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Abstract

Ubiquitin is a crucial post-translational modification regulating numerous cellular processes,

but its role in metabolic disease is not well characterized. In this study, we identified the in

vivo ubiquitin-modified proteome in rat liver and determined changes in this ubiquitome

under acute insulin stimulation and high-fat and sucrose diet-induced insulin resistance. We

identified 1267 ubiquitinated proteins in rat liver across diet and insulin-stimulated condi-

tions, with 882 proteins common to all conditions. KEGG pathway analysis of these proteins

identified enrichment of metabolic pathways, TCA cycle, glycolysis/gluconeogenesis, fatty

acid metabolism, and carbon metabolism, with similar pathways altered by diet and insulin

resistance. Thus, the rat liver ubiquitome is sensitive to diet and insulin stimulation and this

is perturbed in insulin resistance.

Introduction

The liver is exquisitely insulin-sensitive, and plays a critical role in glucose and lipid home-

ostasis as well as detoxification. Dysregulation of glucose and lipid metabolism in liver is a

major factor in the pathogenesis of metabolic diseases including type 2 diabetes and non-alco-

holic fatty liver disease (NAFLD). A primary characteristic of these metabolic diseases is the

accumulation of excess lipid in the liver, known as fatty liver or hepatic steatosis [1]. This sce-

nario is linked with impaired whole-body and hepatic insulin-stimulated glucose metabolism

[2]. High-fat feeding studies with rodents demonstrates that impairment of insulin action

in the liver precedes the development of insulin resistance in other glucoregulatory tissues,

including skeletal muscle and adipose tissue [3, 4]. Fatty liver reduces tolerance to ischemic

injury, impaired regeneration capacity [5] and increases the risk of developing hepatocellular

carcinoma [6]. As such, fatty liver is an initiating factor in the development of a range of

pathologies.
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Transcriptomic [7], lipidomic [3], and proteomic [8] studies have provided significant

insight into the mechanisms that link fatty liver and insulin resistance. Ubiquitin is a crucial

post-translational modification that regulates cellular signaling in numerous processes such as

metabolism, transcription, translation, vesicle transport and apoptosis [9]. Dysfunction of the

ubiquitin proteasome system (UPS) is observed in multiple diseases including cancer [10] but

its role in metabolic disease is relatively poorly defined. Therefore, we aimed to identify the in
vivo ubiquitin-modified proteome (ubiquitome) in rat liver and determine changes in this ubi-

quitome under acute insulin stimulation and in high-fat diet-induced insulin resistance.

Materials and methods

Animals

All surgical and experimental procedures performed were approved by the Animal Ethics

Committee (Ethics # 14/07, Garvan Institute/St. Vincent’s Hospital) and were in accordance

with the National Health and Medical Research Council of Australia’s guidelines on animal

experimentation.

Sixteen adult male Wistar rats (Animal Resources Centre, Perth, Australia) were commu-

nally housed at 22 ± 0.5˚C with a controlled 12:12h light-dark cycle. Half were fed ad libitum a

standard rodent diet (Rat Maintenance Diet; Gordons Specialty Feeds, Sydney, Australia) con-

taining (10% fat, 69% carbohydrate, and 21% (w/w) protein) while the other half was fed a high-

fat, high-sucrose diet (HFSD; 45% energy from fat, 30% energy from sucrose) made in-house

[11]. After 3 weeks of feeding, indwelling catheters were implanted as described elsewhere [12].

Insulin infusion

All animals were fasted for 5 h and randomly assigned for acute insulin stimulation or tissue

collected in the basal state, eight rats in each group. Insulin (Actrapid, Novo Nordisk, Copen-

hagen, Denmark) was infused at a rate of 0.5 U/kg/h, and a 30% (wt/vol) variable glucose

infusion was started at 4 min to maintain euglycemia, based upon [13]. In these rats, plasma

samples were taken at 0, 1, 3, 5, 7.5 and 10 min for the measurement of insulin and glucose

concentrations only. At 10 min, rats were euthanized with an overdose of sodium pentobarbi-

tone (Troy Laboratories, Australia), liver rapidly dissected, freeze-clamped with aluminum

tongs precooled in liquid nitrogen, and stored at −80˚C for subsequent analysis. Epidydimal

fat pass mass was used as an index of adiposity.

