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Heterogeneity of cell states represented in pluripotent cultures has not been described at the transcriptional level. Since

gene expression is highly heterogeneous between cells, single-cell RNA sequencing can be used to identify how individual

pluripotent cells function. Here, we present results from the analysis of single-cell RNA sequencing data from 18,787 indi-

vidualWTC-CRISPRi human induced pluripotent stem cells. We developed an unsupervised clusteringmethod and, through

this, identified four subpopulations distinguishable on the basis of their pluripotent state, including a core pluripotent pop-

ulation (48.3%), proliferative (47.8%), early primed for differentiation (2.8%), and late primed for differentiation (1.1%).

For each subpopulation, we were able to identify the genes and pathways that define differences in pluripotent cell states.

Our method identified four transcriptionally distinct predictor gene sets composed of 165 unique genes that denote the

specific pluripotency states; using these sets, we developed a multigenic machine learning prediction method to accurately

classify single cells into each of the subpopulations. Compared against a set of established pluripotency markers, our meth-

od increases prediction accuracy by 10%, specificity by 20%, and explains a substantially larger proportion of deviance (up

to threefold) from the prediction model. Finally, we developed an innovative method to predict cells transitioning between

subpopulations and support our conclusions with results from two orthogonal pseudotime trajectory methods.

[Supplemental material is available for this article.]

The transcriptome is a key determinant of the phenotype of a cell
and regulates the identity and fate of individual cells. Much of
what we know about the structure and function of the transcrip-
tome comes from studies averaging measurements over large pop-
ulations of cells, many of which are functionally heterogeneous.
Such studies conceal the variability between cells and so prevent
us from determining the nature of heterogeneity at the molecular
level as a basis for understanding biological complexity. Cell-to-
cell differences in any tissue or cell culture are a critical feature of
their biological state and function.

In recent decades, the isolation of pluripotent stem cells, first
in mouse followed by human (Evans and Kaufman 1981;
Thomson et al. 1998), and the more recent discovery of deriving
pluripotent stem cells from somatic cell types (iPSCs) (Takahashi
and Yamanaka 2006), is a means to study lineage-specific mecha-
nisms underlying development and disease to broaden our capac-
ity for biological therapeutics (Palpant et al. 2017). Pluripotent
stem cells are capable of unlimited self-renewal and can give rise
to specialized cell types based on stepwise changes in the transcrip-
tional networks that orchestrate complex fate choices from pluri-
potency into differentiated states.

In addition to individual published data, international
consortia are banking human induced pluripotent stem cells
(hiPSCs) and human embryonic stem cells (hESCs) and providing
extensive phenotypic characterization of cell lines including tran-
scriptional profiling, genome sequencing, and epigenetic analysis
as data resources (The Steering Committee of the International
Stem Cell Initiative 2005; Streeter et al. 2017). These data provide
a valuable reference point for functional genomics studies but con-
tinue to lack key insights into the heterogeneity of cell states that
represent pluripotency.

Although transcriptional profiling has been a common end-
point for analyzing pluripotency, the heterogeneity of cell states
represented in pluripotent cultures has not been described at a
global transcriptional level. Since each cell has a unique expression
state comprising a collection of regulatory factors and target gene
behavior, single-cell RNA sequencing (scRNA-seq) can provide a
transcriptome-level understanding of how individual cells func-
tion in pluripotency (Wen and Tang 2016). These data can also re-
veal insights into the intrinsic transcriptional heterogeneity
comprising the pluripotent state. In this study,we provide the larg-
est data set of single-cell transcriptional profiling of undifferentiat-
ed hiPSCs currently available, which cumulatively amount to
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18,787 cells across five biological replicates. Moreover, we devel-
oped several innovative single-cell methods focused on unbiased
clustering, machine learning classification, and quantitative and
directional cellular trajectory analysis. Our findings address the
following hypotheses: (1) Pluripotent cells form distinct groups
or subpopulations of cells based onbiological processes or differen-
tiation potential; (2) transcriptional data at single-cell resolution
reveal gene networks governing specific cell subpopulations; and
(3) transcripts can exhibit differences in gene expression heteroge-
neity between specific subpopulation of cells.

Results

Description of the parental hiPSC line, CRISPRi

WTC-CRISPRi hiPSCs (Mandegar et al. 2016) were chosen as the
parental cell line for this study. These cells are genetically engi-
neered with an inducible nuclease-dead Cas9 fused to a KRAB
repression domain (Supplemental Fig. S1A). Transcriptional inhi-
bition by gRNAs targeted to the transcriptional start site is doxycy-
cline-dependent and can be designed to silence genes in an allele-
specificmanner. The versatility of this line provides ameans to use
this scRNA-seq data as a parental reference point for future studies
aiming to assess the transcriptional basis of pluripotency at the sin-
gle-cell level. Cells were verified to have a normal 46 X,Y male kar-
yotype by Giemsa banding analysis before analysis by scRNA-seq
(Supplemental Fig. S1B).

Overview of single-cell RNA sequence data

After quality control of the sequencing data (Methods), we ob-
tained 1,030,909,022 sequence reads for 20,482 cells from five
hiPSC single-cell samples (Supplemental Fig. S2; Supplemental
Table S1), with 63%–71%confidently and uniquelymapped (map-
ping quality 255) to the human reference transcriptome hg19
(Ensembl, release 75). We sequenced 19,937 cells from four sam-
ples to an average depth of 44,506 reads per cell (RPC), and one
sample consisting of 545 cells was sequenced to an average depth
of 318,909 RPC. On average, 2536 genes and 9030 unique molec-
ular identifiers (UMIs) were detected per cell. Comparing the se-
quencing results among five samples, we observe little variation
in the total number of genes detected per sample, despite differ-
ences in the number of cells per sample, and average reads per
cell (Supplemental Table S1). For example, we observed only a
slight increase in the average number of genes detected for cells se-
quenced at a greater depth (Supplemental Fig. S2F; Supplemental
Tables S1, S3) and no gain in the total number of genes detected
for all cells in the whole sample. These results suggest that an aver-
age of 44,506 RPC achieves close tomaximum total gene detection
in our samples. We found that the number of reads per cell affects
per-cell gene detection (sensitivity), whereas the number of cells
per sample effects the total gene detection (more unique genes
per sample). Overall, after quality control, we detected 16,064
unique genes, whichwere expressed in at least 1%of the total cells.
Importantly, of the 16,064 genes, only one was unique to a single
sample (Supplemental Table S4). We subsequently removed 1738
cells due to a high percentage of expressed mitochondrial and/or
ribosomal genes (Supplemental Table S2; Methods), leaving a total
of 18,787 high-quality hiPSCs for further analysis. Following be-
tween-sample and between-cell normalization, we observed no ev-
idence for batch effects due to sample or sequencing run (Fig. 1A;
Supplemental Fig. S3).

Identification of four hiPSC subpopulations based on biological

function

Wedeveloped an innovative classificationmethod, whichwe term
unsupervised high-resolution clustering (UHRC), to objectively as-
sign cells into subpopulations based on genome-wide transcript
levels (Fig. 1; Supplemental Fig. S4;Methods). TheUHRCprocedure
comprises three unbiased algorithms. First, a PCA reduction step
was implemented to overcome the inherent multicollinearity in
single-cell expression data. Subsequently, we applied bottom-up
agglomerative hierarchical clustering, which importantly provides
a “data-driven” identification of clusters, rather than inputting a
specific number of expected clusters, as is the casewithK-means al-
gorithms. Third, to robustly define large clusters, a dynamicbranch
merging process was used to detect complex nested structures and
outliers. This unbiased method identified four independent sub-
populations of cells containing 48.3%, 47.8%, 2.8%, and 1.1% of
the 18,787 cells, respectively (Fig. 1A,B,D; Supplemental Fig. S4).
Importantly, after clustering,wedidnot observe evidence for batch
effects underlying any of the four cell subpopulations (Fig. 1A;
Supplemental Table S5), suggesting that the clusters represent bio-
logical and not technical factors. By comparing gene expression
levels between subpopulations, we identified four differentially ex-
pressed gene sets that distinguish each subpopulation from the re-
maining cells (Fig. 1C; Supplemental Table S6).We havemade this
data available via an interactive, gene-searchable web application
available at http://computationalgenomics.com.au/shiny/hipsc/.

