The default linux package “time” (/usr/bin/time – 

e.g. http://man7.org/linux/man-pages/man1/time.1.html) was used to measure the 

resource usage of each program. The running (CPU) time was calculated by 

combining the User time and the System time. The Maximum resident set size was 

used as measurement of “Maximum memory used”.  

Benchmarks of the mapping success used the program Benchmarker, and for 

each aligner, default parameters were used with exceptions in Table S4. Using 

bedtools (https://github.com/arq5x/bedtools2), the bam output from aligners were 

compared directly to BEERS true alignment files filtered to contain only reads 

overlapping junctions (derived from “junctions read set” supplied by BEERS).   This 

is considered the “ALL SPLICED READS” version in Figure S2D.  The second 

sample “W/ INTACT KMERS” was constructed by removing reads with annotated 

substitutions (substitutions derived from BEERS substitution dataset). This sub-

setting is necessary because Whippet, like other k-mer methods, requires perfect 

matches in order for the CSG alignment to work. We find that for the set of reads with 

the intact k-mer set, Whippet’s mapping accuracy is > 97% (see Table S6), which is 

comparable to other RNA alignment software (Figure S2D). The analysis shown in 

Figure S2D suggests that the decrease in mapping performance observed for “ALL 

SPLICED READS” at higher error rates is due to a lack of error tolerance in the k-

mers flanking exon-exon junctions and is therefore unlikely to disproportionally 

impact individual gene family clusters. This conclusion is supported by our 

observation of a strong similarity across the genome between the full distribution of 

“ALL SPLICED READS” and the subset of reads not successfully aligned by 



Whippet (see Figure S2E). Therefore, such error harboring reads would not adversely 

affect Whippet’s quantification, other than to slightly decrease statistical power for 

high error rate datasets.   

The original reads are located within the data folder here:  

https://figshare.com/articles/Whippet_analysis_scripts/5711683 

To manually recreate these reads please use the following command: 

perl reads_simulator.pl 1000000 refseq_stimul_Beer-reads_0.001 -palt 0 -

indelfreq 0 -subfreq 0.001 -error 0 -configstem refseq -outdir 

beers_simulator/refseq_config/  

perl reads_simulator.pl 1000000 refseq_stimul_Beer-reads_0.005 -palt 0 -

indelfreq 0 -subfreq 0.005 -error 0 -configstem refseq -outdir 

beers_simulator/refseq_config/    

perl reads_simulator.pl 1000000 refseq_stimul_Beer-reads_0.01 -palt 0 -

indelfreq 0 -subfreq 0.01 -error 0 -configstem refseq -outdir 

beers_simulator/refseq_config/   

Only simple cassette exons events were considered in the RT-PCR analysis to 

ensure best possible mapping quality. Simple events are those containing just three 

exon-exon junctions, defined by MAJIQ. Across comparison we only used core 

cassette exons, as this type of event is described by all methods. In general, only PSI 

values for programs in which the event coordinates exactly matched the “ground-

truth” event were considered. For MAJIQ, because PSI values can be duplicated in 

different local splicing variations, we used the most compatible PSI value after 

ensuring complete overlap of coordinates. In general, it is difficult to directly compare 

between splicing events measured by different methods. To alleviate concerns on 

these issues we firstly removed comparisons of number of detected events, as this is 



very dependent on mapping fidelity. Secondly, we developed Whippet_TPM, which 

uses same coordinates scheme as Whippet, to ensure that differences observed 

between transcript- and event-level programs are not solely due to coordinate 

matching issues. Thirdly, we used the Wilcoxon signed rank as the statistical test 

because it is paired and therefore only assesses directly comparable events. 

 

Tissue-wide analysis of splicing (Extended): 

For the polysome analysis of entropy, monosome and polysome samples 

combined based on sub-groups identified within original paper (Floor and Doudna, 

2016). This included 80S (monosomes), low polysomes (two-four ribosomes), high 

polysomes (five-eight+ ribosomes), and total cytoplasmic RNA. Additional nuclear 

and whole-cell HeLa fractions originating from a different paper were also analysed 

as a comparison (see Table S3).  

