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Abstract 25 

Exercise stimulates a wide array of biological processes, but the mechanisms involved are 26 

incompletely understood. Many previous studies have adopted transcriptomic analyses of 27 

skeletal muscle to address particular research questions, a process that ultimately results in the 28 

collection of large amounts of publicly available data that has not been fully integrated or 29 

interrogated. To maximize the use of these available transcriptomic exercise data sets, we 30 

have downloaded and re-analyzed them and formulated the data into a searchable online tool, 31 

geneXX. GeneXX is highly intuitive, free, and provides immediate information regarding the 32 

response of a transcript of interest to exercise in skeletal muscle. To demonstrate it’s utility, 33 

we carried out a meta-analysis on the included data sets and show transcript changes in 34 

skeletal muscle that persist regardless of sex, exercise mode and duration, some of which 35 

have had minimal attention in the context of exercise. We also demonstrate how geneXX can 36 

be used to formulate novel hypotheses on the complex effects of exercise, using preliminary 37 

data already generated. This resource represents a valuable tool for researchers with interests 38 

in human skeletal muscle adaptation to exercise. 39 

  40 
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Introduction 41 

Physical exercise is typically referred to as an essential aspect of general health and well-42 

being and the capacity to perform exercise is the single most powerful predictor of mortality 43 

(22, 31). It is associated with a reduced risk of a number of chronic conditions including 44 

cardiovascular disease, cancer, type 2 diabetes, depression, sarcopenia and osteoporosis (8, 9, 45 

15, 21, 39, 45, 50, 54). The diverse effects of exercise on human function attracts, therefore, 46 

the interest of researchers in a wide variety of disciplines. Despite this, the complex 47 

underlying mechanisms mediating the effects of exercise are incompletely understood. Some 48 

effects have been attributed to increased energy consumption and cardiorespiratory fitness, 49 

reduced adiposity and circulating lipids, metabolic and immunological adaptations and the 50 

maintenance of skeletal muscle mass. Pertinently, since skeletal muscle undergoes significant 51 

metabolic perturbations during repeated contraction, regular physical activity induces 52 

extensive molecular adaptations, often leading to improved muscle function (13). Further, 53 

there is mounting evidence that during exercise, skeletal muscle can participate in tissue 54 

cross-talk via proteins classically secreted or enclosed within extracellular vesicles (51, 52) 55 

 56 

There are several challenges to fully understanding signaling pathways altered in skeletal 57 

muscle in response to repeated activity. In particular, conservative estimates suggest there are 58 

over 10,000 gene products abundantly expressed in skeletal muscle across several orders of 59 

magnitude (10). In an attempt to make sense of this level of complexity, transcriptomic 60 

approaches such as Microarrays and RNA-seq have some clear advantages. For example, one 61 

can derive accurate quantitative information of a large number of transcripts in an unbiased 62 

manner, inferring information that might not have been gleaned from specific hypothesis 63 

driven experiments. To identify molecular pathways or genes involved in exercise adaptation, 64 

several research groups have analyzed the skeletal muscle transcriptome of human subjects 65 

undergoing an acute exercise bout with or without the implementation of a chronic exercise 66 

training intervention. This has given rise to large amounts of data that has been used to 67 

analyze exercise related gene expression patterns  (32), to compare these patterns with gene 68 

Downloaded from www.physiology.org/journal/physiolgenomics by ${individualUser.givenNames} ${individualUser.surname} (129.094.226.091) on March 27, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.



expression in ageing (29) or muscle disease (46), or to identify exercise responsive myokines 69 

(34). However, one disadvantage of using transcriptomic assessments of skeletal muscle in 70 

many research contexts is that it is often unpractical or unfeasible to collect data on a large 71 

number of participants. This can limit statistical power, which is problematic given the known 72 

heterogeneity of human responses to exercise. 73 

 74 

Meta-analyses of data sets are useful in order to strengthen the significance of gene 75 

expression profiles or effects that might go unacknowledged in single experiments, identify 76 

biomarkers, or simply help formulate new research hypotheses (1, 5, 37, 40). Mindful of the 77 

considerable data that is often under utilized in these contexts, we identified and downloaded 78 