We initially examined transcript dynamics in the subpopula-
tions based on expression of previously describedmarkers of pluri-
potency and lineage determination (Fig. 2; Supplemental Table S7;
Tsankov et al. 2015). Of the 18,787 cells, 99.8% expressed at least
one of 19 pluripotency genes (Supplemental Table S8). Further-
more, geneswith known roles in pluripotency had stronger expres-
sion across all subpopulations compared to genes involved in
lineage determination (Fig. 2A,B; Supplemental Tables S7, S8).
For example, POU5F1 (also known asOCT4), which encodes a tran-
scription factor critically involved in the self-renewal of undif-
ferentiated pluripotent stem cells (Boyer et al. 2005), was
consistentlyexpressed in98.6%ofcells comprisingall four subpop-
ulations (Fig. 2A,B; Supplemental Tables S7, S8). Other known
markers of pluripotency such as SOX2,NANOG, andUTF1were ex-
pressed across the subpopulations (Fig. 2A,B; Supplemental Tables
S7, S8), but showed differences in expression heterogeneity, sug-
gesting differences in the pluripotent state across subpopulations
(Supplemental Table S7).

Classification of hiPSC subpopulations

We sought to identify biological processes underlying transcrip-
tional classification of cell subpopulations by first performing a
statistical analysis to identify significantly differentially expressed
genes between subpopulations (Fig. 1C; Supplemental Table S6;
Methods). Differentially expressed geneswith a fold-change signif-
icant at a Bonferroni-corrected P-value threshold (P < 3.1 × 10−7)
were evaluated for enrichment of functional pathways (Supple-
mental Tables S9–S13).

Cells classified in subpopulations one and two, which make
up 96.1% of total cells analyzed (Fig. 1A–C), were distinguished
from one another by significantly different expression levels of
genes in alternate pathways controlling pluripotency and dif-
ferentiation (Supplemental Fig. S5; Supplemental Tables S9–
S11). The Transcriptional Regulation of Pluripotent Stem Cells
(TRPSC) pathway was consistently up-regulated in cells classified
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as subpopulation two compared to subpopulation one (Supple-
mental Fig. S5; Supplemental Tables S11, S14). TRPSC is an auto-ac-
tivation loop, which maintains expression of POU5F1, NANOG,
and SOX2 at high levels. Complexes containing various combina-
tions of these transcription factors (Lam et al. 2012) can activate
the expression of genes whose products are associated with rapid
cell proliferation, and they also repress the expression of genes as-
sociated with cell differentiation (Supplemental Fig. S5; Forristal
et al. 2010; Guenther 2011). In particular, POU5F1, NANOG, and
SOX2 are more highly expressed in subpopulation two (Supple-
mental Table S7), and the direction of differential expression of
genes associatedwith cell proliferation and repression of cell differ-
entiation (Forristal et al. 2010; Guenther 2011) is consistent with
subpopulation two containing cells that are more active in their
self-renewal than cells in subpopulation one (Supplemental Tables
S7, S10, S14).

We hypothesized that expression differences between sub-
populations one and two could reveal novel, subpopulation-
specific markers. We applied unbiased differential expression
analysis between subpopulation one and two, identifying 49 stat-

istically significant genes that were taken forward to biological
pathway analysis (Supplemental Fig. S5; Supplemental Table S6).
Among these 49 genes, two key transcription factors and a signal-
ing receptor were significantly higher in subpopulation two than
subpopulation one, including SALL4 (spalt-like transcription fac-
tor 4, P-adjusted: 7.0 × 10−5), ZIC1 (Zic family member 1, P-adjust-
ed: 4.3 × 10−5), and NR6A1 (nuclear receptor subfamily 6 group A
member 1, P-adjusted: 3.7 × 10−6) (Supplemental Table S14).

SALL4 is one of the key transcription factors that participates
in controlling transcriptional balance in pluripotent cells and sup-
pressing differentiation (Supplemental Fig. S5; Miller et al. 2016).
Specifically, SALL4 activates transcription of POU5F1 and main-
tains pluripotency (Yang et al. 2010b). ZIC1, an up-regulated
gene in subpopulation two, was identified by GeneMANIA
(Warde-Farley et al. 2010) analysis to be related to SALL4 through
shared protein domains (Supplemental Fig. S6). Both ZIC1 and
SALL4 were predicted by the STRING database (Szklarczyk et al.
2015) to interact with key pluripotency markers (Supplemental
Fig. S6). Furthermore, ZIC1 and its paralog ZIC3, a key member in
the TRPSC pathway (Supplemental Fig. S5), are involved in

A

B

C

D

Figure 1. Identification of four cell subpopulations from 18,787 hiPSC cells, sequenced from five biological replicates. (A) Three-dimensional t-SNE dis-
tribution of cells based on gene expression value. Each point represents a single cell in three-dimensional space. A t-SNE transformation of the datawas used
for positioning cells; four cell subpopulation labels (marked by different colors) represent results from clustering and are independent of t-SNE data trans-
formation (for an interactive, searchable figure, see http://computationalgenomics.com.au/shiny/hipsc/). Pathway analysis based on differential expres-
sion identified functional properties that distinguish each subpopulation. (B) Four pluripotent subpopulations functionally separated from a
homogeneous hiPSC population. (C ) The top significantly differentially expressed genes of cells in a subpopulation compared to cells in the remaining three
subpopulations. Genes denoted with orange points are known naive and primed markers. Genes represented with blue and purple points are those in the
top 0.5% highest logFC or −log(P-value), respectively. (D) Unsupervised clustering of all cells into four subpopulations. The dendrogram tree displays dis-
tance and agglomerative clustering of the cells. Each branch represents one subpopulation. The clustering is based on a Dynamic Tree Cut that performs a
bottom-up merging of similar branches. The number of cells in each of the four subpopulations are given below the branches.
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maintaining the undifferentiated state, for example in the case of
neural precursor cells (Inoue et al. 2007). Moreover, we also identi-
fied another differentially expressed gene,NR6A1, a known regula-
tor of POU5F1 later in differentiation (Fuhrmann et al. 2001;
Weikum et al. 2016), and which we predict is likely to participate
in the TRPSC pathway since its paralog, NR5A1, is among the key
members of this pathway (Supplemental Fig. S6). Based on these
observations, we hypothesize that in subpopulation two, three dif-
ferentially expressed (DE) genes—SALL4,NR6A1, andZIC3—coop-
erate with key pluripotency transcription factors POU5F1, SOX2,
andNANOG to activate genes related toproliferation, butnot genes
involved in differentiation (Supplemental Fig. S5).