For the analysis of correlation of expression and entropy values in tissue and 

cancer data, TPM values calculated by Whippet were used. Correlation was assessed 

using Pearson Correlation Coefficient.   

 

Functional analysis: 

Functional analysis was undertaken using the functional enrichment analysis 

tool g:Profiler (http://biit.cs.ut.ee/gprofiler). Genes identified as containing 

mammalian-classifying splicing events were compared to a background of multi-exon 

genes conserved within vertebrates. Structured controlled vocabularies from Gene 

Ontology organization, as well as information from the curated KEGG and Reactome 

databases were included in the analysis. Only functional categorizes with more than 

five members and fewer than 2,000 members were included in the analysis. 



Significance was assessed using the hypergeometric test with the multiple testing 

correction method created by Benjamini and Hochberg.  

 

Feature analysis of high entropy events (Extended): 

For all positions in a protein low complexity regions were calculated using 

SEG (Wootton, 1994). Amino acid residues not within ordered annotated protein 

domains, putative transmembrane domains, signal peptides and coiled coil regions 

were considered as low complexity regions. For each exon, the ratio of amino acids 

annotated as within a low complexity region is estimated. Tandem protein repeat 

regions within structured regions were identified using the PTRStalker algorithm for 

de-novo detection of fuzzy tandem repeats (Pellegrini et al., 2012) and filtered using 

IUPred (score < 0.4). 

Exon duplication events were identified using approach described previously 

(Letunic et al., 2002). In brief, exon were considered duplicates if (i) within the same 

gene body (ii) blastn comparison had an e-value of less than 0.0001 (iii) 80% 

similarity in length.  Exons with peptide repeats were extracted and maximum entropy 

value (across tissues) identified. For each entropy bin, the fraction of duplicated exons 

was calculated.  	

 

	



	

SUPPLEMENTARY FIGURE AND TABLE LEGENDS 
 

Figure S1 – Related to Figure 1 

(A) Schematic of transcript-level (ie. Whippet_TPM; left) vs. event-level (ie. Whippet; right) 

quantification paradigms. Here, an incomplete transcript-level annotation set (left) can 

unintentionally produce interaction between distal transcript features (e.g. an internal exon and 

an alternative polyadenylation site). In contrast, the event-level method built from the same 

annotation set calculates Ψ independently, using only the subset of reads directly mapping to the 

exons and splice-junctions forming the AS for quantification.  Red coverage plots above each 

gene schematic illustrate relative read depth, and curved lines indicate exon-exon junction 

mapping read depth. TPM, transcripts-per-million. 

(B) Exemplar gene and isoform annotations.  The node diagram below displays how such a 

complex set of splicing patterns can be collapsed into a single set of nodes for a CSG. Incoming 

and outgoing boundary types associated with the node set in the panel are annotated upstream 

and downstream of the node sequence respectively, with hard boundary types bolded (see 

Methods for definitions of boundary types).  

(C) Top panel illustrates the full CSG sequence from panel (B). Bottom panel shows the node 

“event type” annotations for the CSG nodes in panels B-C according to the incoming and 

outgoing boundary types listed in Table S7. AF, alternative first exon; AA, alternative acceptor 

splice site; CE, Core exon; RI, retained intron; AD, alternative donor splice site; TE, tandem 

alternative polyadenylation site. 	 

(D) Graphical overview of the CSG alignment algorithm.  High FASTQ-QUAL region (black 

box) of sequencing reads are used to seed to the Whippet Index. Alignment extension occurs in 

the forward and reverse directions, and spliced extension is allowed as necessary to bridge 



	

spliced boundaries. Unspliced alignment extension can occur past a soft boundary that also 

allows spliced extension (i.e. a 5ʹSpliceSite for forward extension, and a 3ʹSpliceSite for reverse 

extension).  If the alignment fails during unspliced extension past a soft spliced boundary, then 

the new node is removed from the alignment and spliced extension proceeds from the spliced 

boundary of the previous node(s) (see Methods for details). 

