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Highlights
Prediabetes is common and is a sig-
nificant risk factor for developing not
only diabetes, but also micro- and
macrovascular disease, fatty liver,
and cancer.

Prediabetes is characterized by het-
erogeneous defects in insulin sensitiv-
ity and insulin secretion, which are
themselves determined by genetic
and other factors.

Many individuals with prediabetes pro-
gress to T2DM despite lifestyle inter-
vention and treatment with metformin.

Phenotypic predictors of better and
worse responders to lifestyle interven-
tions or metformin have been sug-
gested, but findings are inconsistent.
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Prediabetes affects approximately 40% of American adults. Randomized trials
report that a proportion of individuals with prediabetes develop diabetes
despite caloric restriction, physical activity, and/or when treated with metfor-
min, the first-line medication for patients with type 2 diabetes mellitus (T2DM).
Currently, there are no valid predictors of the effectiveness of thesemeasures in
determining who will and who will not progress to the T2DM state. Few studies
have examined the clinical and phenotypic predictors of better and worse
glycemic response to lifestyle interventions and metformin in prediabetes
and diabetes. Further studies incorporating ‘omic’ approaches to discover
novel markers of phenotypes and treatment effectiveness may pave the way
to personalizing the treatment of prediabetes and diabetes.

Prediabetes: Globally Prevalent Condition with Poor Treatment Outcomes
Prediabetes is a state of dysglycemia that precedes the development of T2DM. It is a risk factor
for cardiovascular disease, fatty liver, renal, ophthalmic and neuropathic disease, cognitive
dysfunction, and cancer [1]. The prevalence of prediabetes depends on the definition used to
diagnose it (prediabetes diagnosis; see Glossary), and on the population studied. Prevalence
in adults is reported at 38% in the USA [2] and 35.7% % in China [3]. While not everyone with
prediabetes will develop diabetes, the annual rate of progression from prediabetes to diabetes
is high. In the US Diabetes Prevention Program Outcomes Study (DPPOS), annual rate of
progression was 11% [4] and, in a population of Asian Indians, annual progression was 13.4%
[5] in participants with impaired fasting glucose (IFG) and/or impaired glucose tolerance
(IGT) at baseline.

The current American Diabetes Association (ADA) guideline for management of individuals
found to have prediabetes recommends an intensive behavioral lifestyle intervention, aiming to
achieve and maintain a 7% body-weight loss and increase moderate-intensity physical activity
to at least 150 min a week [6]. However, weight-loss goals are difficult to achieve and are even
harder to maintain, with almost 80% of the lost weight regained within 5 years [7].

Pharmacological interventions to prevent diabetes in individuals with prediabetes are partic-
ularly recommended in individuals under 60 years of age, in those with a body mass index
(BMI) �35 kg/m2, in women with a history of gestational diabetes, and in individuals with an
elevated hemoglobin A1c (HbA1c) despite lifestyle changes [6]. Metformin, an oral biguanide,
the first-line treatment of patients with newly-diagnosed T2DM, is the pharmacological choice
for preventing diabetes in individuals with prediabetes. Metformin was first licensed as an
antihyperglycemic medication 60 years ago. Its exact mechanism of action is still not clear
and is intensively investigated [8]. Metformin is an ideal medication to initiate for diabetes
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Glossary
Genome-wide association studies
(GWAS): observational studies
investigating relationships between
genome variations (single nucleotide
polymorphisms, SNPs) that occur
more frequently in humans with a
particular disease or clinical traits in
large cohorts of individuals. Data
generated from GWAS identify genes
that may contribute to a person’s
risk of developing a certain disease.
Homeostatic model assessment
of insulin resistance (HOMA-IR): a
surrogate measure of insulin
resistance based on fasting plasma
glucose and insulin, calculated using
Equation I:

Fasting glucose mg
dL

� � �
Fasting insulin mU

L

� �
=405 [I].