10 publically available transcriptomic data sets from skeletal muscle of healthy human 79 

subjects undergoing acute endurance or resistance exercise. We then re-analyzed the data and 80 

made them available in an intuitive to use and searchable online tool, geneXX. We discuss 81 

here, how data extracted can be analyzed in a way to create novel hypotheses on aspects of 82 

gene responses to exercise on data already generated. 83 

 84 

Methods 85 

Data collection and review 86 

Data sets were selected and downloaded from Gene Expression Omnibus (GEO NCBI) 87 

database (12) and are summarized in Table 1. Criteria for inclusion were that the data were 88 

collected on healthy participants completing an acute bout of endurance or resistance 89 

exercise, before or at the end of a chronic training regime, as defined by the conductors of 90 

each study. Included are both cross-sectional (exercise versus sedentary) or within subjects 91 

(pre versus post exercise) comparisons analyzing biopsies of the vastus lateralis or biceps 92 

brachii  (GSE24235 only) and in both male and female participants of all ages. Transcriptome 93 

data sets were either derived using Microarray (Illumina, Affymetrix or Agilent) or RNA-seq 94 

technology (Illumina HiSeq 2000). Data sets were excluded when they were processed before 95 

2010 to keep all data on a similar level of microarray and RNA-seq technology.  Further, data 96 
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sets were also excluded when after normalizing the data, quality control criteria were not met 97 

(e.g. comparing median expression of samples using boxplots). Finally, data sets were 98 

excluded when there were no differentially expressed genes in our analysis pipeline (most 99 

often due to low number of study participants). 100 

 101 

Individual data set analysis 102 

Following download of the raw data of each set, independent analysis was performed in R 103 

(Version 3.4.0) (44) using packages from the Bioconductor consortium (16). RMA (Robust 104 

Multichip Average) expression measure of microarray data was computed using the rma 105 

function (18), which applies quantile normalization. Data were then analyzed via limma (38) 106 

using linear models for the assessment of differential expression, expressed as log2-fold 107 

change. For RNA-seq data (GSE60590), fastq files were downloaded from the European 108 

Nucleotide Archive (ENA), developed and maintained at the EMBL-EBI. Quality control and 109 

subsequent trimming was carried out using FastQC (Version 0.11.5) and Trim Galore! 110 

(Version 0.4.0), respectively. Alignment was performed with STAR aligner (Version 2.5.1) 111 

(11) using Homo_sapiens.GRCh38.dna.primary_assembly.fa as reference genome. Transcript 112 

quantification was performed using RSEM(Version 1.2.26) (23) and only exon alignments 113 

were included. Counts were further analyzed with DESeq2 (26) for differential gene 114 

expression between groups (exercised versus sedentary) by applying a generalized linear 115 

model for which counts are modeled using a negative binomial distribution with fitted mean 116 

and a gene-specific dispersion parameter. In all instances, differences in gene expression were 117 

corrected for multiple hypotheses testing via Benjamini Hochberg correction (3). Each 118 

independent analysis generated a result table, detailing gene ID, official gene symbol, type of 119 

exercise (resistance or endurance), log fold change/difference between exercise and rest 120 

(logFC), whether the bout was completed with or without a preceding training regime 121 

(“untrained” or “post training”), adjusted p value (q value), sex of participants and the time in 122 

minutes of tissue sampling after completion of the exercise bout (final one in instances when 123 

a training regime was implemented).  124 
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 125 

Shiny web app: geneXX 126 

To enable visualization of all data embedded in the new results tables, on a single gene basis, 127 

a Shiny web app (https://shiny.rstudio.com/) was created. Data are expressed as log fold 128 

change with a positive value indicating greater transcript abundance consequential of exercise 129 