Compared to subpopulations one and two, subpopulations
three and four represent pluripotent populations with signifi-
cant down-regulation of key pluripotency network genes (e.g.,
NANOG andUTF1) (Fig. 2A,B). For all knownpluripotencymarkers

examined in Supplemental Table S8, we observed expression in a
higher proportion of cells in subpopulation one and two than sub-
populations three and four. Furthermore, the mean expression of
46 of 56 known markers involved in pluripotency shown in
Supplemental Table S7 is higher in subpopulations one and two
than in three and four. For subpopulation three, comprising 2.8%
of cells, Reactome pathway enrichment analysis of 2534 DE genes
between subpopulations three and four showed the top pathways
related to developmental signaling and transcriptional regulation
viachromatinmodification(SupplementalTable S12). Intracellular
signaling pathways that control cell proliferation, cell differentia-
tion, and cell migration, such as EGFR, PDGF, and NGF pathways
(FDR < 1.7 × 10−6),were thetopthreemostenrichedpathways(Sup-
plemental Table S12). Additionally, signaling pathways by FGFRs
involved in differentiation were also significantly enriched (FDR
< 3 × 10−4). Comparing subpopulations three and one, signaling
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Figure 2. Expression levels of known pluripotency and lineage-primed markers. (A) Violin and jitter plots and t-SNE plots for expression of top pluripo-
tency markers. Each point represents a single cell. The color gradient in the t-SNE plot represents the relative expression level of the gene in a cell across the
whole population and subpopulations: (light gray) low; (dark purple) high. (B) Heatmap of the mean expression of known markers within each subpopu-
lation. The upper panel shows the classifications of genes into pluripotency and lineage-primed markers.
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by TGF-beta, and signaling by NODAL were in the top enriched
pathways (FDR < 8 × 10−3). Similarly, signaling by NODAL (FDR <
0.04) (LeVincent et al. 2003) and pre-NOTCH processing (FDR <
0.04) (Artavanis-Tsakonas et al. 1999), which are involved in cell
fate decisions, were in the top enriched pathways when compar-
ing subpopulation three to subpopulations one and two (Supple-
mental Table S12). In addition, “chromatin modifying enzymes”
is amongthetopReactomepathwaysdistinguishingsubpopulation
three, suggesting that cells are undergoing active transcription
regulation. Thus, pluripotent cells in subpopulation three appear
more lineage primed compared to subpopulations one and two.

Further, we extended the pathway enrichment analysis to a
broad collection of background Gene Ontology databases, beyond
themanually curated Reactome database (Wu et al. 2010), by using
BiNGO in Cytoscape (Maere et al. 2005) for all 1706 DE genes in
subpopulation four versus all other subpopulations (1.1% of ana-
lyzed cells) (Supplemental Table S13). We found the top enriched
pathways related to differentiation including genes involved in
gastrulation (FDR < 1.3 × 10−2) and formation of primary germ lay-
er (FDR < 1.4 × 10−2), developmental process (FDR < 2.8 × 10−3)
and cell differentiation (FDR < 1.2 × 10−2), and more than 20 sig-
nificantly enriched pathways related to organogenesis (FDR < 5 ×
10−2) (Supplemental Table S13). Thus, although cells in subpopu-
lation four are still pluripotent, as indicated by the expression of
pluripotent markers, they likely represent cells at a late primed
state progressing toward differentiation.

Taken together, our transcriptional profiling of single cells re-
vealed four subpopulations defined by their pluripotency levels,
cell proliferation, and potential for cell lineage commitment.
Subpopulation one pluripotent cells likely represent a core pluri-
potent state, subpopulation two proliferative pluripotent cells,
subpopulation three as early primed for differentiation, and sub-
population four as late primed for differentiation (Fig. 1B).

Improved cell classification using a reduced set of gene markers

Current methods of classifying cells into subtypes or functional
groups rely on prior knowledge of so-called “marker genes” to in-
form the pseudotime algorithm. One limitation of this approach
is that to discover new or rare cell types using single-cell RNA-
seq, the use of establishedmarkers as an inputmay not be feasible.

Using differentially expressed genes identified between sub-
populations, we built a novel unbiasedmachine learning predictor
to identify the pluripotency potential of a single cell. To avoid
overfitting the model due to coexpression of genes, we used a var-
iable selection regression model called LASSO (Tibshirani 1996) to
estimate gene effects differentiating each subpopulation condi-
tional upon the effects of other genes. Using a 100-fold bootstrap-
ping approach, we estimated the predictive accuracy of identifying
a cell in each of the four subpopulations (Fig. 3; Supplemental
Table S15; Tibshirani 1996). To detect newgenemarkers compared
to the use of known pluripotency markers (Supplemental Table
S7), we applied LASSO to selected sets of differentially expressed
genes between one subpopulation compared to the remaining sub-
populations. Consistently across four comparisons, our method
increases prediction accuracy by 10%, specificity by 20%, and ex-
plains a substantially larger proportion of deviance (up to three-
fold) from the prediction model compared to known markers
(Supplemental Figs. S7, S8; Supplemental Tables S15, S16).
Prediction by DE genes showed markedly higher performance,
measured specifically by sensitivity, specificity, and percentage
of deviance explained, in distinguishing cells classified in sub-

populations three and four from the remaining cells (Fig. 3A).
Similarly, a significantly higher percentage of deviance can be
explained by using DE genes compared to using known markers
(t-test, P = 1.4 × 10−77) (Fig. 3B).We observed the highest classifica-
tion accuracy using genes identified using the LASSO model for
cells in subpopulations three and four than cells in subpopulations
one and two, suggesting that these subpopulations were more
divergent from the remaining majority of the cell population
(Fig. 3C). This observation further supports the classification of
subpopulations three and four as more primed to differentiation
than subpopulations one and two. Although the difference in ac-
curacy was less apparent for cells in subpopulations one and two,
the improved accuracy achieved using the DE genes compared to
knownmarkers supports the conclusion that our analysis has iden-
tified novel genes that act as pluripotency markers (Fig. 3C).

Cell transition between pluripotency states

We next sought to investigate cell trajectories between subpopula-
tions of iPSCs.We further deployed the results from the LASSOvar-
iable selection procedure described above to develop a classifier
model, termed Local Transitions between Subpopulations (LTS)
that can predict the conversion potential of cells in one subpopu-
lation into cells in a target subpopulation. For each subpopulation,
we trained the expression data using the genes identified as differ-
entially expressed to optimize a logistic regressionmodel by penal-
ized maximum likelihood estimation. The training provides an
optimal LASSOmodelwith selected genes and corresponding coef-
ficients. The coefficients estimated from the training model were
fitted into the expression levels of each of the remaining subpop-
ulations (target populations), enabling us to predict which cells in
the target population were the most similar to cells in the training
subpopulation. The percentage of cells within the target subpopu-
lation accurately predicted by the training subpopulation is
termed the transition score. The transition scores provide both a
quantitative and directional estimate of the progression potential
between subpopulations. Using LTS to predict the lineage trajecto-
ry between subpopulations of pluripotent cells showed that subpo-
pulation one is capable of progressing into all other states, with the
potential to convert into 45%, 69%, and 47% of the cells in the
subpopulation two, three, and four, respectively (Fig. 4E; Table
1). In contrast, subpopulation two predominantly transitions
into subpopulation one (39%), with low transition scores when
compared against subpopulations three and four (<5%) (Fig. 4E).
The difference in transition scores from subpopulation two to oth-
er subpopulations suggests that the cells were at a reversible, self-
renewal state (Table 1). Notably, the LASSO method predicts the
highest transition score for the progression from subpopulation
three to subpopulation four (>99%), providing further support
that subpopulation three is “early primed” prior to the “late
primed” state in subpopulation four (Fig. 4E).