Increased HOMA-IR
corresponds with increased
insulin resistance.
Impaired fasting glucose (IFG):
fasting PG concentration 100–
125 mg/dL (5.6–6.9 mmol/L).
Impaired glucose tolerance (IGT):
2-h PG during 75-g OGTT 140–
199 mg/dL (7.8–11.0 mmol/L).
Insulin sensitivity index (ISI):
marker of insulin resistance based on
PG and insulin concentrations at
fasting and during 75-g OGTT,
calculated using Equation II:

10000ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fasting glucose
�Fasting insulin� ðmean glucose
�mean insulin duringOGTTÞ

vuut

[II].
Insulinogenic index: marker of
insulin secretion based on plasma
glucose and insulin concentrations at
fasting and 30 min after oral
ingestion of 75 g glucose, calculated
using Equation III: (Insulin at 30 min
–Insulin at fasting)/(Glucose at 30
min –Glucose at fasting) [III].
Metformin intolerance: some
patients (up to 25%) treated with
metformin experience varying
degrees of gastrointestinal
intolerance, which may include
abdominal cramps, nausea, and
vomiting.
Normal glucose tolerance (NGT):
fasting PG <100 mg/dL (5.6 mmol/L)
and 2-h PG during 75-g OGTT
<140 mg/dL (7.8 mmol/L) and HbA1c

<5.7% (39 mmol/mol).
prevention, due to its excellent safety profile (lack of hypoglycemia), neutral to marginally
beneficial effect on body weight, modest evidence of cardioprotection, and low cost [9].
However, numerous studies suggest variability in the glycemic response to metformin, and
poor response is common [10–12].

Here, we summarize the literature describing poor response to lifestyle interventions and
metformin in individuals with prediabetes and diabetes.We also discuss the possible underlying
predictors of poor response and how detailed phenotyping and developing ‘omic’ approaches
may pave the way to the appropriate selection of medication to prevent progression from
prediabetes to diabetes, and for more individualized treatment of frank T2DM.

Poor Response to Pharmacotherapy and Lifestyle Interventions in Diabetes
Clinical practice, backed by randomized clinical trials, suggests that monotherapy with diabe-
tes medication fails to achieve glycemic goals in a large proportion of patients with T2DM. For
example, in a double-blind, randomized, controlled clinical trial of>4000 individuals with newly
diagnosed T2DM, Kahn and colleagues reported that 5 years of monotherapy with rosiglita-
zone, metformin, or sulfonylurea did not achieve glycemic goals in 15, 21, and 34% of patients,
respectively [10]. Similarly, analysis of treatment response to metformin and sulfonylurea in a
subcohort of the Genetics of Diabetes and Audit Research Tayside Study (GoDARTS) of
treatment-naïve individuals with T2DM, suggested that 42% and 49% of sulfonylurea- and
metformin-treated individuals, respectively, failed to achieve the HbA1c target [�7% (53 mmol/
mol)] within 1 year of treatment initiation, despite good adherence to the medication [11].
Furthermore, while the short-term benefits of caloric restriction and exercise on whole-body
glucose regulation are well established, even with modest weight loss [13], patients with T2DM
in the Action for Health in Diabetes (Look AHEAD) trial who lost weight through caloric restriction
and increased physical activity, were not better protected from cardiovascular events com-
pared with the control arm over 9.6 years [14].

Phenotypic Predictors of Poor Response to Lifestyle and Metformin
Interventions
Categorical analysis of subcohorts into better- and worse-glycemic responders to lifestyle
and metformin interventions provides some clues to phenotypic predictors of glycemic
response in prediabetes and diabetes (Table 1). Early interventions in prediabetes have been
trialed in the Diabetes Prevention Program (DPP) [15], with a follow-up analysis in the DPPOS
[4], and in the Diabetes Prevention Study [16]. Primary outcome measure was T2DM
diagnosis.

Lifestyle interventions were similarly effective in the DPP and the Finnish Diabetes Prevention
Study in preventing diabetes [15,16] and, when trialed against metformin, lifestyle intervention
was more effective in preventing diabetes at 3 years (58% versus 31% risk reduction, Table 1).
Yet, 14% of the lifestyle intervention-adherent participants developed diabetes at 3 years [12].
Progression to diabetes in participants randomized to the lifestyle intervention was predicted by
higher BMI, fasting plasma glucose (FPG), serum triglycerides, and, paradoxically, by greater
physical activity engagement before the randomization [12]. Prevention of diabetes with lifestyle
intervention was most effective in individuals with lower 2-h plasma glucose (PG) during an oral
glucose tolerance test (OGTT, Table 1). In the Finnish Diabetes Prevention Study, older age
predicted better glycemic response to energy restriction and exercise; baseline anthropometry,
glycemic status (FPG, 2-h PG during 75-g OGTT) and surrogates of insulin resistance (fasting
insulin and homeostatic model assessment of insulin resistance, HOMA-IR) did not
predict the glycemic response to the intervention [16] (Table 1).
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Nutrigenetics: the inclusion of
(selected) genetic information for
tailoring nutritional interventions in
individuals who are overweight or
obese, or have metabolic disease.
Prediabetes diagnosis: participants
without a prior diabetes diagnosis
but found to have IFG and/or IGT

