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A B S T R A C T

GLUT4 is unique among specialized glucose transporters in being exclusively expressed in muscle and adipo-
cytes. In the absence of insulin the distribution of GLUT4 is preferentially intracellular and insulin stimulation
results in the movement of GLUT4 containing vesicles to the plasma membrane. This process is responsible for
the insulin stimulation of glucose uptake in muscle and fat. While signalling pathways triggering the translo-
cation of GLUT4 are well understood, the mechanisms regulating the intracellular retention of GLUT4 are less
well understood. Here we report a role for β-catenin in this process. In 3T3-L1 adipocytes in which β-catenin is
depleted, the levels of GLUT4 at and near the plasma membrane rise in unstimulated cells while the subsequent
increase in GLUT4 at the plasma membrane upon insulin stimulation is reduced. Small molecule approaches to
acutely activate or inhibit β-catenin give results that support the results obtained with siRNA and these changes
are accompanied by matching changes in glucose transport into these cells. Together these results indicate that
β-catenin is a previously unrecognized regulator of the mechanisms that control the insulin sensitive pool of
GLUT4 transporters inside these adipocyte cells.

1. Introduction

The GLUT4 glucose transporter is encoded by the SLC2A4 gene and
expressed primarily in muscle and adipose tissue [1]. In the absence of
insulin a large proportion of GLUT4 is retained intracellularly in GLUT4
storage vesicles. After insulin stimulation these vesicles are then rapidly
recruited to, and fuse with, the plasma membrane causing an increase
in plasma membrane GLUT4 levels and a consequent increase in glu-
cose transport [2–4]. The last two decades have seen great progress in
the identification and characterisation of the trafficking mechanisms
that contribute to the movement of GLUT4 vesicles in cells and their
fusion with the plasma membrane in response to insulin [2–4]. It is
clear that activation of class-Ia PI 3-kinase by insulin [5,6], the con-
sequent activation of Akt2 [7,8] and the phosphorylation of TBC1D4
gene product AS160 by Akt [9] are all required for the triggering steps.
There is also clear evidence that the actin cytoskeleton plays an im-
portant role in retaining GLUT4 vesicles inside the cell and that re-
modelling of cortical actin is required for proper release of GLUT4 ve-
sicles to the plasma membrane after insulin stimulation [10–14].

Similar mechanisms are also involved in the retention of insulin se-
cretory granules within cells [15] and we have recently reported that β-
catenin plays an important role in these processes [16,17]. β-catenin
also plays an important role in regulating trafficking of synaptic vesicles
[18]. However, the role of β-catenin in GLUT4 vesicle trafficking has
not yet been investigated. Adipocytes are the best tissue for such studies
since insulin's effect on GLUT4 trafficking is greatest in this tissue
[19–21]. Investigations of the functional role of β-catenin in adipocytes
has largely been restricted to the role it plays in inhibiting the differ-
entiation of adipocytes from precursor cells [22]. Nonetheless, fully
differentiated 3T3-L1 adipocytes still express β-catenin [23,24]. While
chronic activation of Wnt signalling, resulting in increased levels of β-
catenin in these cells, is associated with a de-differentiation of mature
adipocytes [23], the effects of reducing β-catenin in these cells has not
been reported. Here we have used several approaches to manipulate β-
catenin function in differentiated 3T3-L1 adipocytes and our results
indicate that β-catenin can play a previously unrecognized role in
regulating the mechanisms that control the insulin sensitive pool of
GLUT4 transporters inside adipocytes.
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2. Materials and methods

2.1. Cell culture

3T3-L1 fibroblasts were purchased from American Type culture
collection and used within 1–12 passages. Initially 3T3-L1 cells were
grown in DMEM high glucose medium containing 10% newborn calf
serum (NCS) and 100 U/ml penicillin, 100 μg/ml streptomycin (all
Gibco, Life Technologies). To induce differentiation, at 2 days post
confluence culture media was changed to differentiation medium con-
taining 100 nM insulin, 1 µM dexamethasone, 0.5 mM iso-
butylmethylxanthine (IBMX) and 10 nM troglitazone (all from Sigma-
Aldrich) in DMEM with 10% fetal bovine serum (FBS;Moregate Biotech,
Australia). After 3 days of induction, differentiation medium was re-
placed by DMEM/FBS with 100 nM insulin. After another 2 days,
medium was changed to normal DMEM medium. Plates with more than
95% differentiated adipocytes were used to perform experiments within
6–8 days after initiation of adipocyte differentiation.