Ubiquitome analysis

Approximately 3–4 grams of liver was lysed in a 1:4 ratio (w:vol) of tissue and lysis buffer (50

mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.5% NP-40, 1 mM DTT, 1X EDTA-free protease inhibi-

tor cocktail, 10 mM N-ethylmaleimide, 1mM sodium orthovanadate) using a POLYTRON hand

homogenizer. The protein concentration was determined using a BCA assay and 500 μg of total

protein was used per sample to immunopurify mono- and poly-ubiquitinated proteins using

specialized ubiquitin affinity matrix (VIVAbind Ubiquitin Kit, VIVA Bioscience). After substan-

tial washing to remove residual detergent, beads were digested for 30 min at 27˚C, then reduced

with 1mM DTT and left to digest overnight at room temperature with sequencing-grade trypsin

(5 μg/mL, Promega), as described previously [14]. Samples were alkylated with 5mg/mL iodoa-

cetamide and protease digestion terminated with trifluoroacetic acid. Trypsinized eluents were

collected after brief centrifugation then purified and desalted using self-packed tips with 6 layers

of C18 Empore disks (Pacific Laboratory Products), then dried in a SpeedVac. Samples were

then resuspended in 12 μL 5% formic acid, 2% acetonitrile and stored at -80˚C.
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For MS analysis, 5 μL of each of the peptide samples were loaded and separated along a C18

column (400 mm, 75 μm ID, 3 μm silica beads) and introduced by nanoelectrospray into an

LTQ Orbitrap Velos Pro coupled to an Easy-nLC HPLC (Thermo Fisher). Tandem mass spec-

trometry data was collected for the top 10 most abundant ions per scan over a 140-minute

time gradient. The order of data collection was randomized to interchange between biological

conditions with BSA run between each sample to minimize temporal bias.

MS/MS raw files were analyzed using MaxQuant (v1.2.7.4) [15] against the Uniprot Rat

database using the Andromeda search engine integrated into MaxQuant [16]. A false discovery

rate of 1% was tolerated for protein, peptide, and sites, and one missed cleavage was allowed.

MaxQuant output data were filtered to remove contaminants, reverse hits, proteins only iden-

tified by site and proteins with < 2 unique peptides, and all further analysis was performed

using filtered data in our Pegasus statistical workflow [17] (S1 Fig). An individual protein was

defined as present under a particular condition if it was detected in a minimum of two repli-

cates. Analysis of individual replicates (S2 and S3 Figs) showed a good degree of reproducibil-

ity across individual replicates within treatment groups. Protein-protein interactions and

KEGG pathway analysis among the resulting protein list was analyzed using STRING (v10)

[18] (with a confidence score of 0.700) and Cytoscape (v3.1.1) [19].

Analytical methods

Blood and plasma glucose levels were determined by an immobilized glucose oxidase method

(YSI 2300; Yellow Springs Instruments, Yellow Springs, OH, USA). Plasma insulin was mea-

sured by ELISA (Ultra-Sensitive Mouse ELISA, Crystal Chem, USA). Liver triacylglycerols

(TAGs) were extracted using the method of Folch [20], lipids were dried under N2 gas, resus-

pended in absolute ethanol and quantified using an enzymatic colorimetric method (GPO--

PAP reagent; Roche Diagnostics).

Immunoblot analysis

Protein extraction and immunoblots from liver homogenates were performed as previously

described [21]. Antibodies used were anti-phospho-Ser473 Akt and Atk (Cell Signaling Tech-

nology, Danvers, MA) and anti-Ubiquitin (Abcam, UK). Densitometry was performed using

IPLab Gel software (Signal Analytics Corporation, Vienna, VA, USA).

Statistical analysis

Differences among relevant groups were assessed using unpaired Student’s t-test or Two-Way

ANOVA using Tukey-Kramer post hoc tests as appropriate noted in figure legends. P< 0.05

was considered significant. Data are reported as mean ± seM.