Table 1. Summary of Interventional Studies where Diabetes Risk Reduction Stratification is Available in Cohorts with Prediabetes

Study [Cohort Size (N),
Average Length of Fol-
low-Up)

Intervention and Design Primary
Outcome

Average Outcome Risk Reduction in Better and Worse
Respondersa [372_TD$DIFF]

Refs

Diabetes Prevention
Program (N = 3234, 2.8
years)

Standard lifestyle
recommendations
+ metformin 850 mg BID

T2DM (FPG
�7.0 mmol/L or
PG�11.1 mmol/
L 2-h post 75-g
OGTT)

7.8 cases/100 person-
years (31% reduction
versus placebo)

Metformin
Better responders:
Higher BMI (�35 kg/m2): 53% reduction
Elevated FPG (6.1–6.9 mmol/L): 48%
reduction
Younger (24–44 years old): 44% reduction
Worse responders:
BMI 22–30 kg/m2: 3% reduction
FPG 5.3–6.1 mmol/L: 15% reduction
Older (�60 years old): 11% reduction

[18]

Intensive lifestylemodification
aiming at 7% weight loss
through energy restricted,
low-fat diet with �150 min of
moderate-intensity physical
activity

4.8 cases/100 person-
years (58% reduction vs.
placebo)

Intensive lifestyle
Better responders:
Lower PG 2-h post 75-g OGTT (7.8–
8.5 mmol/L): 76% reduction
Worse responders:
Higher PG 2-h post 75-g OGTT (9.6–
11.1 mmol/L): 50% reduction

[15]

Standard lifestyle
recommendations + placebo

11.0 cases/100 person-
years

Finnish Diabetes
Prevention Study
[N = 522, 3.2 years mean
(4 years median),
European population]

Lifestyle intervention aiming
at �5% weight loss (dietary
fat intake �30% of total
energy intake, fiber intake
�15 g/1000 kcal, moderate
exercise �30 min/day)
Control (general verbal and
written information about diet
and exercise)

T2DM (FPG
�7.8 mmol/L or
PG�11.1 mmol/
L 2-h post 75-g
OGTT) on two
consecutive
tests

Weight loss:
Lifestyle: 4.2 � 5.1 kg
Control: 0.8 � 3.7 kg
Diabetes risk reduction:
Lifestyle: 4.1/100-person
years (58% versus
control)
Control: 7.1/100-person
years

Better versus worse responders:
Older individuals achieved best risk reduction
from intervention [>61 y HR 0.36 (0.17–0.80),
51–61 y - HR 0.49 (0.26–0.93), <51 y - HR
0.77 (0.44–1.38)], all versus control,
Ptrend = 0.039, Pinteraction = 0.013)
Effect of intervention on diabetes risk
reduction not affected by baseline BMI, WC,
glycemic status (FPG, PG 2-h post 75-g
OGTT) and surrogates of insulin resistance
(fasting insulin or HOMA-IR)

[16,51]

Subcohort of Tübingen
Lifestyle Intervention
Program study (N = 120,
9 months)

Caloric restriction and
moderate exercise
intervention aimed at
achieving weight loss >5%
Open label

Normal glucose
tolerance

45% of participants
reverted to normal
glucose tolerance

Better responders:
Less complicated individuals with
prediabetes (lesser degree of insulin
resistance and b cell dysfunction with lower
liver lipid)
Worse responders:
Individuals with insulin secretory failure, worse
insulin resistance and nonalcoholic fatty liver
disease