(q<0.05). Rows with missing values for official gene symbols and duplicated entries for genes 130 

within the same result table were excluded, keeping the entry with the lowest q value where 131 

necessary. Data are plotted via ggplot2 (14). GeneXX also displays the frequency of 132 

publication hits, herein referred to as Pubmed score, for each selected gene by querying the 133 

name paired with  “AND exercise" in the pubmed search engine, as well as retrieving the 134 

NCBI summary for the gene using the R package rentrez 135 

(https://www.rdocumentation.org/packages/rentrez/versions/1.1.0.). 136 

 137 

Meta analysis 138 

Individual adjusted p values from each result table were combined by applying the 139 

combine.test function from the survcomp package (41) using the Z-transform test (53). 140 

Combined p values were again corrected for multiple testing by applying Benjamini 141 

Hochberg correction (3) (q<0.05). To infer additional significance for exercise regulated 142 

genes, the frequency at which the transcript is measured as significantly different across all 143 

data sets was measured. To account for the heterogeneous nature of the responses captured 144 

within the data sets, an arbitrary, conservative cut-off of 8/19 independent significant 145 

occurrences was used to determine overall significance. Significant genes were also cross-146 

referenced against Pubmed score using geneXX (Supplementary Table 1). 147 

 148 

Gene enrichment analyses 149 

Enrichment analyses of significant exercise responsive genes was carried out in cluster-150 

profiler (55) and ToppCluster (20). The enrich function of clusterProfiler assesses the extent 151 

to which a number of significant genes that associate with a gene ontology (GO) is greater 152 
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than expected. ToppCluster was used to interrogate the DisGeNET database (33) basing 153 

computation of enrichments on the hypergeometric distribution test. P values were adjusted 154 

via Benjamini Hochberg correction (q<0.05). The network of resulting terms was manually 155 

curated to reduce repetitive terms and manually arranged in Cytoscape (Version 3.5.1) (42). 156 

  157 
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Results and Discussion 158 

geneXX: An exercise gene exploration tool 159 

To facilitate exploration of skeletal muscle gene responses to exercise, we have developed a 160 

new web-based resource: geneXX. The online tool can be accessed freely at 161 

http://garvan.org.au/genexx and can provide a wealth of immediate information on the 162 

response to exercise of a specific gene. In Figure 1, we showcase the individual functions of 163 

the tool. Users can enter any human gene of interest, (e.g. PPARGC1A) and immediately 164 

observe log fold change values, adjusted p values (q value) and the time point post exercise at 165 

which the transcript was measured, with color and shape coded symbols to indicate statistical 166 

significance and sex of participants, respectively. Also included are Pubmed scores and a 167 

short summary about the gene of interest from the NCBI gene site. The main feature of 168 

geneXX is that it provides an accessible and instant insight into the response of a particular 169 

gene of interest to exercise in human skeletal muscle. This is made possible completely 170 

independently of a search of the literature and significantly, allows analysis of genes not 171 

necessarily reported by the authors of the original publications. We offer this resource for 172 

anyone interested in skeletal muscle responses to exercise and encourage exploration of these 173 

gene changes from any conceivable research discipline. This new tool may be particularly 174 

useful, for example, when attempting to infer some translational significance in humans from 175 

genes initially identified in non-human models. For example, Mansueto et al recently 176 

identified TFEB as a predominant regulator of mitochondrial biogenesis and glucose 177 

homeostasis, exclusively in mice (27). Similarly, a selection of newly characterized exercise-178 

responsive gene products have been described in transgenic mouse models, such as METRNL 179 

in the case of PGC-1α 4 transgenic mice (35) and FGF21 examined in models of muscle 180 

specific Akt1 overexpression (19). As shown in Figure 2, geneXX provides a rapid first 181 

enquiry into how these genes have responded to acute exercise bouts in humans, stratified, 182 