To confirm that the population of iPSCs consists of groups of
cells located in different states along a differentiation path, we
cross-validated our findings with two independent pseudotime
analysis methods, namely Monocle 2 (Qiu et al. 2017) and diffu-
sion pseudotime (Haghverdi et al. 2016). These two methods esti-
mate the differentiation distance of a cell compared to a root cell
(Methods), but do not otherwise provide quantitative information
about direction of movement. Monocle 2 (Fig. 4A,B) revealed a
substantial overlap between subpopulations one and two, with
cells classified in subpopulation one distributed across the trajecto-
ry, indicating a pluripotent state. Furthermore, the majority of
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cells within subpopulation two are located at the right terminal,
indicating cells are closer to the root. As expected, cells within sub-
populations three and four were located distal to cells from subpo-
pulation two at the left terminal, which supports our results
suggesting classification of subpopulations three and four as being
more primed to differentiate. The diffusion algorithm, implement-
ed through the Destiny package (Angerer et al. 2016), maps cells
onto a two-dimensional pseudotime space. The results obtained
from diffusion pseudotime analysis (Fig. 4C,D) were in strong
agreement with the Monocle 2 prediction, supporting our evi-
dence that the four subpopulations present in a culture of iPSCs ex-
ist in multiple states of pluripotency.

Validation against transcriptional data from the Human Induced

Pluripotent Stem Cells Initiative (HipSci)

To confirm that genes selected by our LASSO analysis were also ex-
pressed in other hiPSC lines, we obtained open-access RNA-seq

transcript count data (tags per million [TPM]) from the Human
Induced Pluripotent Stem Cells Initiative (HipSci) for 71 hiPSC
lines derived from reprogramming of dermal fibroblast biopsies
fromnormal individuals (Streeter et al. 2017). Consistently, we ob-
served expression of LASSO genes in 71 other independent hiPSC
samples (Supplemental Fig. S8). Moreover, we observed high corre-
lation (r > 0.85) between the relative expression values among
genes in our single-cell data set with those genes in the HipSci
bulk RNA-seq data set (Supplemental Fig. S8C). The high correla-
tion further confirms that the single-cell sequencing data accurate-
ly reflects the relative abundance of transcripts.

Transcriptional heterogeneity varies among cell

subpopulations

With the large-scale data from 18,787 single cells, more than
16,000 geneswere detected as expressed. Using this expressionma-
trix, we were able to robustly analyze expression heterogeneity,

A

B

C

Figure 3. Selection of significant gene predictors for classifying each subpopulation using LASSO regression. (A) For each subpopulation, a LASSOmodel
was run using a set of differentially expressed (DE) genes and another set of knownmarkers. Dashed lines are receiver operating characteristic (ROC) curves
for models using knownmarkers. Continuous lines are for models using differentially expressed genes. The text shows corresponding area under the curve
(AUC) values for ROC curves. For each case (knownmarkers or DE genes), amodel with the lowest AUC and anothermodel with the highest AUC are given.
Lower AUC values (and ROC curves) in the prediction models using known markers suggested that the models using DE genes performed better in sensi-
tivity and specificity. (B) Each deviance plot shows the deviance explained (x-axis) by a set of gene predictors (numbers of genes is shown as vertical lines
and varies from 1 to maximum value as the total number of gene input or to the minimum number of genes that can explain most of the deviance). The
remaining space between the last gene and 1.0 border represents deviance not explained by the genes in themodel. (C ) Classification accuracy calculated
using a bootstrap method using all known markers (both pluripotent markers and primed lineage markers) or markers from our differentially expressed
gene list is shown. Expression of LASSO-selected genes for subpopulation one and subpopulation two is shown in Supplemental Figure S7. The x-axis labels
are for three cases: using LASSO-selected differentially expressed genes (DE); LASSO-selected pluripotency/lineage-primed markers (PL); and all pluripo-
tency/lineage-primed markers (All PL).
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both between genes, and for a given gene, between cells and cell
subpopulations (Supplemental Fig. S9). The inherently high het-
erogeneity of gene expression in scRNA-seq data, especially for
low abundance genes with a more frequent on–off signal, may re-
duce the power to detect differential expression between cells
(Shalek et al. 2013). Indeed, we identified more variation for sub-

populations with smaller numbers of
cells (Supplemental Fig. S9A) and also
for genes with low expression (Supple-
mental Fig. S9B). Tagwise dispersion,
which is expression variability for a
gene across all cells in a subpopulation,
decreased when average expression in-
creased (Supplemental Fig. S9B). The dif-
ference in the level of heterogeneity of
gene expression for cells in a given sub-
population compared to other subpopu-
lations is an important indicator of the
relative dynamic cellular activity of the
subpopulation. The red line in Sup-
plemental Figure S9B shows the median
dispersion of all genes across all cells
within a subpopulation, thereby repre-
senting the average expression heteroge-
neity of the subpopulation. We found
themedian dispersionwas higher in sub-
populations three and four than in sub-
populations one and two (Supplemental
Fig. S9B). This is consistent with our
conclusion that subpopulations three
and four were closer to a differentiated
state compared to cells in subpopulations
one and two, which are identified as be-
ing more pluripotent based on transcrip-
tome analysis.

Cell cycle classification of hiPSC

subpopulations

To test the hypothesis that the sub-
populations classified as core pluripotent
(subpopulationone) or proliferative (sub-
population two) would harbor specific
cell cycle signatures, we predicted the
cell cycle phase of each cell (Scialdone
et al. 2015; Lun et al. 2016). To estimate
phase scores for each cell, the prediction
method uses gene expression data and a
reference training set containing prior
ranks of relative expression of “marker
pairs,” in which the sign of each pair
changes between cell cycle phases (Fig.
4F; Leng et al. 2015; Scialdone et al.
2015). In particular, we observed that a
significantly higher percentage of cells
in S (synthesis) phase belonged to subpo-
pulation two (14.2%) compared to sub-
population one (8.4%: Fisher’s exact
test, P < 2.2 × 10−16), and that a sig-
nificantly higher percentage of cells in
G1 (50.3%) belonged to subpopulation
one compared to subpopulation two

(45.6%: Fisher’s exact test, P < 2.2 × 10−16). Table 2 summarizes
the proportions of cells in each cell cycle phase grouped by subpo-
pulation. These data confirmed our previous findings that subpo-
pulation two is more proliferative and likely forms the reversible,
self-renewing component of the pluripotent population as a
whole.

A B

C D

E F

Figure 4. Trajectory and cell cycle membership analysis. Cell differentiation potential was mapped us-
ing two pseudotime approaches implemented in Monocle 2 and Destiny and a novel transition estima-
tion method. (A) The results of the Monocle 2 analysis, colored by subpopulation, and the normalized
density of the cells in each location along the trajectory is shown as a density curve in the x and y plot
margins. (B) The differentiation distance from the root cell to the terminal state, for which the dark
blue represents the beginning (the root) and light blue represents the end (the most distant cells from
the root) of the pseudotime differentiation pathway. (C,D) The results of diffusion pseudotime analysis,
colored by cluster (C) and by diffusion pseudotime (D). DC refers to diffusion component, and DPT refers
to diffusion pseudotime. The red and blue pathways in C and D represent the transition path from cell to
cell calculated by a random-walk algorithm. (E)We developed a novel approach that uses the LASSO clas-
sifier to quantify directional transitions between subpopulations. The percent of transitioning cells pre-
dicted between subpopulations. The weight of the arrows is relative to percentage (thicker is higher
percentage), and the light gray dotted arrows represent percentages lower than 20. (F) Cell cycle stages
were predicted for each cell by subpopulation. Subpopulation one (“Core”) contains a significantly lower
number of cells in the S phase (synthesis) compared to subpopulation two (“Proliferative”; Fisher’s exact
test, P < 2.2 × 10−16).
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Discussion

Althoughmethods to dissect cell subpopulations at single-cell res-
olution such as FACS and immunohistochemistry have been avail-
able, a comprehensive profiling of transcriptional state(s) defining
functionally distinct cell subpopulations composing a “homoge-
nous” hiPSC cell line has not been described (Wilson et al. 2015;
Kalkan et al. 2017). Although the heterogeneity of pluripotency
states in an induced pluripotent cell culture is widely recognized,
the quantitative characterization of subpopulations, identification
of markers for subpopulations, and prediction of transition poten-
tial among them have not been investigated. To address this, we
generated and analyzed the largest hiPSC single-cell transcriptom-
ics data set to date, from five biological replicates of an engineered
WTC-CRISPRi hiPSC line (Mandegar et al. 2016). The 18,787 high-
quality transcriptomes that compose this hiPSC population, col-
lectively expressing 16,064 genes, provided strong statistical power
for unbiased computational decomposition of cellular and tran-
scriptional heterogeneity.