[17]

a
[373_TD$DIFF]Risk reduction versus placebo or control is reported when [374_TD$DIFF]available.
Abbreviations: BID, twice daily; FPG, fasting plasma glucose; HR, hazard ratio; OGTT, oral glucose tolerance test; PG, plasma glucose; WC, waist [375_TD$DIFF][371_TD$DIFF]circumference.
In a subcohort of the Tübingen Lifestyle Intervention Program (TULIP), Stefan and colleagues [17]
reported that, in response to 9 months of energy restriction and moderate exercise intervention
aiming to achieve a5%weight loss, 55%of the cohort did not revert tonormal glucose tolerance
(NGT).Even in individualswhosebody fatmassdecreased themost, 40%didnot revert toNGT [17].
Better-controlled participants (i.e., participantswho had a lower degree ofb cell dysfunction, insulin
resistance,and fatty liver)weremore likely to revert toNGT (Table1) [17]. Inapost-hocanalysisof the
DPP, regression to NGT at 3 years with the lifestyle intervention was predominantly predicted by
achievement of a substantial (5%) weight loss after 6 months of the intervention [12].
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and/or HbA1c 5.7–6.4% (39–
47 mmol/mol).
Metformin treatment prevented 31% and 18% of diabetes cases relative to placebo on
average, at 3 and 15 years of treatment in the DPP and DPPOS cohorts, respectively [18].
Notably, large variability in diabetes risk reduction with metformin in the DPP has been
documented [18], with 21% of the adherent participants developing diabetes at 3 years [12].

Generally, adherent, younger participants, with higher BMI and FPG responded significantly
better to metformin compared with older individuals with lower BMI and FPG (Table 1) [18]. In a
recent post-hoc analysis of the DPP data, older age, smoking, history of polycystic ovarian
disease, family history of diabetes, higher FPG, and higher fasting triglycerides predicted
greater risk of progression to diabetes [12].

In summary, nonresponse to lifestyle and metformin interventions in prediabetes and diabetes
is common. Some phenotypic characteristics may explain poor response, but inconsistencies
exist in the literature and the phenotypic readouts that predict a better or worse response
remain unclear.

Diverse Phenotypes in Prediabetes and Diabetes: Insulin Resistance and b
Cell Dysfunction
Insulin resistance and b cell dysfunction are the key etiological determinants of prediabetes and
diabetes. Transition from NGT to IGT to overt T2DM is characterized by a concurrent deterio-
ration in whole-body insulin resistance and insulin secretion [19,20]. Retrospective analysis of
individuals developing T2DM over 18 years in the Whitehall II cohort study, revealed distinct
trajectories of whole-body insulin resistance and b cell function in individuals found to have
T2DM based on elevated FPG versus elevated 2-h PG during the 75-g OGTT [21]. Before
diagnosis, insulin sensitivity (insulin sensitivity index, ISI) declined more rapidly in patients
found to have diabetes based on the 2-h PG during the OGTT compared with those found to
have diabetes based on elevated FPG alone. By contrast, b cell function was substantially
reduced before diagnosis in the subgroups found to have diabetes with elevated FPG, but
remained relatively stable throughout follow-up in individuals found to have diabetes based on
isolated elevated 2-h PG during the OGTT [21]. Moreover, there is a range of phenotypic
variation in the degree and site of insulin resistance in prediabetes. Muscle and liver insulin
resistance are significantly associated with each other in cohorts of nondiabetic overweight and
obese individuals [22,23]. However, while some people with obesity present with insulin
resistance in both muscle and liver, others exhibit single-organ insulin resistance in muscle
or liver, while maintaining relative insulin sensitivity in the other organ [22].