Results and discussion

HFSD leads to increased adiposity, increased liver triacylglycerol

content and impaired insulin-stimulated Akt phosphorylation in liver

The HFSD fed rat is a well-established model of obesity and insulin resistance [22, 23]. In this

study, 4 weeks of high-fat feeding increased body mass (Fig 1A), absolute epidydimal fat pad

mass (Fig 1B) and percent epidydimal fat pad mass (Chow: 3.2 ± 0.2%; HFD: 6.0 ± 0.3%;

P<0.00001), and liver TAG content (Fig 1C) compared to chow-fed controls. Importantly,

there were no differences in these outputs within diet groups for those animals that did or did

not receive insulin stimulation (Fig 1A–1C).

Rat liver ubiquitome and insulin resistance

PLOS ONE | https://doi.org/10.1371/journal.pone.0174431 March 22, 2017 3 / 14

https://doi.org/10.1371/journal.pone.0174431


Acute insulin infusion increased plasma insulin levels and at 10 mins post-infusion there

was no difference between Chow and HFSD groups (Fig 1D). Further, there was no difference

in blood glucose levels between groups at the end of the insulin infusion (Fig 1E). Insulin infu-

sion increased liver Akt phosphorylation in both the chow and HFSD-fed groups but this

response was blunted in the HFSD-diet group (P = 0.04; Fig 1F), indicating hepatic insulin

resistance. There was no difference in total Akt levels between groups (Chow: 1.24 ± 0.23 a.u.;

HFSD: 1.24 ± 0.09 a.u; P = 0.99). Calculating the ratio of phosphorylated Akt to total Akt pro-

tein levels resulted in similar findings, albeit with slightly less statistical significance (P =

0.055) as a consequence of combining the error of both measurements in a small number of

animals (data not shown). Collectively, these data demonstrate the effectiveness of the HFSD

diet to increase adiposity leading to a decreased response in liver for the same rise in circulat-

ing insulin.

Global ubiquitome of rat liver

Efforts to understand regulation of key metabolic functions of the liver to date have focused

mostly on post-translational modifications such as phosphorylation [24–26] and acetylation

Fig 1. High-fat, high-sucrose feeding results in obesity and insulin resistance in male rats. (A) Body mass, (B) epidydimal fat

pad mass, and (C) liver triacylglycerol content of rats fed a high fat diet for 4 weeks or chow control. * P < 0.05 vs Chow for each

condition by Two-Way ANOVA followed by Tukey’s Multiple Comparisons test. (D) Plasma insulin and (E) blood glucose levels in

rats infused with insulin for 10 mins at 0.5 U/kg/h. (F) Liver Akt phosphorylation. * P < 0.05 vs Basal for each condition, # P < 0.05 vs

Chow Insulin by Two-Way ANOVA followed by Tukey’s Multiple Comparisons test. Data are mean ± SEM, n = 4.

https://doi.org/10.1371/journal.pone.0174431.g001

Rat liver ubiquitome and insulin resistance

PLOS ONE | https://doi.org/10.1371/journal.pone.0174431 March 22, 2017 4 / 14

https://doi.org/10.1371/journal.pone.0174431.g001
https://doi.org/10.1371/journal.pone.0174431


[27, 28]. However, recent advances in affinity purification and proteomics techniques have

facilitated systematic assessment of the ubiquitome in vivo. To more closely examine changes

in the ubiquitin-modified liver proteome in rats following acute insulin stimulation and/or 4

weeks HFSD feeding, we applied AP-MS/MS using ubiquitin-affinity matrix to enrich for ubi-

quitinated proteins and ubiquitin binding proteins (Fig 2A). Immunoblot analysis of protein

ubiquitination in representative samples of rat liver lysates showed a characteristic broad

smear representing a complex mixture of ubiquitinated proteins in all conditions (Fig 2B).