We developed a high-resolution and deterministic clustering
method (UHRC) that does not require a predetermined cluster
number. Across five separate biological replicates, we consistently
found the existence of two main subpopulations, including a core
pluripotent and a pluripotent-proliferative subpopulation, ac-
counting for 96.1% of all cells profiled. Comparison of transcrip-
tomes between subpopulations revealed a cell proliferation gene
network, coordinately regulated by two transcription factors
SALL4, ZIC1, and the NR5A1 signaling receptor, together with
the well-characterized pluripotency regulators POU5F1, SOX2,
andNANOG. Recently, Kalkan et al. (2017) detected higher expres-
sion of Sall4 and Nr5a2 by single-cell RNA-seq in the early undif-
ferentiated state (2i) of mouse ESCs compared to later, more
differentiated time points. The separation of two major subpopu-
lations on the basis of cell proliferation states may in part be

explained by evidence that reprogramming is commonly a sto-
chastic process dependent on cell-proliferation rate (Hanna et al.
2009). It remains to be determined whether these subpopulations
generally reflect a common feature of pluripotency in hESC or
hiPSC populations. Furthermore, the high sensitivity of the
UHRC method allowed the detection of two smaller subpopula-
tions (2.8% and 1.1% of the total cells) with transcriptional signa-
tures of pluripotency but primed for differentiation based on
enriched signaling pathways and gene ontologies related to line-
age specification. From analysis of expression heterogeneity
within and between subpopulations, we found higher variability
in these two subpopulations compared to the remaining cells.
This observation is consistent with recent single-cell studies show-
ing that the transition from pluripotency to lineage commit-
ment phase is characterized by high gene expression variability
(Semrau et al. 2017) and by the gradual destabilization of the plu-
ripotent stem cell networks (Bargaje et al. 2017).

Moreover, we developed amethod to find novel genemarkers
and models capable of distinguishing these subpopulations. Our
marker identification method enables objective selection of genes
from a large set containing hundreds to thousands of differentially
expressed genes. The novel markers outperform knownmarkers in
predicting subpopulations. We developed a machine learning ap-
proach that can be widely applied to optimize prediction models
based on single-cell transcriptomics data to classify cells into sub-
populations at a high accuracy. Identifying cell types is often based
on immunostaining, FACS, or targeted PCR quantification of a
small number of markers (Tsankov et al. 2015; Kalkan et al.
2017). Here, we constructed an unbiased classification model
based on differential gene expression selected by the LASSO penal-
ized maximum likelihood optimization procedure. The procedure
does not require model tuning by selecting parameters based on
prior knowledge. We identified large, previously unreported
groups of genes as new predictors for pluripotency and showed
that prediction models from differentially expressed genes per-
formed better than models built from known markers. Our model
is especially effective at identifying genes and estimating their ef-
fects in the prediction of complex phenotypes (polygenic traits),
which are controlled bymultiple genetic loci andwhere each locus
has a small individual effect (Yang et al. 2010a; Boyle et al. 2017).
Our results support the use of an unbiased and transcriptome-wide
approach to developing gene prediction models, which can lever-
age subtle expression changes in a large number of genes to accu-
rately classify cell types (subpopulations) and discover novel gene

Table 1. Percentage of cells in other subpopulations predicted by
LASSO

Subpop 1 Subpop 2 Subpop 3 Subpop 4

Subpop 1 — 45.1 69.4 47.3
Subpop 2 39.4 — 4.9 2.5
Subpop 3 28.4 19.9 — 99.1
Subpop 4 24.6 20.6 61.0 —

Table 2. Prediction of cell cycle phases for each of the 18,787 cells in four subpopulations

Subpopulation ID Phase Cell number Cluster percent Cluster total Phase percent Phase total

1 G1 8084 89∗∗∗ 9083 50.3 16,075
2 G1 7324 81.6 8977 45.6 16,075
3 G1 482 91.6 526 3 16,075
4 G1 185 92 201 1.2 16,075
1 G2M 239 2.6 9083 37.3 640
2 G2M 374 4.2 8977 58.4 640
3 G2M 21 4 526 3.3 640
4 G2M 6 3 201 0.9 640
1 S 760 8.4 9083 36.7 2072
2 S 1279 14.2∗∗∗ 8977 61.7 2072
3 S 23 4.4 526 1.1 2072
4 S 10 5 201 0.5 2072

(∗∗∗) Cluster 1 versus 2: P < 2.2 × 10−16, Fisher’s exact test.
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markers for important phenotypes. The results of these predictions
can generate important hypotheses around genes and networks to
be validated by functional genomics assays.

Importantly, using LTS, our quantitative and directional pre-
diction method, we observed that these multiple iPSC subpopula-
tions have the potential to transition between pluripotency states,
which was further supported by two independent analysis
methods: Monocle 2 and diffusion pseudotime. The results of
these trajectory analyses revealed the dynamic transition among
subpopulations that ensures both cell state renewal (transition be-
tween subpopulation two and subpopulation one) and differenti-
ation capacity (subpopulation one to subpopulations three and
four). This is especially the case for subpopulations one and two,
which are on a continuumyet are distinguishable fromone anoth-
er based on their transcriptional profiles. However, between sub-
populations two and three and subpopulations two and four, the
continuum is less clear, suggesting greater distinction between
each subpopulation (Fig. 4). Prior work using microarray gene ex-
pression arrays on human embryonic stem cells (hESCs) suggested
a continuum of pluripotent states exists (Hough et al. 2009). Our
finding is consistent with a study on early developmental progres-
sion from naive pluripotency in human epiblast and embryonic
stem cells to more differentiated tissues such as trophectoderm
and primitive endoderm (Yan et al. 2013). Using single cells, the
authors reported a strong reduction in the expression of pluripo-
tency markers during the cell transition from pluripotent to dif-
ferentiated. A second study investigating early developmental
progression from naive pluripotency in mouse ESCs (Kalkan
et al. 2017) showed reduced expression of pluripotency markers
occurred prior to the activation of lineage specification markers.

Despite the large number of cells sequenced, this study was
limited in that only 3′ mRNAwas sequenced; thus there remained
variation between cell populations that could not be detected. In
addition, our observations were obtained from one iPSC line and
may not reflect the general behavior of all pluripotent stem cells.
Nevertheless, our aim was to deconvolute a “homogeneous”
hiPSC population, and inclusion of transcriptional sequence
data from other RNA species in the future will likely improve our
ability to further delineate subpopulations of cells. Furthermore,
we confirmed that the genes selected were expressed in 71
HipSci data sets (Streeter et al. 2017), and the relative expression
level among genes was consistent between scRNA and bulk RNA
sequencing. The parental cell line selected for this study, WTC-
CRISPRi hiPSCs (Mandegar et al. 2016), is an important system
for targeted transcription inhibition and is a key feature for func-
tional genomics studies that build on this data set to study the biol-
ogy of pluripotency. Coupled with high-throughput single-cell
RNA-seq, our innovative computational methods have revealed
the intrinsic characteristics that distinguish subpopulations of plu-
ripotent stem cells. Future work is required to expand this analysis
to multiple hiPSC and hESC lines to identify common features of
single-cell subpopulations in pluripotency.