These findings suggest that dysglycemia presents in diverse phenotypes. While diagnosing IFG
and IGT requires relatively simple blood tests (fasting and 2 h after oral glucose load), the clinical
efficacy of preventing diabetes or treating patients with diabetes effectively based on these
relatively crude measures requires further investigation. Detailed metabolic phenotyping with
measurement of the degree of whole-body insulin resistance (e.g., using the ISI) and insulin
secretion (e.g., using the insulinogenic index) with imaging techniques, and evaluating
abdominal fat distribution and deposition, are likely to more reliably identify the prediabetes
and diabetes phenotypes and are feasible in fairly large cohorts [1,22]. Nevertheless, direct
measurement of liver and muscle insulin resistance and b cell function involves long and
expensive protocols, which are only feasible in relatively small cohorts. Therefore, identifying the
underlying insulin resistance and b cell dysfunction phenotypes by sets of accessible markers
may be important for therapeutic decision making. For example, differential plasma lipidomic
signatures have been found in insulin-resistant and insulin-sensitive phenotypes of human
obesity [24,25]. Other reported circulating metabolomic markers of metabolic disease
4 Trends in Endocrinology & Metabolism, Month Year, Vol. xx, No. yy
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Figure 1. Towards Personalizing Management of Patients with Prediabetes and Type 2 Diabetes Mellitus.
Therapeutic decision making in a person with prediabetes or diabetes may be aided by supplementing the individual’s
personal and clinical data (e.g., ethnicity, family and personal history of disease, anthropometrics, and cardiovascular
disease markers) with ‘omic’ data (sets of surrogate readouts of the underlying prediabetes and diabetes phenotype), but
further study is required (‘Discovery’). Better identification of the prediabetes or diabetes phenotype may assist in
determining who is most at risk of developing type 2 diabetes mellitus and in whom lifestyle measures and medications
are likely to be most effective and safe (‘Translation’). Abbreviation: GI, gastrointestinal.
phenotypes include branched-chain and aromatic amino acids [26]. These findings suggest
that sets of circulating lipid species and amino acids supplement clinical markers to identify the
diverse phenotypes of prediabetes and diabetes, but further study is required (Figure 1).

Individualized Pharmacotherapy in Dysglycemia: Pathophysiology-Directed
Prevention and Treatment
Once those most at risk of developing diabetes are identified and their pathophysiology
ascertained, it is important to match each individual with a medication that is most likely to
be effective, and least likely to cause adverse effects. Knowledge of the metabolic phenotype is
likely to permit this, although still unproven. Glucose-lowering modalities target different suites
of the pathophysiological impairments underlying dysglycemia (Table 2). The potential benefits
of glucose-lowering medication in delaying progression from prediabetes to diabetes and the
risk–benefit implications in prediabetes have been comprehensively reviewed elsewhere [27].
Metformin is the oldest and most studied glucose-lowering medication, with documented
diversity in glycemic response in randomized clinical studies (Table 1). Given that metformin is
the first-line treatment in T2DM and is the recommended therapy for prevention of diabetes if
lifestyle recommendations fail, or are not adhered to [6], we limit our discussion to metformin as
a case in point. Notably, many of the studies concerning metformin treatment of dysglycemia
were performed in patients with T2DM, and the findings may not be generalized to individuals
with prediabetes. The liver and the gastrointestinal tract are thought to be the main targets
responsible for improvement in glycemia in patients treated with metformin (Table 2). Studies
utilizing hyperinsulinemic–euglycemic and hyperglycemic clamps with glucose isotopes sug-
gested that metformin acts to improve liver insulin resistance [28]. Insulin-mediated tissue
glucose disposal, predominantly by muscle, was not affected directly by metformin [29]. These
Trends in Endocrinology & Metabolism, Month Year, Vol. xx, No. yy 5
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Table 2. Pathophysiological Targets of Glucose-Lowering Medication and Lifestyle Interventionsa,b

Intervention Pathophysiological Targeta Refs

Metformin Liver insulin resistance
$ Muscle insulin resistance
$ b cell function

Gut microbial dysbiosis
# Body weight
# Appetite

[27–29,31]

Glucagon-like peptide 1 receptor
agonists

Liver insulin resistance
# Muscle insulin resistance (possibly secondary to weight loss)

b cell function
Body weight
Appetite

[27,52–54]

Dipeptidyl peptidase 4 inhibitors $ Liver insulin resistance
$ Muscle insulin resistance
"/$ b cell function
$ Body weight

[27]

Sodium-glucose co-transporter 2
inhibitors

c Liver insulin resistance
Muscle insulin resistance
b cell function
Body weight

[55,56]

Thiazolidinediones Liver insulin resistance
Muscle insulin resistance
b cell function
Body weight (fat)

[27]

Caloric restriction leading to�5%
weight loss

Liver insulin resistance
Muscle insulin resistance
b cell function
Body weight
Appetite

