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Abstract 

DNA methylation is a major epigenetic modification of vertebrate genomes that is mostly 

associated with transcriptional repression. During embryogenesis, DNA methylation together 

with other epigenetic factors plays an essential role in selecting and maintaining cell identity. 

Recent technological advances are now allowing for the exploration of this mark at 

unprecedented resolution. This has resulted in a wealth of studies describing the developmental 

roles of DNA methylation in various vertebrate model systems. It is now evident that in certain 

contexts DNA methylation can act as a key regulator of cell identity establishment, whereas in 

many other cases the quantity of DNA methylation will merely reflect other upstream regulatory 

changes. For example, a number of studies have indicated that DNA methylation might be 

dispensable for pluripotency stages of embryonic development. Nevertheless, targeted deposition 

and removal of DNA methylation by DNMTs and TET proteins, respectively, appears to be 

required for vertebrate gastrulation. Here we review the roles of DNA methylation in the 

establishment and maintenance of cell identity during development, with a special emphasis on 

insights obtained from in vivo studies. 
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Introduction 

 

Vertebrate development is characterized by major epigenome remodeling processes that drive 

and sustain cell identity in the developing embryo [1]. Perhaps one of the best-studied epigenetic 

mechanisms that is known to be highly dynamic during embryogenesis is DNA methylation 

(mC). mC is a covalent modification of cytosine within genomic DNA that in vertebrates 

predominantly occurs on the CpG dinucleotide and is frequently associated with long-term 

transcriptional repression [2]. Examples of such cellular processes include X chromosome 

inactivation, genomic imprinting and silencing of repetitive DNA elements [3,4]. mC is 

established and maintained by the action of the maintenance and de novo DNA methyltransferase 

enzymes DNMT1 and DNMT3A/B/L, respectively [5]. Conversely, mC can also be removed by 

dilution through genome replication without maintenance or inactivation of DNMTs, or by active 

demethylation mediated by the Ten-eleven translocation (TET) proteins and the TDG pathway 

[6]. Cellular interpretation of the mC signal is complex and is thought to involve at least two 

different pathways. The first and likely predominant pathway involves the recruitment of methyl 

CpG-binding proteins that target protein complexes with histone deacetylase activity to nearby 

genes to silence transcription [7-10]. Another possible mode of action of mC is the direct 

interference with transcription factor binding sites [11-13]. Notably, a number of recent studies 

suggest that the functions of mC and its oxidized derivatives such as hydroxymethylation (hmC) 

could be far more complex than previously thought, and that depending on the cell type, mC 

could recruit a wide variety of transcriptional modulators and even be compatible with 

transcriptional activation in certain biological contexts [14-16]. The fact that mC can be stably 

propagated through cell divisions underlies its potential to serve as a form of cellular epigenetic 

memory that is implicated in embryogenesis, cellular differentiation and reprogramming. The 

last decade has seen a technological revolution that has enabled the interrogation of mC state on 

a genome-wide scale and at single base resolution. Studies utilizing these whole-genome 

methodologies have provided many important insights regarding the genomic location and 

spatio-temporal dynamics of mC in various experimental models [17-23]. Through the 

combination of high throughput mC profiling techniques and functional studies in diverse model 

systems, our understanding of mC function in genome regulation is rapidly advancing. Here we 
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review the recent advances regarding the roles of mC in cell identity establishment and 

preservation during vertebrate embryogenesis.  

 

Global methylome reprogramming and pluripotency establishment 

While predominantly stable in somatic cells, mC displays remarkable dynamics during 

mammalian preimplantation development and germline formation [24]. Upon fertilization, the 

paternal pronucleus becomes almost completely demethylated followed by a decrease in mC 

levels in the maternal pronucleus and nearly complete embryonic hypomethylation in the 

blastocyst. The exact mechanisms by which these processes take place remains a topic of 

dispute, however it is likely that both active and passive mechanisms play a role [24,25]. Such 

global mC reprograming can also be induced in vitro when embryonic stem cells (ESCs) are 

transferred from serum-containing media to a media containing two small molecular inhibitors 

(2i) that target the kinases MEK and GSK3 [26-28]. 2i conditions closely resemble the 

environment of the blastocyst inner cell mass (ICM), and trigger global mC erasure and a switch 

to the naïve pluripotent cell state. 