Methods

Cell culture

Undifferentiated human induced pluripotent stem cells (hiPSC;
wild type C [WTC]) were provided courtesy of Bruce Conklin
(UCSF and Gladstone Institutes) as previously described (Mande-
gar et al. 2016). Cells were maintained on Vitronectin XF (STEM-
CELL Technologies, catalog no. 07180) and cultured in mTeSR1

(STEMCELL Technologies, catalog no. 05850). Cytogenetic analy-
sis by Giemsa banding showed a normal 46, XY male karyotype.
For scRNA-seq, samples 1 and 2 were harvested from a single plate
using Versene, split into two technical replicates, resuspended in
Dulbecco’s PBS (dPBS; Life Technologies, catalog no. 14190-144)
with 0.04% bovine serum albumin (Sigma, catalog no. A9418-
50G), and immediately transported for cell sorting. For samples
3–5, cells were harvested from individual plates using 0.25%
Trypsin (Life Technologies, catalog no. 15090-046) in Versene,
neutralized using 50% fetal bovine serum (HyClone, catalog no.
SH30396.03) in DMEM/F12 (Life Technologies, catalog no.
11320-033), centrifuged at 1200 rpm for 5 min, and resuspended
in dPBS + 0.04% BSA.

Cell sorting

Viable cells were sorted on a BD Influx cell sorter (Becton-
Dickinson) using Propidium Iodide into Dulbecco’s PBS + 0.04%
bovine serum albumin and retained on ice. Sorted cells were
counted and assessed for viability with Trypan Blue using a
Countess automated counter (Invitrogen) and then resuspended
at a concentration of 800–1000 cells/µL (8 × 105–1 × 106 cells/
mL). Final cell viability estimates ranged between 80% and 93%.

Generation of single-cell GEMs and sequencing libraries

Single-cell suspensions were loaded onto 10x Genomics Single
Cell 3′ Chips along with the reverse transcription (RT) mastermix
per the manufacturer’s protocol for the Chromium Single Cell 3′

Library (10x Genomics; PN-120233) to generate single-cell gel
beads in emulsion (GEMs). Reverse transcription was performed
using a C1000 Touch Thermal Cycler with a Deep Well Reaction
Module (Bio-Rad) as follows: for 2 h at 55°C; for 5 min at 85°C;
hold 4°C. cDNA was recovered and purified with DynaBeads
MyOne Silane Beads (Thermo Fisher Scientific; catalog no.
37002D) and SPRIselect beads (Beckman Coulter; catalog no.
B23318). Purified cDNA was amplified as follows: for 3 min at
98°C; 12× (for 15 sec at 98°C; for 20 sec at 67°C; for 60 sec at
72°C); for 60 sec at 72°C; hold 4°C. Amplified cDNA was purified
using SPRIselect beads and sheared to ∼200 bp with a Covaris
S2 instrument (Covaris) using the manufacturer’s recommended
parameters. Sequencing libraries were generated with unique sam-
ple indices (SI) for each sample. Libraries for samples 1–3 and 4–5
were multiplexed, respectively, and sequenced on an Illumina
NextSeq 500 (NextSeq control software v2.0.2/Real Time Analysis
v2.4.11) using a 150-cycle NextSeq 500/550 High Output Reagent
Kit v2 (Illumina, FC-404-2002) in standalone mode as follows:
98 bp (Read 1), 14 bp (I7 Index), 8 bp (I5 Index), and 10 bp
(Read 2).

Bioinformatics mapping of reads to original transcripts and cells

Processing of the sequencing data into transcript count tables was
performed using the Cell Ranger Single Cell Software Suite 1.2.0 by
10x Genomics (https://www.10xgenomics.com/). Raw base call
files from the NextSeq 500 sequencer were demultiplexed, using
the cellranger mkfastq pipeline, into sample-specific FASTQ files.
These FASTQ files were then processed with the cellranger count
pipeline where each sample was processed independently. First,
cellranger count used STAR (Dobin et al. 2013) to align cDNA reads
to the hg19 human reference transcriptome, which accompanied
the Cell Ranger Single Cell Software Suite 1.2.0. We note that,
because the expression data is limited to the 3′ end of a gene and
we used gene-level annotations, differences between reference ver-
sions, such as GRCh38, are unlikely to significantly alter conclu-
sions. Aligned reads were filtered for valid cell barcodes and
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unique molecular identifiers (UMI), and observed cell barcodes
were retained if they were 1-Hamming-distance away from an en-
try in a whitelist of known barcodes. UMIs were retained if they
were not homopolymers and had a quality score >10 (90% base ac-
curacy). cellranger count corrected mismatched barcodes if the base
mismatch was due to sequencing error, determined by the quality
of themismatched base pair and the overall distribution of barcode
counts. A UMIwas corrected to another,more prolific UMI if it was
1-Hamming-distance away and it shared the same cell barcode and
gene. cellranger count examined the distribution of UMI counts for
each unique cell barcode in the sample and selected cell barcodes
with UMI counts that fell within the 99th percentile of the range
defined by the estimated cell count value. The default estimated
cell count value of 3000 was used for this experiment. Counts
that fell within an order of magnitude of the 99th percentile
were also retained. The resulting analysis files for each sample
were then aggregated using the cellranger aggr pipeline, which per-
formed a between-sample normalization step and merged all five
samples into one. Post-aggregation, the count data was processed
and analyzed using a comprehensive pipeline, assembled and op-
timized in-house as described below.

Preprocessing

To preprocess the mapped data, we constructed a cell-quality ma-
trix based on the following data types: library size (total mapped
reads), total number of genes detected, percent of reads mapped
tomitochondrial genes, and percent of readsmapped to ribosomal
genes. Cells that had any of the four parameter measurements
higher than 3× median absolute deviation (MAD) of all cells
were considered outliers and removed from subsequent analysis
(Supplemental Table S2). In addition, we applied two thresholds
to remove cells with mitochondrial reads >20% or ribosomal reads
>50% (Supplemental Table S2). To exclude genes that were poten-
tially detected from randomnoise, we removed genes that were de-
tected in fewer than 1% of all cells. Before normalization,
abundantly expressed ribosomal protein genes andmitochondrial
genes were discarded to minimize the influence of those genes in
driving clustering and differential expression analysis.

Data normalization

Two levels of normalizationwere performed to reduce possible sys-
tematic bias between samples and between cells. To reduce poten-
tial confounding effects caused by differences in sequencing
depths among the five samples, a subsampling process (Zheng
et al. 2017) was used to scale the mean mapped reads (MMR) per
cell of all samples down to the level of the sample with the lowest
MMR. For each sample, a binomial sampling process randomly se-
lected reads and UMIs for each gene in a cell at a sample-specific
subsampling rate. The subsampling rate for each sample was deter-
mined using the ratios of expected total reads (given the expected
mean reads per cell [minimum MMR of all samples], the known
number of cells, and the fraction of mapped reads to total reads)
to the original total mapped reads (equation 1). Following resam-
pling, the MMRs for the five samples were scaled, and the expres-
sion data distribution for genes in all cells of the sample was for
genes in all cells of the sample was maintained.

Ratei = min(MMRj)∗Ni∗ (ReadFractioni)
Total mapped readsi

, (1)

where min(MMRj) is the minimum MMR of all samples to be
merged; Nj is the number of cells in sample j; ReadFractioni is the
ratio of confidently mapped reads in a cell to the total number of
reads detected for that cell in sample i; and Total_mapped_readsi

is the total number reads that share the same cell barcode. For
each gene in each cell, we performed a random binomial sampling
process of reads with the probability equal the subsample rate cal-
culated in equation 1. This process is more robust than standard
scaling options because it takes into account unique read informa-
tion associated with mapped genes and cells.