2.2. 3T3-L1 adipocytes transfection

Adipocytes were transfected with negative control siRNA (Stealth™
RNAi siRNA Negative Control, Med GC) or siRNA specific for β-catenin
at a final concentration of 30 nM using reverse transfection method as
previously described [25]. Briefly, adipocytes grown on 10 cm dishes
were trypsinized, re-suspended in DMEM media and centrifuged at
500× g for 5min at room temperature. After removing the supernatant,
cells were re-suspended in the DMEM/FBS media. 5× 105 adipocytes
were added to each well of a 12 well plate containing transfection
mixture consisting of Opti-MEM (Thermo Fisher Scientific), Lipofecta-
mine®2000 and siRNA. 24 h after transfection, media was replaced with
DMEM/FBS containing antibiotics. Adipocytes were used for 2-Deoxy
Glucose (DOG) uptake assays 48 h after siRNA transfection.

2.3. Preparation of matrigel coated fluorodishes

Fluorodishes (World Precision Instruments) were incubated with
1:50 dilution of matrigel in ice-cold 1× PBS for 2 h at room tempera-
ture. After incubation, dishes were subsequently washed twice with PBS
followed by the addition of DMEM medium and were then used to plate
electroporated adipocytes.

2.4. Electroporation of adipocytes for TIRF

5–6 days after initiation of differentiation, 3T3-L1 adipocytes were
electroporated with GFP-GLUT4 and siRNA specific for β-catenin or
negative control siRNA as previously described [26]. Briefly,> 95%
differentiated adipocytes in 10 cm dishes were trypsinized and re-sus-
pended in DMEM media and centrifuged at 500× g for 2min. The
pellet was washed twice with 30ml of PBS and re-suspended in 1ml of
electroporation buffer (20mM HEPES, 135mM KCl, 2 mM MgCl2, 0.5%
Ficol 400, 1% DMSO, pH 7.6). Adipocytes were co-transfected with
30 nM of siRNA and 10 μg of GFP-GLUT4 plasmid by performing elec-
troporation at 200mV for 2ms. Electroporated adipocytes were plated
on matrigel coated Fluorodishes. 72 h post-electroporation, adipocytes
were serum starved in DMEM media for 3 h. Adipocytes were incubated
with 100 nM of insulin in KRBH buffer for 20min at 37 °C. Cells were
washed with ice cold PBS, fixed with 4% paraformaldehyde and stored
in 1×PBS at 4 °C until imaging

2.5. Total internal reflection fluorescence microscopy

Total internal reflection fluorescence microscopy (TIRF-M) was
performed using Leica AM TIRF MC equipment on a Leica DM6000B
microscope controlled by LAS AF 3 software (Leica Microsystems). GFP-
GLUT4 transfected cells were identified by epifluorescence. TIRF-M was

performed using 488 nm laser introduced into the excitation light path
at an appropriate angle to image 200 nm into cells. Images were ana-
lyzed using Fiji ImageJ software (Rasband,W.S., National Institutes of
Health, http://imagej.nih.gov/ij).

2.6. 2-deoxyglucose uptake

Glucose uptake into adipocytes were measured by performing 2-
DOG uptake assay. 8–10 days after initiation of differentiation, 3T3-L1
adipocytes in 12 well plates were serum starved in DMEM medium.
After 3 h, cells were treated with KRBH (120mM NaCl, 0.6 mM
Na2HPO4, 0.4 mM NaH2PO4, 6mM KCl, 1.2mM MgSO4, 12.5 mM
HEPES, 1mM CaCl2 pH 7.4) with or without insulin (100 nM) for
20min. For drug treatments, cells were pre-treated with pyrvinium, BIO
or DMSO as a control for 30min. After insulin stimulation, cells were
incubated with 2-DOG solution containing 1mM 2-DOG, 1 μCi H3-DOG
in KRBH buffer for 10min at 37 °C. The assay was stopped by in-
cubating cells on ice and unincorporated radioactive DOG was removed
by washing three times with 1× PBS containing 10 μM Phloretin.
Finally, cells were lysed in 500 μl of 0.2M NaOH and radioactivity was
measured by scintillation counting.