Those observations notwithstanding, the exact requirements for mC erasure during the 

establishment of pluripotency remain unclear. For example, in vitro reprogramming to the 

pluripotent state by ectopic expression of Oct4, Sox2, c-Myc, and Klf4 transcription factors in 

somatic cells results in fully competent induced pluripotent stem cells (iPSCs) [29] even though 

those cells do not pass through a complete global demethylation event [30]. This could be the 

reason why cells generated by in vitro reprograming are known to bear epigenetic abnormalities 

and to retain somatic memory [31-33]. This effect is less pronounced, however, if the cells are 

subjected to somatic nuclear transfer (SCNT) and reprogrammed by factors present in the 

ooplasm, as recently demonstrated in a study that compared SCNT ESC and in vitro iPSC 

methylomes generated from same somatic cells [34]. Concordantly, it was recently shown that 

only naïve human ESCs and preimplantation embryos express the HERVK endogenous 

retrovirus LTR5HS when compared to primed human ESCs and iPSCs, and that this expression 

was caused by the hypomethylated state of those cells [35]. While the function of this peculiar 

embryonic event is not known, it has been postulated that it might play a role in early embryonic 

immune defence.  
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Anamniotes such as fish and frogs lack global mC erasure [20,21] and yet achieve the 

competence to form similar tissues as mammals. Interestingly, in early Xenopus embryos mC is 

uncoupled from transcriptional repression [14] and individual cells within the embryo have been 

shown to express markers that are not characteristic of their position [36]. These and other 

studies [reviewed in 37] suggest that both mammals and anamniotes pass through an early phase 

of open and permissive chromatin that facilitates pluripotency establishment and likely promotes 

hypomethylation in mammals. A recent report utilizing single cell transcriptomics demonstrated 

that rare cells in heterogeneous ESC population cycle through a transient state that is 

characterized by MERVL/Zscan4 expression, global hypomethylation and significant chromatin 

decompaction [38]. The MERVL transcriptional network was previously shown to be 

upregulated in two-cell mouse embryos [39]. Using inducible Dnmt1 knockout cells, Eckersley-

Maslin et al. demonstrated that the observed global hypomethylation is not the cause but rather a 

consequence of this transient state, as hypomethylation was not sufficient to induce MERVL 

expression. Thus, it appears that the increase in chromatin accessibility is an upstream event that 

facilitates MERVL expression. This in turn promotes the expression of translation inhibitors that 

block DNMT function and cause global hypomethylation. Altogether, these data demonstrate 

that hypomethylated ESCs display transcriptional features of preimplantation embryos. 

Nevertheless, mC erasure is not an evolutionarily conserved feature of vertebrate pluripotency, 

and is likely simply a consequence of an early open chromatin configuration. Whether this major 

mC remodelling event evolved in mammals to prevent the transmission of potential epimutations 

from the previous generation remains to be determined.  

 

TET proteins control vertebrate gastrulation 

Until recently, mC was considered a stable epigenetic mark associated with establishment of 

permanent cell identity choices. The fact that somatic cells can be reprogrammed to a pluripotent 

state challenged that notion and demonstrated that such epigenetic barriers can be overridden. 

This was followed by the discovery that mC can be oxidized to hmC, and subsequently to 5-

formylcytosine (fC) and 5-carboxylcytosine (caC) through the action of TET enzymes [6]. The 

TET protein family in mammals consists of three members: TET1, TET2, and TET3. However, 

pinpointing the exact developmental roles of TET proteins has proven to be challenging. This is 
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mostly due to the fact that TET proteins display considerable functional redundancy during 

embryogenesis [40]. Recent loss of function studies describing the simultaneous targeting of all 

three TET family members have started to provide important insights into the developmental 

functions of TET proteins. Our recent work revealed that the transcriptional regulation of key 

genes and pathways involved in body plan formation in zebrafish, Xenopus tropicalis and mouse 

is driven by active DNA demethylation of a functionally conserved set of enhancer elements 

[41]. These enhancers are characterized by TET-dependent mC to hmC conversion during the 

phylotypic period of vertebrate development and subsequent mC/hmC loss. Importantly, these 

regions are located in the vicinity of genes belonging to Wnt, Notch/Delta and TGF-β pathways, 

thus linking active DNA demethylation to fundamental developmental processes such as cell fate 

specification, cell proliferation, embryo polarity establishment and body axis patterning (Figure 

1a). These observations are in line with the severe phenotypes caused by the loss of Tet1/2/3 

proteins in zebrafish [41]. The majority of triple Tet morphants did not survive gastrulation 

whereas the remainder displayed shortened embryonic axes, malformed eyes and head structures 

as well as reduced pigmentation. A severe gastrulation phenotype was also recently observed in a 

triple TET knockout (TKO) mouse model generated through germline deletion of Tet1/2/3 [42]. 

TKO embryos developed successfully until embryonic day E6.5 and, despite the dysregulation of 

several hundred genes, they appeared virtually indistinguishable from their wild type 

counterparts up until that stage. At E7.5, the affected embryos were much smaller in size than the 

controls and displayed defects in primitive streak patterning as well as problems with mesoderm 

specification. Interestingly, it appears that such a phenotype was at least partly caused by 

hyperactive Nodal signalling, as Nodal inhibition partially restored embryonic patterning. The 

defects in Nodal signalling were due to reduced expression of Lefty1 and Lefty2 genes, well 

known inhibitors of Nodal and members of the TGF-β signalling pathway [42]. Importantly, 

more recent work on mouse triple TET knockouts [43] linked the Wnt pathway to the loss of 

TET function, thus further supporting the initial observations that TET proteins might regulate 

key developmental pathways [41]. These triple knockout embryos at E8 – E8.5 stages displayed 

hyperactive Wnt signalling and impaired differentiation of neuro-mesodermal progenitors [43]. 