To reduce cell-specific bias, possibly caused by technical var-
iation (such as cDNA synthesis, PCR amplification efficiency,
and sequencing depth for each cell), expression values for all
genes in a cell were scaled based on an estimated cell-specific size
factor. Before normalization, counts were log2-transformed (by
log2(count + 1)) to stabilize variance due to the large range of count
values (spanning six orders ofmagnitude) (Supplemental Fig. S1E).
To estimate the scaling size factor for each cell, a deconvolution
method (Lun et al. 2016) was applied for summation of gene ex-
pression in groups of cells. This summation approach reduced
the number of stochastic zero expression of genes that are lowly ex-
pressed (higher dropout rates), or genes that are turned on/off in
different subpopulations of cells.

E(Vik) = li0
∑
j[Sk

ujt−1
j , (2)

where Sk is a pool of cells;Vik is the sum of adjusted expression val-
ue (Zij = θj∗λi0, where λi0 is the expected transcript count and θj is
the cell-specific bias) across all cells in pool Vk for gene i; and
ujt−1

j is the cell-specific scale factor for cell j (where tj is the constant
adjustment factor for cell j).

The estimated size factor of a gene in pool Sk, named as E(Rik),
is the ratio between the estimated Vik and the average Zij across all
cells in the population. Therefore, E(Rik) ≈

∑
Sk ujt

−1
j C−1 where

C = N−1 ∑
S0 ujt

−1
j , and where N is the number of cells; S0 repre-

sents all cells and is a constant for the whole population and
thus can be set to unity or ignored. The cell pools were sampled us-
ing a slidingwindow on a list of cells ranked by library size for each
cell. Four sliding windows with 20, 40, 60, and 80 cells were inde-
pendently applied, and the results were combined to generate a
linear system that can be decomposed by QR decomposition to es-
timate ujt−1

j size factor for each of the cell. The normalized counts
are the results of taking the raw counts divided by cell-specific nor-
malized size factors.

Developing a publicly accessible data resource

To make this valuable single-cell human pluripotent single-
cell data set publicly accessible, we created an interactive R Shiny
server at http://computationalgenomics.com.au/shiny/hipsc/. The
server contains user-friendly data exploration and representation
tools. Users can interactively explore the expression of any selected
gene from the 16,064 genes in each cell of the 18,787 cells. The
data specific for each subpopulation are also calculated. For each
gene, a summary table, t-SNE plot, and a density plot can be gen-
erated, and the results are downloadable.

Analyzing transcriptional heterogeneity in a population

of single cells

To assess transcriptional heterogeneity among cells and genes, we
first removed potential variation due to technical sources by the
subsampling process and the cell-specific normalization as de-
scribed above. Depending on experimental design, an additional
step using a generalized linear model (GLM) to regress out other
potential confounding factors can be included. After reducing
technical variation via normalization, we calculated the coeffi-
cient of variation and expression dispersion of each gene across
all cells. For cell-to-cell variation, we first performed principal
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component analysis (PCA) on general cell data, which included
percent counts of the top 100 genes, total number of genes, and
percent of mitochondrial and ribosomal genes. To investigate var-
iation between genes, the distribution of dispersion across a range
of expression values was calculated (equation 3). This approach is
useful because technical variation often appears greater in lowly
expressed genes than in more abundant genes (Shalek et al.
2013). Denoting xi as the vector of expression values (in counts
permillion) for gene i across all cells, we used the following formu-
la to compute coefficient of variation (cv):

cv =
�����������
var(xi)

mean(xi)

√
. (3)

We estimated the biological coefficient of variation (BCV)
with an empirical Bayesian approach to estimate dispersion be-
tween genes and between samples (McCarthy et al. 2012).
Commondispersion (shared dispersion value of all genes), trended
dispersion (mean dispersion trend for lowly expressed genes to
abundant genes), and gene-specific dispersion was estimated to re-
flect variation of all genes across the whole population (Supple-
mental Fig. S9).

Dimensionality reduction

After merging five samples, preprocessing, and normalizing the
data set was scaled to Z-distribution, and PCA was performed
for dimensionality reduction using the prcomp function in R
(McCarthy et al. 2017). To assess PCA results, we examined the
top genes that were most correlated to PC1 and PC2 and the distri-
bution of cells and percent variance explained by the top five PCs.
Importantly, the optimal number of PCs explaining the most var-
iance in the data setwas determinedusing a Scree test calculated by
the fa.parallel function in the psych package. The fa.parallel was
run based on expression data for the top variable genes.

Cells are represented using t-SNE and diffusion map (van der
Maaten and Hinton 2008). We used the Rtsne package v0.1.3 with
the normalized expression data (16,064 genes by 18,787 cells) to
calculate a three-dimensional t-SNE projection data set (16,064
genes by three t-SNE dimensions), which was then combined
with other data types to display cells on two- and three-dimension-
al t-SNE plots.

Clustering

Wedeveloped anunsupervised clusteringmethod that does not re-
quire the number of clusters to be specified prior to the analysis so
that small and big clusters can be determined automatically. We
first computed a cell-PCA eigenvector matrix based on the full ex-
pression data set (all 18,787 cells and over 15,953 genes) to reduce
the full data set to a 18,787 cells × 10 first orthogonal principal
components (PCs). The first 10 PCs that accounted for most of
the variance of the full expressionmatrix were used for computing
cell-to-cell Euclidean distance. We applied an agglomerative hier-
archical clustering (HAC) procedure using Ward’s minimum vari-
ance (minimal increase of sum of squared) method aiming at
finding compact clusters to minimize total within-cluster vari-
ance. By using Ward’s linkage method, cells and branches are
joined iteratively from the bottom (each cell is one branch) to
the top (all cells form one cluster), resulting in a complete dendro-
gram tree. To consider the broadest possible solution space for
finding clusters from the tree without a constraining threshold,
we allowed a cut height of 99% of the range between the 5th per-
centile and the maximum of the joining height on the dendro-
gram, allowing the entire set of branches in the original tree to
be considered in the cluster search space.

To determine the number of subpopulations, branches of the
dendrogram were pruned by a Dynamic Tree Cut method, which
uses an approach that does not attempt to merge all branches
with distance lower than a constant (supervised) height cutoff
(Langfelder et al. 2008). The dynamic merging process is a hybrid
method that uses the dendrogram tree shape to define the bottom
level clusters (based on number of cells, distance between cells,
core of the branches, and gaps between branches) and uses the dis-
similaritymeasure tomerge cells/branches (with lowest dissimilar-
ity) into the initially defined clusters. The dynamic, iterative
decomposition and combination of clusters enables the sensitive
detection of outliers and nested clusters. To ascertain the cluster-
ing results are stable, we performed cluster stability analysis and
resolution analysis. We narrowed the clustering search space by
running 10 clustering iterations at the bottom 25% height of the
entire tree. In each iteration, we decreased the pruning window
by 2.5%. The bottom 25%of the treewas used in the stability anal-
ysis to keep clusters at the highest resolution, allowing detection of
small clusters. Among all 10 independent clustering iterations, we
consistently found four clusters (Supplemental Fig. S4).

To allow for the detection of the smallest subpopulation, we
considered any cluster with more than 20 cells to be significant
in size, thereby enabling the detection of a cluster as small as
0.1% of the total cells. With these two parameters, the whole
tree and the smallest clusters are considered without predeter-
mined parameters.

Cluster information was then overlaid on cells in two- to
three-dimensional t-SNE plots. Notably, the clusters were the re-
sults from HAC analysis and were not dependent on the t-SNE
plots, which were used purely for representation purposes.

