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Abstract

Protein-coding RNAs represent only a small fraction of the transcriptional output in higher eukaryotes. The
remaining RNA species encompass a broad range of molecular functions and regulatory roles, a conse-
quence of the structural polyvalence of RNA polymers. Albeit several classes of small noncoding RNAs are
relatively well characterized, the accessibility of affordable high-throughput sequencing is generating a
wealth of novel, unannotated transcripts, especially long noncoding RNAs (lncRNAs) that are derived from
genomic regions that are antisense, intronic, intergenic, and overlapping protein-coding loci. Parsing and
characterizing the functions of noncoding RNAs—lncRNAs in particular—is one of the great challenges of
modern genome biology. Here we discuss concepts and computational methods for the identification of
structural domains in lncRNAs from genomic and transcriptomic data. In the first part, we briefly review
how to identify RNA structural motifs in individual lncRNAs. In the second part, we describe how to
leverage the evolutionary dynamics of structured RNAs in a computationally efficient screen to detect
putative functional lncRNA motifs using comparative genomics.

Key words lncRNA, Comparative genomics, RNA secondary structure, Homology search, Func-
tional genome annotation

1 Introduction

Functional genome annotation involves the identification of both
known and hypothetical genes in uncharacterized genomic DNA
sequence. This largely includes protein-coding genes and noncod-
ing RNAs, as well as other genomic features such as telomeric/
subtelomeric regions and centromeres. The identification of
protein-coding genes can unravel the molecular repertoire of the
majority of the genomes of microorganisms, especially prokaryotes,
whose genomes are largely composed of protein-coding sequences.
However, protein-coding sequences encompass only a small frac-
tion of the genome in higher eukaryotes, which decreases with
increasing developmental and cognitive complexity [1, 2] and
comprise less than 1.5 % of the human genome.
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Most of the human genome is dynamically transcribed into
RNA [3, 4], which implies that untranslated RNAs compose the
most abundant class of genomic output. In particular, noncoding
transcripts greater than 200 nt in length—long noncoding RNAs
(lncRNAs)—are emerging as master regulators of development and
differentiation in higher eukaryotes [5–10]. There are currently
15,767 lncRNA genes (excluding alternative isoforms and pseudo-
genes) listed in version 25 of the GENCODE human genome
annotation database, compared to 19,950 protein-coding genes.
Contrary to protein-coding genes, whose set is relatively well char-
acterized and has remained relatively stable in number and reper-
toire throughout metazoan evolution [1, 2, 11], although there are
novel genes mainly encoding small proteins being discovered [12],
the number of identified lncRNAs is steadily increasing as more and
more biological conditions are investigated with high-throughput
RNA sequencing technologies.

Many lncRNAs appear to regulate gene expression through
their association with epigenetic proteins, such as histone modifica-
tion enzymes and DNA methyltransferases, with which they syner-
gistically organize the nuclear environment [13–15]. Other
lncRNA functions include acting as molecular decoys and macro-
molecular scaffolds, as well as the regulation of splicing and trans-
lation, mRNA stability, and the formation of subcellular organelles
[5, 16]. A small but growing number of lncRNAs have been
functionally validated through knockout and ectopic expression
in vivo and in cell culture, and other biochemical studies [17–20],
but the precise molecular mechanisms and structures guiding their
function remain largely unresolved.

At present, lncRNAs are largely categorized by their position
relative to neighboring protein-coding genes, i.e., intergenic, anti-
sense, intronic, or bidirectional. However, the particular functions
of lncRNAs do not necessarily correlate with their genomic con-
text. For example, the lncRNA HOTAIR functions by recruiting a
chromatin modification complex (PRC2) to repress gene expres-
sion in trans [21], whereas the lncRNA HOTTIP recruits another
epigenetic complex (WDR5-MLL1) in cis to activate gene expres-
sion via chromosomal looping [22]. Both are situated in the inter-
genic regions surrounding HOX genes. The functional annotation
of lncRNAs at a genome- or transcriptome-wide scale therefore
requires the consideration of additional molecular features that
may be unique to each transcript.

A unifying feature of ncRNAs is their propensity to form dis-
crete secondary and tertiary structures through canonical and non-
canonical nucleotide base pairings that often dictate their function.
Many lncRNAs appear to be very plastic, evolve quickly, and/or
have arisen relatively recently in evolution, as evidenced by high
turnover rates and reduced primary sequence conservation [23,
24], although there are exceptions that have extraordinarily high
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levels of sequence conservation [25–27]. Their evolutionary
dynamics are different from protein-coding genes, displaying
relaxed structure-function constraints that are synonymous with
being under positive selection for adaptive radiation. They are in
general (although there are likely to be exceptions) unlikely to have
catalytic activities, such as ribosomal RNAs, yet may nonetheless
form evolutionarily stable, functional secondary and tertiary struc-
tures with different functions, as well as shorter primary sequences
that may interact with other RNAs and DNA. For instance, the
widespread presence of repetitive sequences derived from mobile
elements in the human genome is believed to contribute to modu-
lar lncRNA biogenesis by forming a reservoir of functional motifs—
or structured templates for RNA-binding proteins—that can be co-
opted into RNA regulatory networks via positive selection [28–30].