Together, these data demonstrate an evolutionarily conserved role for TET proteins in cell fate 

determination associated with gastrulation and body plan formation in early vertebrate embryos. 

 



  7

mC as an epigenetic barrier during PGC differentiation   

The mC reprograming events that occur in mammalian primordial germ cells (PGCs) are even 

more drastic than the mC erasure observed in preimplantation embryos [24]. This mC 

remodelling reduces the overall mC levels to its lowest point during the mammalian life cycle 

[44,45]. One of the major functions of this process is likely the erasure of parental imprints that 

subsequently allows for their proper gender-specific resetting. PGC demethylation occurs in two 

steps; the first phase involves passive demethylation caused by the exclusion of UHRF1 from the 

nucleus and repression of DNMT3 proteins, whereas the second phase is carried out through 

active TET-mediated demethylation [44]. This second wave of active demethylation targets 

imprinting control regions (ICRs) as well as promoters of germline-specific genes. Until 

recently, the exact reason for why this process is divided in two stages was unknown. A recent 

report utilizing a PGC-specific Dnmt1 knockout mouse, demonstrated that DNMT1 guards PGCs 

from premature differentiation during the first stage of global demethylation [46] (Figure 1b). 

DNMT1 expression in PGCs is required to repress a set of meiotic genes during stage I 

demethylation, including the meiotic licensing factor DAZL that is crucial for the differentiation 

of both male and female PGCs. PGC-specific depletion of DNMT1 resulted in precocious 

germline differentiation and led to hypogonadism and infertility in both males and females [46]. 

This work provides an example of how locus-specific mC can serve as an epigenetic barrier that 

prevents premature transitions in cell identity. Altogether, it appears that mC, at least in the 

mammalian germline, evolved as in important regulator of the timing of germline induction.  

 

Conclusions and future perspectives 

The roles of mC during vertebrate embryogenesis have been under intense investigation for more 

than three decades. Very few studies, however, managed to demonstrate a regulatory role for this 

epigenetic mark during this dynamic period of the vertebrate life cycle. This has resulted in the 

roles of mC during vertebrate embryogenesis being challenged [47]. Indeed, in mammalian cells 

mC appears to be locally influenced by the presence of cell type-specific transcription factors 

[48,49], and it is likely that DNA methylation is generally not required for pluripotency [50]. 

Nevertheless, recent studies carried out in various vertebrate models suggest that mC might play 

an important role in orchestrating early embryonic development through the regulation of 
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essential developmental pathways [41-43]. Additionally, maternal deposition of H3K4me3 and 

H3K27me3 histone marks in the early embryo appears to be regulated through a logic of 

hypomethylated islands, and uncoupled from zygotic genome activation [51].  

In zebrafish and mouse embryos, the loss of TET proteins results in severe gastrulation 

phenotypes caused by aberrant cell fate specification choices. These problems are the result of 

improper use of early signalling pathways such as Wnt and TGF-β. Importantly, in both 

zebrafish and mouse the loss of TET proteins resulted in reduced chromatin accessibility at 

enhancer regions suggestive of an upstream regulatory role TET proteins might play in enhancer 

activation [41,43]. Thus, it appears that mC could act as a highly evolutionarily conserved safe-

lock that has to be removed by the activity of TET proteins in order for gastrulation to complete. 

A similar safe-lock function for mC was also recently observed during mammalian PGC 

specification [46].  

While the precise roles of global demethylation during mammalian preimplantation 

development await further clarification, recent data suggest that such a hypomethylated state 

might be required for the proper expression of retroviral elements during this developmental 

period [35]. Future studies will greatly benefit from single cell DNA sequencing technologies 

that allow for the exploration of mC patterns at an unprecedented resolution, and the generation 

of cell-type specific methylome maps of early embryos. Finally, the recent advances in 

(epi)genome editing technologies will enable the functional testing of the role of mC itself in the 

regulation of developmental enhancers and their target genes. Altogether mC provides a versatile 

input to early embryonic development by regulating and maintaining cell identity choices 

through a variety of molecular mechanisms. 
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Figure legends 

Figure 1. mC and the regulation of cell identity during embryogenesis a) In vertebrate 

embryos, TET-dependent oxidation takes place on a subset of developmental enhancers linked to 

TGF-β, Notch/Delta and Wnt pathways during body plan formation. This demethylation event 

involves the 5-hydroxymethylcytosine (hmC) intermediate. b) During the first wave of global 

demethylation in primordial germ cells (PGCs), DNMT1 maintains a number of germline and 

meiotic gene promoters methylated thereby preventing precocious germline differentiation. 

These promoters lose mC only during the second wave of demethylation when their expression is 

needed.  
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