where possible, by exercise type, training status and sex of the participants and time point 183 

after the exercise bout. Accession numbers of the original data for each analysis is also shown 184 

for further, independent enquiry. Importantly, the data visualized are by no means a complete 185 
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characterization of each gene, but rather a convenient resource to summarize data that has 186 

already been collected, but perhaps not reported in the literature. Importantly, new data sets 187 

on skeletal muscle responses to exercise will be added to the geneXX database as and when 188 

available, facilitating a first point of enquiry for any gene of interest in the context of 189 

exercise. 190 

 191 

Meta-analysis of geneXX data highlights exercise responsive genes with little previous 192 

connection to exercise 193 

Gene responses to exercise can be highly variable and heterogeneous. By combining several 194 

data sets involving a wide range of exercise types, durations and different participants one can 195 

attempt to identify genes that robustly respond to exercise in a hypothesis free manner. In 196 

total we included 19 result tables comparing exercise with rest (Table 1) in the meta-analysis, 197 

and 106 genes were persistently shown to be regulated by exercise (Figure 3, Supplementary 198 

Table 1). By way of proof of principle for this approach, gene ontology enrichment analysis 199 

of these genes identified several biological processes known to be stimulated by exercise, 200 

such as muscle tissue development, metabolic control and kinase signaling (Figure 4). 201 

Furthermore, genes well characterized in the context of skeletal muscle responses to exercise, 202 

such as PPARGC1A (32) or VEGFA (43) are featured in the top 15 responsive genes (Table 203 

2) and scored highly in the Pubmed score. Interestingly, a selection of genes, such as IFRD1, 204 

SDC4, HEY1 and VGLL2 have had minimal attention in the published literature in the 205 

context of exercise, despite the high frequency in exercise transcriptomic data sets in which 206 

they are shown to be differentially regulated (Table 2). We envisage this information as being 207 

one example of how geneXX is particularly useful in the initiation of hypothesis driven 208 

research. For example, IFRD1 encodes the protein interferon related development regulator 1 209 

and has been shown to be involved in the process of muscle cell differentiation. Gain- and 210 

loss-of function experiments show that up-regulation of the mouse homologue of IFRD1, 211 

PC4, significantly amplified myogenesis in adult muscle after injury (30). Taken together, our 212 

meta-analysis results may indicate that IFRD1 might therefore play a role in muscle 213 
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hypertrophy after exercise, which, to our knowledge, has not been reported as such before. 214 

Similarly, SDC4, which encodes the protein syndecan-4, has had little attention in the context 215 

of exercise. Interestingly, the syndecan heparan sulphate proteoglycans, through their 216 

interaction with regulators of endosomal sorting, are thought to play a role in the complex 217 

biogenesis of exosomes (2). Since we recently demonstrated that exercise stimulates the 218 

release into circulation of small vesicles such as exosomes, some of which were liberated 219 

from the exercising limb (52), whether SDC4 might contribute to this process in skeletal 220 

muscle warrants further investigation. By compiling published data sets and re-analyzing 221 

them with a rigorous meta-analysis we are, therefore, able to create novel hypotheses on 222 

adaptation to exercise in the absence of our own preliminary data collection.  223 

 224 

Exploration of exercise responsive genes potentially mediating resistance to disease.   225 

Regular exercise is known to affect both the prevalence and treatment of non-communicable 226 

diseases. Since we identified genes robustly responding to exercise, we carried out 227 

enrichment analyses on these genes against the DisGeNET database of conditions and 228 

phenotypes related to medical genetics (Figure 5, Supplementary Table 2). While these 229 

analyses by no means provide proof of causation, we are able to identify a selection of genes 230 

responding to exercise that play a role in the etiology of specific phenotypes. For example, we 231 

observed significant enrichment in exercise responsive genes that are also associated with 232 

type 2 diabetes, listed and highlighted in Supplementary Table 2. In reviewing these genes 233 