[13,57]

aFindings from clinical studies in individuals with prediabetes or T2DM.
bThick and thin arrows indicate the degree of the effect being substantial or mild, respectively; $, no change.
cWhile endogenous glucose production was enhanced with dapagliflozin, FPG decreased markedly [56].
findings imply that metformin is more likely to be effective in individuals who exhibit, and reverse,
liver insulin resistance, but will have to be tested directly in cohorts of individuals with varying
degrees of insulin resistance in liver andmuscle. An interesting novel concept suggests that the
glycemic effect of metformin depends on manipulation of the gastrointestinal tract microbiota
(Table 2). An increasing body of evidence suggests that the gut microbiota has an important
role in obesity, prediabetes, and diabetes, and alterations in gut microbial composition, termed
‘dysbiosis’, have been described in T2DM and prediabetes (Table 3). Interestingly, patients with
metformin-treated diabetes have a ‘healthier’ gut microbial composition compared with treat-
ment-naïve patients with diabetes [30], and changes in gut microbial composition with met-
formin are suggested to mediate the glycemic benefit of the medication [31,32]. It would be
interesting to test whether a poor glycemic response to metformin corresponds with the
presence of ‘metformin-resistant’ gastrointestinal microbial communities.

Genetic Variability in Glycemic Response to Metformin
In participants of GoDARTS, heritability explained 23–34% of the variation in the glycemic
response to metformin, depending on the glycemic endpoint (absolute, proportional, or
adjusted reduction in HbA1c, or achievement of HbA1c target) [33,34]. Metformin is hydrophilic
and requires organic cation transporters (OCT) in enterocytes to pass from the intestinal lumen
6 Trends in Endocrinology & Metabolism, Month Year, Vol. xx, No. yy
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Table 3. Documented Gut Microbial Composition Differences in Patients with either T2DM or Prediabetes versus Healthy Controls

Condition Documented Features of Microbial Dysbiosis Implications Refs

Prediabetes and T2DM Enrichment of bacterial species associated with increased
capacity for biosynthesis and transport of branched-chain
amino acids, including Prevotella copri and Bacteroides
vulgatus

Gut microbiota may partly contribute to increased
circulating branched-chain amino acids documented in
insulin resistance and T2DM, and may supplement clinical
and other indicators of diabetes risk

[50]

Depletion of butyratea-producing bacteria Akkermansia
muciniphilia, Faecalibacterium prausnitzii, Eubacterium
rectale, and Eubacterium eligens; the genera
Faecalibacterium and Roseburia; the phylum Firmicutes
and class Clostridia, as well as depletion of the class
Verrucomicrobiae, and Bacteroides and Bifidobacterium
genera

Depletion in butyrate-producing bacteria may be used as
potential early markers of prediabetes and T2DM
Butyrate-producing bacteria are likely to have a protective
role against insulin resistance and T2DM

[58–63]

T2DM Enrichment of opportunistic pathogens associated with
infections in organs outside of gastrointestinal tract,
including Bacteroides caccae, Clostridium hathewayi,
Clostridium ramosum, Clostridium symbiosum,
Eggerthella lenta, and Escherichia coli

Opportunistic pathogens may be responsible for
increased oxidative stress activity in gastrointestinal tract
and may increase susceptibility to other diseases in
patients with T2DM

[59]

aButyrate is a short-chain fatty acid.
to the blood and into the hepatocytes [34]. Coding missense variants in genes encoding OCT1
are purported to explain metformin treatment failure. However, studies in patients with coding
missense variants of the OCT1 gene were inconclusive [35–38]. Interestingly, however, met-
formin intolerance was more likely to occur in patients with T2DM and an increasing number
of reduced-function OCT1 alleles in the GoDARTS [39]. Large cohort genome-wide associ-
ation studies (GWAS) highlighted gene variants associated with a favorable glycemic
response to metformin treatment. Specifically, common variants near the ataxia telangiectasia
mutated (ATM) gene were associated with a better glycemic response in the GoDARTS [40],
and in a meta-analysis including three cohorts of patients with T2DM [41]. However, unex-
pectedly, the same gene variant was not associated with a more effective prevention of
diabetes in the DPP [42]. A gene variant in the gene encoding the hepatic glucose transporter
(GLUT)2 has additionally been described and associated with a favorable glycemic response to
metformin in a meta-analysis in the Metformin Genetics (MetGen) Consortium, but again, there
was no effect of this gene variant on prevention of diabetes [34,43]. In summary, it is likely that
glycemic response to metformin and metformin intolerance could be predicted, at least in part,
by the individual’s genotype, but further studies on larger cohorts, including participants from
diverse ethnicities and individuals with prediabetes, are required before genotype-guided
metformin treatment may be implemented.