2.7. Western blot

Proteins were separated by SDS-polyacrylamide gel electrophoresis
and transferred to polyvinylidene fluoride membranes. Western blot
analysis was performed with antibodies specific for total β-catenin
(Symansis), p-Ser 473 AKT, total AKT, p-Ser 9/21 GSK3, total GSK3 and
PPARϒ (all from Cell Signalling Technologies). After overnight in-
cubation with primary antibodies at 4 °C, membranes were washed and
incubated with anti-sheep (1:20,000; Dako) and anti-rabbit (1:7000;
Santa Cruz) IgG-horseradish peroxidase conjugated antibodies for 1 h at
room temperature. Membranes were developed using Clarity™ Western
ECL substrate (BioRad Laboratories).

2.8. Statistical analyses

Results are presented as the mean± S.E.M and statistical differ-
ences were determined using one-way ANOVA with Tukey's post hoc
test. In instances where only two groups were being compared, un-
paired t-tests were performed. Statistical analyses were performed using
statistical software package GraphPad Prism 6.0 (GraphPad Software
Inc.)

3. Results

To investigate whether β-catenin plays a role in regulating GLUT4
trafficking we used 3T3-L1 adipocytes. These cells express both GLUT1
and GLUT4 glucose transporters although these transporters traffic very
differently inside the cell [19–21]. To focus only on the translocation of
GLUT4 to the surface of the cells, we used Total Internal Reflection
Fluorescence Microscopy (TIRF-M) imaging in 3T3-L1 adipocytes ex-
pressing GFP-tagged GLUT4 [11]. Under basal conditions we see very
little GLUT4 near the plasma membrane as expected (Fig. 1). However
insulin stimulation causes rapid translocation of GLUT4 to the plasma
membrane leading to more intense GLUT4 signal near the cell surface
(Fig. 1). The reduction of β-catenin levels using siRNA increased the
level of GLUT4 intensity near the plasma membrane in unstimulated
cells and reduced the increase in GLUT4 recruitment, thus reducing the
magnitude of GLUT4 recruitment to the plasma membrane by insulin
stimulation (Fig. 1A, B). Given that siRNA reduces β-catenin levels for
extended periods it is possible this could be due to long-term effects of
β-catenin, such as those that regulate gene expression. Therefore we
investigated the effects of small molecule agents that modify β-catenin
over shorter time courses. Short-term treatment with pyrvinium, an
agent known to attenuate β-catenin signalling [27], increased levels of

W.C. Dissanayake et al. Experimental Cell Research xxx (xxxx) xxx–xxx

2

http://imagej.nih.gov/ij


GLUT4 at the plasma membrane in unstimulated cells and attenuated
the insulin stimulated recruitment of GLUT4 (Fig. 2 A, B, C). The effects
is slightly larger than that seen with siRNA, which probably reflects the
fact that β-catenin siRNA knockdown is only ever partial. Conversely,
pre-treatment with the GSK3 inhibitor 6-bromoindirubin-3′-oxime
(BIO) [28] results in rapid stabilisation of β-catenin and this sig-
nificantly increased the insulin induced recruitment of GLUT4 at the
plasma membrane (Fig. 2A, D, E).

Glucose uptake assays were performed to understand how these
changes in β-catenin and GLUT4 distribution impact on glucose trans-
port into the cells (Fig. 3). These studies show that loss of β-catenin
impairs insulin stimulated glucose transport while increasing β-catenin
rapidly increases the magnitude of the effect of insulin on stimulation of
glucose transport (Fig. 4). This is generally consistent with the results of
the GLUT4 TIRF experiments but the magnitude of the effect on GLUT4
trafficking is larger than the effect on overall glucose transport. This
discrepancy could possibly be explained by differential effects on
GLUT1 trafficking. GLUT1 is the other glucose transporter known to be
involved in insulin stimulated glucose transport in 3T3-L1 adipocytes
and its trafficking mechanisms are known to be different from those of
GLUT4 [20]. However we did not investigate GLUT1 trafficking in the
current experiments.

A trivial explanation for these findings would be that β-catenin is
attenuating insulin signalling and indeed it has previously been

reported in muscle that the Wnt/β-catenin regulates the levels of the
insulin receptor in muscle [29]. To understand whether this was the
case in adipocytes we investigated the effects of siRNA mediated de-
pletion of β-catenin on insulin signalling in the 3T3-L1 adipocytes.
These studies show that insulin mediated phosphorylation of Akt and
GSK3 is not affected by loss of β-catenin (Fig. 5) which demonstrates
the loss of β-catenin is not grossly affecting the ability of insulin to
signal.