(E) Simulation of de novo splice site recovery by `whippet-index.jl` using the `--bam` parameter 

and a GTF file with a variable percentage (10-90%) of internal exons randomly removed.  The y-

axis shows Recall (i.e. True Positive Rate; TPR—TP / [TP+FN]) as a function of the percentage 

of internal exons sampled out (x-axis).  “One Annotated” refers to the default settings in Whippet 

v0.11, while “Both Novel” uses the `--bam-both-novel` parameter flag, relaxing stringency (see 

Methods S1).  

 

 

Figure S2 – Related to Figure 2 

(A) Comparison of maximum memory usage (y-axis) and log-scaled time (x-axis) for several 

published methods for RNA-seq read alignments when searching only for known (Gencode 

GRCh37.13) exon-exon junctions (left) and when novel junction finding features are enabled 

(right) (see data in Table S5 and program parameters in Table S4). GB, gigabyte. 

(B) A bar plot showing the percentage increase in speed when featured alignment software only 

searched for known exon-exon junctions 

(C) A bar plot showing the number exon-exon junctions identified by MAJIQ when the RNA-

seq alignment tool HISAT used only known junctions compared to when HISAT also searched 

for novel junctions. K(n), complexity category. 



	

(D) Comparison of the mapping success over exon-exon junctions (y-axis) and log-scaled time 

(x-axis) requirements of Whippet relative to several published methods for RNA-seq read 

alignment. Reads were simulated using BEERS (Grant et al., 2011) 

(http://www.cbil.upenn.edu/BEERS/) with substitution frequency rate of 0.001 (left), 0.005 

(center) and 0.01 (right). Only simulated reads overlapping exon-exon junctions by at least 

Whippet’s k-mer size are considered in mapping success. Reads were divided into two 

categories: all spliced reads and those reads with perfect intact kmers (i.e. no substitutions). 

Whippet speed test for mapping success rate includes the output of alignment in SAM format 

(Whippet parameter `--sam`). See Table S6 for data. 

(E) Bar plot showing the distribution of all simulated reads reads used in the benchmark in (D), 

and the distribution of only those reads unaligned by Whippet across the genome. 

 (F) Plot of the reproducibility of PSI values when comparing RNA-seq from two conditions. A 

differentially included event is considered replicated if it maintains a rank at least as high as N in 

biological replicates, where N is the set size. (see Vaquero-Garcia et al. 2016 for details).  

(G) A bar chart shows the number of AS events identified by each method and used in (F).  

(H) A cumulative distribution plot comparing RT-PCR Ψ (percent spliced in) values to RNA-seq 

quantified Ψ values. Data was extracted from the same samples from human liver and 

cerebellum (Vaquero-Garcia et al., 2016). Same as in Figure 2A but without applying any 

stringency criteria to filter events. See Figure 2A legend for a description of cumulative 

distribution plots. 

 

Figure S3 – Related to Figure 2 

(A) Comparison of Whippet with other state-of-the art published splicing algorithms and 



	

Whippet_TPM  (see main text Methods) for Ψ (percent spliced in) predictions from RNA-seq 

data and corresponding Ψ estimates from RT-PCR. ∆Ψ (change in percent spliced in) denotes 

difference in PSI measurements from the two data types, when comparing between liver and 

cerebellum samples, as well as between stimulated and unstimulated human Jurkat T-cell line 

samples. Regression line is shown as dotted line whereas diagonal is solid line (see Table S1 for 

R-squared values)  

(B) Same data as in panel (A) but showing Ψ rather than ∆Ψ.  

(C) Bar plots showing the absolute change (left) and absolute relative change (right) in error rate 

of quantification algorithms Ψ compared to ground truth Ψ.  Errors bars represent the standard 

error of the mean. Reads were simulated using RSEM (RNA-seq by Expectation Maximization) 

based on annotation from either Gencode or RefSeq. Indices used for quantification based on 

RefSeq annotation 

(D) Same as (C) except indices used for quantification based on Gencode annotation (an 

alternative visualization of Figure 2B) 

 

Figure S4 – Related to Figure 2 

(A) Plot of entropy (y-axis) vs. percent-spliced-in (Ψ) (x-axis) for a simple binary (K1) AS event.  