Label-free quantitative analysis of total peptide intensities showed no significant difference in

the overall abundance of proteins isolated by ubiquitin affinity purification in each condition

(Fig 2B). We identified a total of 1279 proteins following Ub-affinity purification from liver

lysates across all four experimental conditions (Chow ± insulin, HFSD ± insulin). Of these,

831 proteins have been previously identified in the rat ubiquitome (total 7024; [29]). Hence,

we have identified 448 new ubiquitinated proteins in rat liver (Fig 2C). Detailed lists are pro-

vided in S1 Table and a protein-protein interaction map based upon STRING analysis is pro-

vided in S2 Fig. Fig 2D shows the top 30 biological pathways represented by these proteins

using ontology analysis based upon KEGG pathways. Many represent known pathways central

to liver biology such as glucose, amino acid and fatty acid metabolic pathways, steroid hor-

mone biosynthesis and drug metabolism (Fig 2D). Strikingly, we observe ubiquitination of all

but 1 enzyme (glucose-6-phosphatase) involved in glycolysis/gluconeogenesis in rat liver (Fig

2E). This widespread post-translational modification suggests that ubiquitination is a key regu-

lator of gluconeogenesis/glycolysis, acting in concert with the established transcriptional regu-

lation of key genes (including glucose-6-phosphatate and PEPCK) [30]. Crosstalk between

acetylation and ubiquitination is known to regulate the key gluconeogenesis enzyme PEPCK

[31]. As our proteomics approach cannot discriminate between different ubiquitin chain

topologies, validation studies beyond the scope of this work will be necessary to determine

downstream functional consequences of ubiquitination (i.e. degradation via K48 chains) on

regulation of signaling and metabolic pathways.

The liver ubiquitome of rats is sensitive to insulin stimulation

The liver is a key insulin-sensitive tissue that contributes to the regulation of whole-body glu-

cose homeostasis and is highly susceptible to the deleterious influences of high-fat diet [3, 4].

Of the 1279 proteins identified in this study, 788 ubiquitinated proteins were detected in chow

fed animals, with 868 proteins ubiquitinated following acute insulin stimulation (Fig 3A). In

HFSD rats, we identified 864 ubiquitinated proteins and 817 proteins following insulin stimu-

lation in this group (S1 Table). Finally, we identified 686 ubiquitinated proteins in common

across the 4 conditions.

To assess the potential role of the UPS in insulin action in the liver, we evaluated the specific

influences of insulin on the liver ubiquitome in the chow fed rat. 745 proteins were detected in

common between chow and chow + insulin conditions (Fig 3B). Of the 868 Ub-associated pro-

teins identified in liver following i.v. insulin stimulation, 123 (14%) were unique to this condi-

tion (S2 Table), compared to the 43 (5% of 788 total) Ub-associated proteins unique to the

basal state. STRING analysis of protein-protein interaction (PPI) networks within the set of

differentially ubiquitinated proteins (n = 166) following insulin stimulation identified enrich-

ment for components of OxPhos, migration signaling, focal adhesion, UPS and Ras Signaling

as putative targets of ubiquitination following insulin stimulation (Fig 3C). Further, KEGG

pathway analysis of these proteins identified enrichment of components of NAFLD, endo-

cytosis, PI3K-Akt signaling and fatty acid metabolism (Fig 3D). Ubiquitination of proteins

involved in fatty acid degradation and metabolism following insulin stimulation suggests a

Rat liver ubiquitome and insulin resistance
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Fig 2. Rat liver ubiquitome. (A) Experimental design of the ubiquitomic analysis rat liver. (B) Immunoblot analysis of protein ubiquitination in

representative samples of rat liver lysates. (C) Venn diagram of previously identified protein in this study and that in the known rat ubiquitome. (D)

Ontology analysis of identified ubiquitinylated proteins. (E) Gluconeogenesis/Glycolysis biochemical pathway with ubiquitinylated enzymes marked in red.

https://doi.org/10.1371/journal.pone.0174431.g002
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Fig 3. Insulin stimulation alters the ubiquitome of the rat liver. (A) Venn diagram of identified proteins in each group. (B)

Venn diagram of proteins ubiquitinated in Chow compared to Chow + Insulin. (C) STRING analysis of differentially ubiquitinated

proteins. (D) Ontology analysis of identified ubiquitinylated proteins.

https://doi.org/10.1371/journal.pone.0174431.g003
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Fig 4. High-fat, high-sucrose diet alters the ubiquitome of the rat liver. (A) Venn diagram of identified

proteins ubiquitinated in HFSD compared to HFSD + Insulin. (B) Ontology analysis of identified ubiquitinylated

Rat liver ubiquitome and insulin resistance
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novel mechanism contributing to insulin inhibition of fatty acid catabolism (i.e. beta oxida-

tion) and stimulation of fatty acid synthesis [32].