using geneXX, we observed several genes, CLIP1, PCNT, RRAD, SIK2 and USP2 that 234 

present with a Pubmed score of 0. Therefore, we identify genes that are annotated in the 235 

context of diabetes and are exercise responsive, but are not widely reported as such. Using 236 

this approach, one can therefore create a first line of enquiry regarding the effects of exercise 237 

on the etiology of a disease phenotype on data already collected. 238 

 239 

Caveats to the geneXX analysis 240 

We introduce here geneXX, a web tool offering a first enquiry exploration of gene responses 241 
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to exercise in skeletal muscle. So far this tool includes 19 different comparisons and stratified 242 

by exercise type, gender, training status and time point of biopsy after exercise. Clearly, the 243 

data presented by our new tool is reliant on relevant previous data and robust and efficient 244 

data collection methods therein. We chose to perform a meta-analysis of the transcriptomic 245 

data based on combining p values rather than directly merging the raw data as the latter is 246 

usually restricted to selecting studies from the same array platform and even then precautions 247 

have to be taken (as discussed in (47)). The most common method for combining p values in 248 

meta-analyses is to apply Fisher’s method. Since it has been demonstrated that the Z method 249 

is superior in terms of power and precision (53), we chose the latter for our meta-analysis. 250 

Significantly, as RNA-seq analysis technologies become more accessible, merging and 251 

normalizing the raw count data would be an attractive approach, offering greater statistical 252 

power. As more RNA-seq data sets on skeletal muscle responses to exercise become 253 

available, it is possible these comparisons can be added to geneXX. We encourage 254 

researchers with all appropriate transcriptome datasets to make them available for inclusion, 255 

when suitable. 256 

 257 

The meta-analysis as we performed it, is unquestionably affected by the heterogeneity of the 258 

data. For example, the utilized studies frequently vary in their timing of biopsy, and a 259 

consistent temporal analysis of gene expression responses to exercise would improve 260 

confidence in the data. However, while studies that try to identify time-course dependent 261 

changes in gene expression (32) might provide a greater transcriptomic coverage, our 262 

approach of combining all data, inclusive of different time points, exercise types and 263 

participants allows us to pick up robust changes in gene expression instead of false positives. 264 

Significantly, many of these gene changes persist across many variables, yet have had little 265 

attention in the context of skeletal muscle adaptation to exercise.  266 

 267 

Batch effects are unavoidable when working, as here, with different data sets generated on 268 

different high-throughput technologies. Performing a meta-analysis will not entirely 269 
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circumvent these (4) but will result in features with lower statistical power or with small 270 

effect size being lost. However, we reiterate that by performing a conservative analysis we 271 

aimed to retrieve a shorter list of genes affected by exercise that contains little false positives 272 

rather identify many genes affected at the expense of a high false positive rate. 273 

 274 

In conclusion, we have downloaded and independently analyzed a series of transcriptomic 275 

data sets measuring mRNA changes in skeletal muscle with exercise. In combining these 276 

analyses, we introduce geneXX, a freely available web tool, which allows one to visualize 277 

these data, stratified by exercise type, training status, sex and time point post exercise and to 278 

gauge the extent of previous focused analyses on any gene of interest. We also show how 279 

these data can be analyzed to formulate novel hypotheses on the involvement of under 280 

appreciated genes in skeletal muscle responses to exercise. GeneXX will be frequently 281 

updated and we encourage its use in exercise related research disciplines. 282 

  283 
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Figure Legends 479 

Figure 1. geneXX displaying logFC ratios for PPARGC1A expression comparing exercise 480 

versus sedentary over all included exercise data-sets. (1) Gene name is entered into the tool 481 

and the panel (2) indicates the number of data sets that were analyzed for the selected gene 482 

and in how many data sets that it was observed as significantly different. Also viewable is the 483 

pubmed score (3) and an NCBI summary of the gene. Data on the gene response to exercise is 484 

visualized in the graph panels (4), displaying the log fold change value (y-axis) from each 485 

result table, stratified for exercise type, whether the bout was preceded by a training regime 486 

and by time point post exercise (x-axis). The data points are shape coded for sex and color-487 

coded for significance q<0.05 (dark purple) and q > 0.05 (light purple). Below the graph 488 

panels, (5) a summary table of the visualized data is shown (limited, here, to 3 data sets for 489 

brevity), including accession numbers and methods details from which the data were derived. 490 