Cell cycle analysis

To assess whether the clustering assignments were affected by the
differences in cell cycle phases, we applied amachine learning pre-
dictionmodel to predict cell cycle phase (Scialdone et al. 2015; Lun
et al. 2016). The model uses scRNA gene expression data and a ref-
erence training set (prior knowledge) on relative expression of
“marker pairs,” in which the sign of each pair changes between
cell cycle phases (Scialdone et al. 2015). Scores for each of the three
phases (G1, G2M, and S) were estimated based on the proportion
of training pairs having the sign changed in each phase relative
to the other phases. The human training set was from Leng et al.
(2015).

Differential expression analysis

To select genes that distinguish subpopulations, we performed
pairwise differential expression analysis between cells in pairs or
groups of clusters by fitting a general linearmodel and using a neg-
ative binomial test as described in the DESeq package (Anders and
Huber 2010). Each cell was considered as one biological replicate in
each cluster.We found that the shrinkage estimation of dispersion
approach used inDESeq produced stable estimation of scale factors
for genes and cells between clusters and was more conservative in
detecting differentially expressed genes, especially when compar-
ing subpopulationswith a larger number of cells (such as subpopu-
lation one and two) to subpopulations with small cell numbers
(such as subpopulations three and four). Specifically, DESeq de-
tected fewer DE genes that expressed highly in a small proportion
of cells in a subpopulation, whereas remaining cells in that subpo-
pulation had zero or very low expression. Significantly differenti-
ated genes were those with Bonferroni threshold P-values <5%
(P < 3.1 × 10−7).

Differentially primed iPSC subpopulations
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Subpopulation classification analysis

To develop predictive models based on single-cell transcriptomics
data, we applied the Least Absolute Shrinkage and Selection
Operator (LASSO) procedure (Tibshirani 1996). LASSO selects
gene predictors for classifying cells into one of the four subpopula-
tions. Briefly, penalized logistic regression was applied to fit a pre-
dictormatrix (training set) containing expression values of the top
differentially expressed genes in 50% of the total cells—or for the
smallest subpopulation four, a subsample of a randomly selected
10% of the total cells—and a response variable vector assigning
cells into one of the subpopulations (dichotomous variable, with
two classes: belonging to the subpopulation or belonging to the re-
maining cells). The LASSO procedure optimizes the combination
set of coefficients for all predictors in a way that the residual sum
of squares is smallest for a given lambda value (Friedman et al.
2010).

We applied the glmnet R package to estimate parameters by a
penalized maximum likelihood procedure (as shown in equation
4) so that insignificant genes j (not explaining variance) were re-
moved (coefficients shrunken to 0):

Minimize
1
N

∑n
i=1

l(yi, b0 +
∑p
j=1

bjxij) + l
∑p
j=1

|bj|
⎛
⎝

⎞
⎠, (4)

wherexi = (xi1, xi2,…, xip) is a vector of expression values of p genes
in cell Ci; yi is the cell subpopulation class of the cell Ci;
l(yi, b0 +

∑p
j=1 bjxij) is the negative log-likelihood for Ci; and λ is

a tuning parameter that controls the shrinkage penalty of the
coefficients.

For each training data set, an optimal λ and a set of gene pre-
dictors can be determined by a 10-fold cross-validation procedure
to select the λ that produced the minimum classification errors.
The LASSO procedure optimizes the combination set of coeffi-
cients for all predictors in a way that the residual sum of squares
is smallest for a given lambda value (Friedman et al. 2010). In other
words, the LASSO procedure identified an optimal combination of
genes (predictors) and fitted a logistic regression model. The logis-
tic regression model is a generalized linear model in which the
response variable belongs to the binomial family, in which expres-
sion values of the selected genes were predictors, and the binary la-
bels (classes) of cells were response variables. The fitted model
could either explain the highest deviance, compared to the full
model, or classify cells to subpopulations with the lowest 10-fold
classification error. The glmnet R package was applied to select
top genes from the differentially expressed genes that contributed
to classifying cells into each subpopulation (Tibshirani et al. 2012).
To calculate the model prediction accuracy, we trained the LASSO
model using one subsampled data set and then evaluated the
trained model in predicting a new, non-overlapping subsampled
data set. By comparing the prediction results with the known sub-
population label of each cell, the model prediction accuracy was
calculated. We applied a bootstrap procedure to calculate classifi-
cation accuracy for 100 iterations.

Pseudotime analysis

We applied the optimal LASSO classification model trained in
the procedure above to estimate transition scores between subpo-
pulation. For two subpopulations, the transition score is the per-
centage of cells in the target subpopulation that are classified as
belonging to the original subpopulation and not belonging to
the other class. For each subpopulation, the logistic regression
model (with LASSO-selected genes and corresponding coeffi-
cients) was fitted into a new expression data set for all cells in an-

other subpopulation. The model estimates the conditional class
probability of a cell Ci belonging to a class k (0 or 1 ≡ belong or
not belong to) given the gene expression profile xi of the p
LASSO-selected genes xi.

The conditional class probabilities of cell Ci belonging to class
k is then the linear combination of selected genes, and can be esti-
mated as:

ln(Pr(y = 1|X = x)) = b0 + b1x1 + b2x2 + · · · + bpxP

= b0 + xb′, (5)
where βj is a coefficient for gene j (βj = 0 if the gene j is not a predic-
tor of the class). The coefficient vector β = (β0, β1, … βp) can be cal-
culated by maximum likelihood estimation and the deviance that
best explains the variance compared to the full model, as in equa-
tion 4. The predicted probability of a cell Ci being in a subpopula-
tion one or zero is estimated by replacing β and gene expression
values in the regression equation 5.

Results from our novel trajectory analysis method was com-
pared to the two state-of-the-art pseudotime analysis approaches,
namely Diffusion pseudotime (Haghverdi et al. 2016) and Mono-
cle 2 (Qiu et al. 2017). The Diffusion method, implemented in
Destiny (version 2.0.8), applies a diffusion-like random-walk al-
gorithm to estimate the cell’s probabilities, based on a weighted
nearest neighbor graph, of transitioning into another cell at a dif-
ferent fate/state, thereby inferring a differentiation trajectory.
The diffusion approach is not dependent on dimension reduc-
tion. The Monocle 2 package (version 2.2.0) applies an unsuper-
vised manifold learning technique, namely reverse graph
embedding (Discriminative Dimensionality Reduction for learn-
ing principal graphs [DDRTree]), to learn an optimal path (a
curved manifold in a low dimensional space) that approximates
the structure of high-dimensional data and reversely map cells
on this path back to the original multidimensional space so
that nearby cells on the manifold are also nearby cells on the
original space (Qiu et al. 2017). Both the Monocle 2 and Diffu-
sion methods estimate pseudotime, which is a measure of how
far a cell progresses in the differentiation process compared to a
root cell. Pseudotime is therefore the distance between two cells
in a modeled trajectory and is estimated independently from
the experimental time.

Pathway and gene functional analysis

To functionally characterize the four subpopulations, we per-
formed a network analysis using significantDE genes between cells
within a subpopulation and the remaining cells, or between cells
in pairs of subpopulations. We used Cytoscape to apply three
main programs: GeneMANIA (Warde-Farley et al. 2010), with a
comprehensive background database containing 269 networks
and 14.3million interactions; the Reactome functional interaction
network analysis, a reliably curated protein functional network
(Wu et al. 2010); and the STRING protein–protein interaction da-
tabase (Szklarczyk et al. 2015).

Data access

The raw andprocessed data from this studyhave been submitted to
ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) under acces-
sion number E-MTAB-6687. All code for figures and analysis are
available as Supplemental_Code.zip and at GitHub (https://
github.com/IMB-Computational-Genomics-Lab/hiPSC_paper_
2018).
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