Targeted analysis of protein ubiquitination has demonstrated that insulin stimulation leads

to ubiquitination of a range of key insulin signaling intermediates which acts as a negative

feedback mechanism. For example, acute insulin stimulation of FAO hepatocyte cells in-

creased IRS-2 ubiquitination and lowered IRS-2 protein levels [33]. Conversely, insulin stimu-

lation of primary rat hepatocytes reportedly reduced protein ubiquitination [34]. Insulin

stimulation of mouse hepatocytes expressing HA-tagged ubiquitination increased APPL1 ubi-

quitination in a TRAF6-mediated mechanism [35]. Our systematic approach to identify the

insulin-sensitive rat liver ubiquitome did not detect IRS-1, IRS-2 or APPL1, possibly reflecting

sensitivity limitations or differences between in vitro and in vivo models. Collectively, we have

identified a broad range of liver proteins with altered ubiquitination in response to acute in
vivo insulin stimulation. These will provide an important basis for ongoing targeted studies to

better understand regulatory mechanisms underpinning insulin action in the liver.

The rat liver ubiquitome is sensitive to high-fat diet

The liver is highly susceptible to the deleterious influences of high-fat diet, including dysregu-

lated glucose and lipid homeostasis [3, 4]. Altered signal transduction, including via differen-

tial protein phosphorylation, are proposed to underpin these systemic phenotypes [36].

However, other post-translational modifications such as ubiquitin are also likely to be impor-

tant regulators of signaling and metabolic pathways as a consequence of HFSD feeding. We

observed 744 ubiquitinated proteins in common between chow and HFSD animals (Fig 4A).

Of the 864 ubiquitinated proteins identified in HFSD, 120 (14%) proteins were unique to the

HFSD group. This compared to 44 (6%) of the 788 ubiquitinated proteins unique to chow-fed

animals (Fig 4A). Analysis of KEGG pathways and PPI networks within this set of differentially

ubiquitinated proteins identified enrichment of proteins involved in RNA metabolism, actin

cytoskeleton, and amino acid and fatty acid metabolism (Fig 4B and 4C).

These diet-induced changes in the liver ubiquitome differ from observations made follow-

ing exposure of HepG2 hepatocellular carcinoma cells to single fatty acids in vitro. For exam-

ple, ubiquitin levels in HepG2 cells (detected by western blot) were not altered by exposure to

the polyunsaturated fatty acid linoleate with or without the addition of exogenous FABP4 [37],

which is increased in the plasma of obese patients [38]. Conversely, exposing HepG2 cells to

the saturated fatty acid palmitate did lead to ubiquitination of IR, IRS-1 and Akt [39]. Palmi-

tate does have significant effects on cell biology, but interestingly many of these effects are lost

with the addition of other unsaturated fatty acids such as linoleate or oleate [40]. Further, the

use of single fatty acids to increase extracellular lipid levels does not model the environment of

HFSD [41].

We have performed similar analyses of the binary comparisons between HFSD vs HFSD

+ Insulin (S5 Fig), and Chow + Insulin vs HFSD + Insulin (S6 Fig). Briefly, 56 proteins were

uniquely ubiquitinated in the HFSD + Insulin group compared to the HFSD group, whereas

103 were identified exclusively in the HFSD group compared to HFSD + Insulin (S5A Fig).

Additionally, only 46 proteins were uniquely identified in the HFSD + Insulin group com-

pared to the Chow + Insulin groups, whilst 97 proteins were only ubiquitinated in the Chow

+ Insulin group (S6A Fig). These proteins are involved in a diverse range of metabolic path-

ways (S5B and S6B Fig).

proteins in HFSD compared to HFSD + Insulin. (C) STRING analysis of differentially ubiquitinated proteins. (D).