This table can be downloaded in CSV format for further, independent analysis or 491 

visualization, if required. Missing data points from the number of data sets sampled indicates 492 

that expression values failed quality control for the analysis. 493 

 494 

Figure 2. Using geneXX to investigate individual genes of interest. Skeletal muscle gene 495 

expression levels of (a) TFEB, (b) METRNL, and (c) FGF21) after exercise in humans. The 496 

graph displays the log fold change value (y-axis) from each result table (19 in total), stratified 497 

for exercise type and involvement of training regime, and for the time point the muscle tissue 498 

was been taken following exercise (x-axis). The data points are shape coded for sex and color 499 

coded for q<0.05 (dark purple) and q > 0.05 (light purple). 500 

 501 

Figure 3. Volcano plot for genes affected by exercise following meta-analysis. Green dots 502 

indicate genes that were significant in the initial, individual, comparison of exercise versus 503 

rest. In red, 106 genes that were significant after performing a meta-analysis over all result 504 

tables using the Z-method. 505 

 506 
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Figure 4: Enriched Gene Ontology (GO) Biological Pathway terms for exercise responsive 507 

genes. The dot size represents the number of genes from the result list after meta-analysis that 508 

could be mapped to each particular pathway. Also represented are these data expressed as a 509 

ratio versus the number of genes in each GO term (x axis). The color of the dot indicates the 510 

significance level (q<0.05). All terms presented are significantly enriched in the exercise 511 

responsive gene dataset 512 

 513 

Figure 5. Enrichment of disease states within genes affected by exercise. Significant 514 

enrichment of disease annotations when analyzing 106 exercise responsive genes against the 515 

DisGeNET database (q<0.05)  516 

 517 

Table 1. Included data sets with corresponding GEO accession number and experimental 518 

conditions. The separation of accession numbers in a, b, c has been made after dividing the 519 

data according to experimental conditions. "Time point (min)" refers to the time point of 520 

muscle biopsy after the exercise bout (last bout in cases of an included exercise regime). N is 521 

the number of study participants in each group of the comparison exercise vs rest. 522 

 523 

Table 2. Top 15 exercise responsive genes identified by the meta-analysis, including 524 

combined p value (Z-method), q value, significant counts over all result tables and Pubmed 525 

score.  526 

 527 
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Table 1 
 
GEO# Type of 

exercise 

Muscle 

sampled 

Training 

regime* 

Sex  Age Comparison Time point 

(min)  

N  Platform Ref 

GSE23697  Unilateral 

resistance 

(eccentric) 

Vastus 

Lateralis 

untrained  male  20.9 ± 

0.5 

Exercised vs. 

non-exercised 

leg 

180  35  Agilent  (17) 

 

GSE24235a  Unilateral 

resistance  

Biceps 

Brachii 

post-training female  22.7± 

0.8 

Exercised vs. 

non-exercised 

leg 

240 4  Affymetrix  (25) 

GSE24235b  Resistance  Biceps 

Brachii 

post-training  male  24.7±0.