(B) Plot of maximum entropy (color-scale) vs. percent-spliced-in (Ψ) (x-axis,y-axis) for a K2 

event with two alternative exons a and b and two independent values for the percent-spliced-in 

of each exon, Ψa and  Ψb.  

 (C) Proportion of AS events with entropy values in discrete ranges (color-scale) for 

transcriptome wide simulated RNA-seq data set from sub-sampled read-depth in millions (left) 

and truncated read-lengths (right).  



	

(D) Total count of the number of AS events detected with the RNA-seq datasets from panel (C).  

(E) Comparison of the ability of different RNA-seq analysis methods to detect AS events from 

artificial reads (Methods) of simulated complexity as defined in Figure 2D. Bar plots show the 

total number of AS events detected.  

(F) Extension of Figure 2F. Scatter plots showing correlations between simulated ground truth 

Ψ values and RNA-seq predicted Ψ values by multiple published splicing algorithms at various 

levels of complexity K(n). (see Methods for details on data simulation).  

 

Figure S5 – Related to Figure 2 

(A) Extension of Figure 2G, showing uncropped gels for events in the main figure as well as 

additional examples. RT-PCR analysis confirms the presence of complex splicing events in N2a 

cells at increasing levels of complexity matching Whippet predictions. Event type, gene name, 

complexity type and entropy score are shown above each events. Control SImap demonstrates 

that complexity is not just due to number of exons monitored. Boxes to right of gels display 

UCSC (left) and Whippet (right) predictions based on primer sequences (see Methods). Colored 

boxes represent correct predictions whereas black boxes suggest missed predictions. Diagrams 

below show exon structures of analyzed genes with approximate positions of RT-PCR primers 

indicated. Predicted constitutive and alternative exons are indicated in dark and light gray, 

respectively.  

(B) Comparison of the maximum memory-usage (y-axis) and log-scaled time (x-axis) 

requirements of Whippet relative to several published methods for RNA-seq read alignment 

using datasets comprising 15 million (M) paired-end (PE) RNA-seq reads. GB, gigabyte. 

(C) Extension of Figure 2H. Comparison of the maximum memory-usage (y-axis) and log-



	

scaled time (x-axis) requirements of Whippet relative to published methods for RNA-seq read 

alignment and splicing quantification when aligning 15 M, 25M and 50M PE RNA-seq reads. 

GB, gigabyte. 

 

Figure S6 – Related to Figures 3 and 4 

(A) Symmetrical heatmap of pairwise correlations of normalized AS event entropy as in panel A 

except across multiple mouse tissues. See Figure 4A legend for details. 

(B) Graph of the percentage of genes (y-axis) harboring an AS event with entropy > 1 (top) or a 

minor / major isoform co-expression ratio > 0.818 (bottom) as a function of various AS event 

filter thresholds (x-axis—left: Confidence Interval < x, right: Read Count > x). ALL_AS also 

includes Core Exons, Alternative Donor (AD) nodes, Alternative Acceptor (AA) nodes, Retained 

Introns (RI), and Alternative Last (AL) exon nodes. 

(C) Ranked plot of genes (x-axis) by their maximal AS event minor / major isoform relative 

expression ratio (y-axis) at various minimum read cut-offs, defined as mapped reads overlapping 

exon-exon junctions.  The plot only includes events categorized as Core Exon events. Dashed 

line indicates the 45:55% ratio cutoff (equivalent to a minor / major ratio of 0.818). 

(D) Distribution of the number of unique conserved exons with genomic coordinate ‘liftover’ 

across at least three vertebrate species (human, chimp, gorilla, mouse, opossum, platypus, and 

chicken). Number of unique conserved exons is plotted by tissue (x-axis), and binned by the 

number of species with direct coordinate ‘liftover’ (color-scale). 