Personalized Nutrition in the Treatment of Dysglycemia
Studies using nutrigenetics have emerged over the past decade [44–47]. In addition to a
standard weight loss diet, Arkadianos and colleagues provided personalized recommenda-
tions tailored to polymorphisms in 19 genes involved in metabolism and inflammation to a small
cohort (N = 93) of individuals with a history of unsuccessful weight loss attempts [46]. The
authors reported that weight loss was similar in the nutrigenetic-tailored and the standard diet
groups for up to 300 days, but maintaining the reduced weight long term was significantly
enhanced in the nutrigenetic-guided intervention. Reassuringly, in a subcohort of individuals
with prediabetes, FPG was more effectively reduced in the nutrigenetic-guided diet group [46].
By contrast, no effect on weight loss magnitude or insulin secretion was reported recently in a
relatively large cohort of overweight and obese individuals (N = 609) with variants in three genes
relevant to fat and carbohydrate metabolism, randomized to low-fat or low-carbohydrate
weight loss diets [47]. While these studies led to somewhat disappointing outcomes,
Trends in Endocrinology & Metabolism, Month Year, Vol. xx, No. yy 7
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Outstanding Questions
Which peripheral metabolites will aid in
identifying the diverse phenotypes of
prediabetes and diabetes?

Is resolving gut dysbiosis a prerequisite
to a better glycemic response to met-
formin in prediabetes and diabetes?

Is personalized medicine possible in
patients with prediabetes and those
with diabetes?
nutrigenetic-guided interventions on substantially larger cohorts with long-term follow-up in
patients with prediabetes and those with diabetes are necessary to fully elucidate their potential
effect on health outcomes.

Gut microbial dysbiosis is thought to explain many of the comorbidities of obesity (Table 3).
While there has been a lack of consensus concerning the specific alterations in the human
gastrointestinal microbial composition in metabolic disease, the composition of the human
gastrointestinal microbiota is fairly stable over many years and, notably, changes in BMI
explained a large proportion of the variation in the stability of fecal microbiota strains [48].
Circulating metabolites, including amino acids, short-chain fatty acids (SCFA), and vitamins
originating from the microbial community inhabiting the gastrointestinal tract, serve as active
messengers, and may have a profound effect on the immune system [49] and on insulin
sensitivity [50]. These may serve as readouts of gut microbial makeup, but further study is
required. In support of a gut microbiota-guided intervention, a personalized diet guided by
machine-learning algorithms developed to predict low postprandial glycemic response to
meals based on the individual’s phenotype (e.g., anthropometrics, HbA1c, and serum lipids),
diet, physical activity habits, and gut microbial features, improved postprandial glycemia within
a single week in subjects with prediabetes [45]. The rapid advancement in gut microbial-
sequencing techniques and machine learning in recent years paves the way for personalized
interventions in prediabetes and diabetes; however, longer term studies with glycemic control
and diabetes prevention endpoints are required.

Concluding Remarks and Future Perspectives
Prediabetes is a heterogeneous condition, with diverse phenotypes, genotypes, and gut
microbial characteristics described. Advanced ‘omic’ technologies may offer viable readouts
of the diversity of prediabetes and diabetes in well-designed studies (Figure 1). Recent
successful attempts to improve glycemia by personalizing nutrition based on algorithms
incorporating the individual’s phenotypic and gut microbial features are encouraging. Future
research should focus on revealing the role of gut microbial alterations in successful glycemic
response to metformin, on revealing the genomic, gut microbiomic, and serum metabolite
signatures of the diverse phenotypes of prediabetes and diabetes, and on predictors of
glycemic response to insulin-sensitizing modalities in large cohorts of individuals at risk of
developing T2DM (see Outstanding Questions).
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