Ontology analysis of identified ubiquitinated proteins responsive to insulin in Chow but not in HFSD.

https://doi.org/10.1371/journal.pone.0174431.g004
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Insulin resistance is defined as a blunted response by cells to insulin stimulation. E3 ubiqui-

tin ligases have been implicated in the pathogenesis of insulin resistance by modulating insulin

signaling (see review [42]). Much of the data underlying this model comes from targeted anal-

ysis of ubiquitination of individual insulin signaling intermediates [43, 44], rather than the sys-

tematic analysis of global changes in ubiquitome in pre-clinical models of insulin resistance

presented here. Our dataset provided a unique opportunity to characterize changes in the liver

ubiquitome associated with insulin resistance. We identified 310 ubiquitin modified proteins

that were responsive to insulin stimulation in chow or HFSD animals (S3 Table). 99 (40%) of

these 310 proteins responded to insulin stimulation in the chow group but failed to respond in

the HFSD group. Notably, these proteins are involved in oxidative phosphorylation and fatty

acid metabolism (Fig 4D), highlighting these pathways as key targets of ubiquitin in insulin

resistance. For example, one of these fatty acid metabolism proteins was ACSL4 which is

increased in patients with NAFLD compared to controls [45]. Further, we identified altered

ubiquitination of subunits of complex 2 and 5 of the electron transport chain, which is consis-

tent with a role for altered oxidative phosphorylation in the development of liver insulin resis-

tance [46]. Conversely, 89 proteins (36%) responded to insulin stimulation in the HFSD group

but not in the chow group, with 61 proteins (24%) responding to insulin in both groups.

Together with our identification of ubiquitination of all but one of the enzymes in glycolytic/

gluconeogenic pathways, these novel data suggest that ubiquitination is a key regulator of the

pathogenesis of liver insulin resistance and may play a role in fatty liver associated diseases.

Conclusion

Herein, we have described the systematic characterization of the rat liver ubiquitome and

report the effects of acute in vivo insulin stimulation and high-fat, high-sucrose diet. Specifi-

cally, we observed ubiquitination of proteins involved in key metabolic pathways, in particular

gluconeogenesis/glycolysis, oxidative phosphorylation and fatty acid metabolism. Hence, ubi-

quitination is likely a novel mechanism acting at multiple levels to regulate whole-body eugly-

cemia and lipidemia. Further, widespread changes in the ubiquitin modified proteome may

mediate the pathogenesis of fatty acid-associated diseases.

Supporting information

S1 Fig. Statistical workflow. Flow diagram showing data analysis method from mass spec-

trometry raw data.

(TIF)

S2 Fig. Proteomics data variability analysis. (A) Histograms showing peptide abundance dis-

tributions in individual replicates for each condition. (B) Multiple regression analysis of pep-

tide abundance in individual replicates.

(TIF)

S3 Fig. Venn analysis of proteins identified in each replicate.

(TIF)

S4 Fig. Protein-protein interactome of the total liver ubiquitome.

(TIF)

S5 Fig. Insulin stimulation alters the hfsd ubiquitome of the rat liver. (A) Venn diagram of

proteins ubiquitinated in High-Fat Sucrose Diet (HFSD) compared to HFSD + Insulin. (B)

Ontology analysis of identified ubiquitinylated proteins. (C) STRING analysis of differentially
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ubiquitinated proteins.

(TIF)

S6 Fig. Effects of diet on insulin stimulated ubiquitome of the rat liver. (A) Venn diagram

of proteins ubiquitinated in Chow + Insulin compared to High-Fat Sucrose Diet (HFSD) +

Insulin. (B) Ontology analysis of identified ubiquitinylated proteins. (C) STRING analysis of

differentially ubiquitinated proteins.

(TIF)

S1 Table. Proteins identified in the rat liver ubiquitome for each condition.

(XLSX)

S2 Table. Ubiquitinated proteins unique to each condition.

(XLSX)

S3 Table. Proteins ubiquitinated in response to insulin.

(XLSX)
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