(E) Distribution of the number of unique conserved exons with genomic coordinate ‘liftover’ 

across at least three vertebrate species (human, chimp, gorilla, mouse, opossum, platypus, and 

chicken). Conserved exons are counted in discrete bins by their average entropy in any of the 



	

species. (bottom)  

 (F) Distributions for the cross-species variance of entropy values (y-axis) for conserved exons, 

binned by mean entropy values (x-axis), and compared to a control set of the same data but with 

permuted AS event labels for each species (color-scale). All two-sided KS-test p-values are less 

than epsilon (2.2 x 10-16), except for the bin (1.5,3] whose p-value was 4.6 x 10-4. (bottom) Same 

as (top) except the distributions plotted contain the cross-species variance of Ψ-values (y-axis) 

for the same conserved exons.  All two-sided KS-test p-values are less than epsilon (2.2 x 10-16), 

except for the bin (1.5,3] whose p-value was 4.3 x 10-2. See Figure 4C for descriptions of 

boxplots. 

(G) Cumulative distribution plots of (left) Ψ-values for all conserved exons in all species and 

tissues, (right) mean value of Ψ for a conserved exon across all species in a given tissue. The left 

panel shows an identical distribution to permuted control, while the right panels shows less 

concordance in Ψ-values among permuted data. See Figure 2A legend for a description of 

cumulative distribution plots. 

(H) Bar plots showing distribution of events with entropy >1.0 and low entropy (<1.0) events 

within the 5´-UTR, CDS and 3´-UTR of transcripts across human and mouse tissues. NS, not 

significant (Fisher’s exact test	 ); *, p < 0.05; ***, p < 1 x 10-5; CDS, coding sequence; UTR, 

untranslated region 

 

Figure S7 – Related to Figures 5, 6 and 7 

(A) Cumulative distribution plots showing frequency of overlap of AS events (with different 

degrees of entropy) within the low complexity (LC) regions of proteins (top) and unstructured 

tandemly repeated protein domains (bottom). See Figure 2A legend for a description of the 



	

cumulative distribution plots (n > 368). See Figure S7B for color legend. 

(B) Violin plot showing the number of exons encoded by a gene body at different degrees of 

splicing entropy (maximum splicing entropy observed within gene body used to bin genes. See 

Figure 4D for description of violin plots.   

(C) Violin plot showing that genes with higher complexity splicing events tend to be younger (or 

more recent gene duplication events). See Figure S7B for color legend. See Figure 4D for 

description of violin plots.  

(D) Stacked bar plot showing the proportion of AS events within bins of increasing splicing 

entropy across 15 matched tumor and control RNA-seq samples.  

(E) Scatter plots of change in entropy of AS events between control and cancer samples versus 

the change in expression level of the harboring gene.  Dotted lines represent 0.5-fold change. 

Red points are genes displaying a 0.5 fold change in both entropy and expression. Grey points do 

not.  R-squared value calculated using Pearson Correlation Coefficient. TPM = transcripts per 

million. 

 (F) Full list of DESeq2 differential gene expression analysis (Love et al., 2014) between tumor 

samples and matched controls for selected RNA-binding proteins (GO:0000380). Genes with 

blue bars show reduced expression in cancer samples, red bars show increased expression in 

cancer samples, and grey bars show no significant difference between control and tumor 

samples.  

 

Table S1, Related to Figure 2. 
P-values, quantiles and r-squared for benchmarking against RT-PCR data 
 
Table S2, Related to Figure 2. 
Speed and memory benchmarks for Percent Spliced In (Ψ) quantification algorithms 
 



	

Table S3, Related to Figures 2,3, 4 and 7 
Description of publicly available datasets used in paper 
 
Table S4, Related to Figure 2 
Versions of programs used in benchmarking with parameters used for alignment and splicing 
quantification. Default settings, paths, Fastq files excluded. All programs run on 8 cores unless 
stated.   
 
Table S5, Related to Figure 2 
Speed and memory benchmarks for RNA-seq aligners 
 
Table S6, Related to Figure 2 
Error Rate for reads produced by BEERS RNA-seq simulator 
 
Table S7, Related to STAR methods 
Node and event types defined by Whippet flanking edges 
