4. Discussion

The most well understood function of β-catenin in adipocytes is the
role it plays in attenuating the differentiation of pre-adipocytes into
adipocytes [30,31] while its role in mature adipocytes is less well un-
derstood. In the current study we have used multiple strategies to
chronically or acutely modulate β-catenin levels in fully differentiated
3T3-L1 adipocytes. Together these approaches provide strong evidence
to indicate β-catenin levels in adipocytes are a crucial determinant of
the amount of GLUT4 that is available for translocation to the plasma
membrane in response to insulin. It seems possible that a similar me-
chanism exists in muscle as there is one report where it was observed
that pyrvinium attenuates insulin stimulated glucose transport in ske-
letal muscle [32]. Interestingly, it has previously been reported that
reductions in levels of p120 catenin in adipocytes raises levels of GLUT4
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Fig. 1. β-catenin knockdown reduces insulin stimu-
lated GLUT4 translocation to the plasma membrane.
6–8 days after initiation of differentiation, 3T3-L1
adipocytes were transfected with GFP-GLUT4 and ei-
ther with negative control siRNA or β-catenin siRNA.
48 h after transfection, adipocytes were either un-
treated or treated with 100 nM insulin for 30min at
37 °C and fixed with 4% paraformaldehyde. (A) At
least 20 cells were imaged per each condition. Red
images show wide-field epifluorescence microscopy
focused on GFP-GLUT4 at the basal surface. Green
images show TIRF-M representative images. Scale
bars are 14 μm. (B, C) Images were quantified with
Fiji ImageJ software. Normalized TIRF intensity is the
ratio between TIRF intensity and epifluorescence in-
tensity. Similar results were obtained in three in-
dependent experiments. *P < 0.05 and ** P < 0.01
compared to negative control siRNA, insulin stimu-
lated condition and ¶P < 0.05 and ¶¶P < 0.01 com-
pared to negative control siRNA, unstimulated con-
dition as assessed by ANOVA with Tukey's post hoc
test.
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in the plasma membrane similar to those we see here with reduction of
β-catenin [24]. p120 catenin is known to play an important role in
regulating Rac and Rho, which in turn play roles in regulating GLUT4
trafficking [33]. These findings taken together with our recent studies
showing β-catenin levels modulate the magnitude of glucose stimulated
insulin secretion in β-cells [17] suggests that β-catenin is likely to play a
wider role in building pools of intracellular vesicles that can be released
in response to metabolic triggers.

In summary our results provide the first evidence that β-catenin
plays an important role in the mechanisms that regulate the ability of
insulin to stimulate increases in GLUT4 trafficking to the plasma
membrane in adipocytes. The fact that β-catenin is a protein that is
known to turn over rapidly in cells and to exist in multiple different
pools in cells [34] raises the prospect that regulation of β-catenin levels

and/or cellular location will be important in regulating the degree of
insulin stimulation of GLUT4 translocation that can be achieved.
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Fig. 2. The β-catenin inhibitor pyrvinium reduces
insulin stimulated GLUT4 translocation to the
plasma membrane while β-catenin stabilizer BIO in-
creases the GLUT4 level at the plasma membrane.
(A) 6–8 days after initiation of differentiation, 3T3-
L1 adipocytes were transfected with GFP-GLUT4.
48 h after transfection, adipocytes were pretreated
either with DMSO or 100 nM pyrvinium or 5 μM BIO
for 20min at 37 °C and either unstimulated or sti-
mulated with 100 nM insulin for 20min at 37 °C,
fixed with 4% paraformaldehyde. At least 20 cells
were imaged per each condition. Red images are
from wide-field epifluorescence microscopy focused
on GFP-GLUT4 at the basal surface. Green images are
representative TIRF-M images. Scale bars are 14 μm.
(B, C, D, E) Images were quantified using Fiji imageJ
software. Normalized TIRF intensity is the ratio be-
tween TIRF intensity and epifluorescence intensity.
Similar results were obtained in three independent
experiments.*P < 0.05 and ** P < 0.01 compared
to vehicle control, insulin stimulated condition as
assessed by ANOVA with Tukey's post hoc test.
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