8 

Exercised vs. 

non-exercised 

leg 

1440  3  Affymetrix  (25) 

GSE27536  No acute 

bout  

Vastus 

Lateralis 

post-training  male  65 Post vs. pre 8 

weeks training 

(at rest) 

-  12 Affymetrix (48) 

GSE28392a  Resistance  Vastus 

Lateralis 

untrained  female  Young 

(23 ± 2) 

or old 

(85 ± 1) 

Post vs pre 

exercise 

240 14 Affymetrix  (36) 

GSE28392b  Resistance  Vastus 

Lateralis 

post-training female  Young 

(23 ± 2) 

or old 

(85 ± 1 

Post vs pre 

exercise 

240  14  Affymetrix  (36) 

GSE28422a  Resistance  Vastus 

Lateralis 

post-training  female  Young 

(24 ± 1) 

or old 

(84 ± 1) 

Post vs pre 

exercise 

240  14  Affymetrix  (36) 

GSE28422b  Resistance  Vastus 

Lateralis 

untrained female Young 

(24 ± 1) 

or old 

(84 ± 1) 

Post vs pre 

exercise 

240 14 Affymetrix (36) 
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GSE28422c  Resistance  Vastus 

Lateralis 

post-training male Young 

(24 ± 1) 

or old 

(84 ± 1) 

Post vs pre 

exercise 

240 14 Affymetrix  (36) 

GSE28422d Resistance Vastus 

Lateralis 

untrained male Young 

(24 ± 1) 

or old 

(84 ± 1) 

Post vs pre 

exercise 

240 14 Affymetrix (36) 

GSE41769 Unilateral 

endurance 

Vastus 

Lateralis 

untrained male 52±5  

 

Post vs Pre 

exercised leg  

0 9 Affymetrix (6),(5) 

GSE43219 endurance  Vastus 

Lateralis 

untrained  both 33±2 Post vs pre 

exercise 

30  14  Agilent  (28) 

GSE43856  endurance  Vastus 

Lateralis 

post-training  male 25±4 Post vs pre 

exercise 

180  8  Illumina  (32) 

GSE59088a  resistance Vastus 

Lateralis 

post-training  male  23±1 Post acute 

exercise vs pre 

10 wk exercise 

training 

150  6  Affymetrix  (49) 

GSE59088b  resistance  Vastus 

Lateralis 

post-training  male  23±1 Post acute 

exercise vs pre 

10 wk exercise 

training 

300  6  Affymetrix  (49) 

GSE59088c  endurance  Vastus 

Lateralis 

post-training  male  23±1 Post acute 

exercise vs pre 

10 wk exercise 

training 

300  6  Affymetrix  (49) 

GSE59088d  endurance  Vastus 

Lateralis 

post-training  male  23±1 Post acute 

exercise vs pre 

10 wk exercise 

training 

150  6  Affymetrix  (49) 

GSE60590a  Unilateral 

endurance  

Vastus 

Lateralis 

post-training  female  26±1 Exercised vs. 

non-exercised 

1440  11  RNA-seq  (24) 
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leg 

GSE60590b  Unilateral 

endurance  

Vastus 

Lateralis 

post-training male 27.5±1 Exercised vs. 

non-exercised 

leg 

1440 12 RNA-seq (24) 

 
*Post-training: An acute exercise bout followed a period of exercise training.  
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 Table 2 

Gene symbol comb.p.value adj.p.value count Pubmed 

NR4A3 4.15E-152 2.93E-148 16 13 

NR4A1 3.17E-41 2.24E-37 14 12 

GABARAPL1 1.87E-43 1.32E-39 14 9 

MAFF 8.08E-42 5.69E-38 14 3 

VGLL2 9.88E-53 6.96E-49 14 2 

PPARGC1A 3.16E-48 2.22E-44 13 487 

VEGFA 1.15E-33 8.13E-30 13 113 

ABRA 8.37E-55 5.90E-51 13 9 

PMP22 1.80E-13 1.27E-09 13 6 

PRKAG2 4.73E-50 3.33E-46 13 6 

SDC4 2.33E-48 1.64E-44 13 0 

SLC22A5 4.67E-13 3.29E-09 12 6 

IFRD1 4.50E-40 3.17E-36 12 3 

HEY1 1.67E-19 1.18E-15 12 1 

IRS2 1.55E-28 1.09E-24 11 29 
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