Computational identification of functional RNA structural
motifs encoded in genomic sequences is a challenging task, mainly
because almost any RNA sequence can form internal base pairs via
classical Watson–Crick, Hoogstein, or ribose 20OH hydrogen bond
formation, and fold into discrete structures [31, 32], but also
because RNA structures themselves are dynamic, flexible, and are
contingent on the cellular environment (i.e., temperature, ion con-
centrations, ligand binding, transcriptional kinetics). Functional
RNA structures can nonetheless be identified through comparative
genomics by observing nucleotide substitutions that are consistent
and compatible with a common structural topology. Indeed, a
much larger fraction of the human genome seems to function
through the formation of RNA structure motifs than through
sequence-constrained elements, as evidenced by considering nucle-
otide covariation events in evolutionary information [33].

In this chapter, we describe how to annotate ncRNAs in geno-
mic or transcriptomic data, where known or putative functions are
assigned to uncharacterized sequences to gain insight into their
biology. First, we summarize how to identify functional RNA ele-
ments in single sequences via homology search as well as prediction
of local structures in long transcripts. Finally, we describe how to
identify putative functional motifs in lncRNAs that are supported
by evolutionarily conserved RNA secondary structures. We provide
user friendly, step-by-step instructions on how to perform a multi-
ple genome-wide screen for functional RNA motifs similar to that
published in [33].

2 Materials

A UNIX-based computing environment should be employed for
most of the described methods, preferably with access to a high-
performance computing infrastructure. Alternatively, a computer
or server with multiple processors and over 4 GB of RAM may be
employed.
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2.1 Genomic Data Genomic or transcriptomic sequence data should be downloaded
and converted (if required) to fasta file format, unless it is already
available. Genomic data for reference organisms can be obtained
from the following sources:

1. UCSC genome browser—select the organism and the desired
genome version, then full data set, then the file with suffix “.fa.
gz” at http://hgdownload.cse.ucsc.edu/downloads.html.

2. NCBI—select the species of interest and then sequence data
can be downloaded for each chromosome individually at
(ftp://ftp.ncbi.nih.gov/genomes/). A FTP batch download
tool or interface should be considered to automate the process.

3. ENSEMBL genome browser—select the appropriate release
version, then ‘fasta’ at ftp://ftp.ensembl.org/pub/.

2.2 Transcriptomic

Data

LncRNAs are often spliced (including alternatively spliced), gener-
ating sequences and structures that would otherwise be missed
during computational screens of unprocessed genomic sequences.
Depending on the task at hand and the availability of suitable data,
the sequences corresponding to processed transcripts should also
be considered to improve the robustness of functional lncRNA
annotation. For RNA sequencing data, algorithms for de novo
assembly should be considered provided the depth of coverage is
sufficient. These programs usually produce output files containing
genomic coordinates in .bed (browser extendible data file, prefera-
bly in 12-field format with exon boundary information), .gtf (gene
transfer format), .gff (general feature format), or similar formats.
The popular Cufflinks program from the Tuxedo suite of RNAseq
tools [34] produces a .gtf file and includes the appropriate
software—a program called gffread located in the Cufflinks binary
folder—to extract and process sequence information from a refer-
ence genome into a .fasta file. Alternatively, the Trinity program for
de novo transcriptome assembly without aligning to a reference
genome [35] directly outputs a .fasta file of assembled transcripts
from the .fastq files containing deep sequencing data.

2.3 Multiple Genome

Alignments

Comparative genomics approaches for functional annotation of
noncoding RNAs require pairwise or multiple genome alignments
for the species of interest. Prealigned genomic sequence alignments
for most well-studied vertebrates can be downloaded in .maf (mul-
tiple alignment format) from the ENSEMBL comparative geno-
mics database [36] or from the UCSC genome browser [37]—
which also hosts alignments for nonvertebrate species—as follows:

1. ENSEMBL Compara—Information about downloading mul-
tiple genome alignments is available at http://ensembl.org/
info/data/ftp/index.html. Multiple alignments in .maf from
the latest release at the time this was written can be downloaded

68 Martin A. Smith and John S. Mattick

http://hgdownload.cse.ucsc.edu/downloads.html
ftp://ftp.ncbi.nih.gov/genomes/
ftp://ftp.ensembl.org/pub/
http://ensembl.org/info/data/ftp/index.html
http://ensembl.org/info/data/ftp/index.html


via FTP protocol at ftp://ftp.ensembl.org/pub/release-85/
maf/ensembl-compara/multiple_alignments/.

2. UCSC Genome Browser—Navigate to the table browser tab at
http://genome.ucsc.edu (select ‘tools,’ then ‘table browser’
from the drop-down menu bar on the top of the page). Select
the reference species of interest, then ‘Comparative Genomics’
from the group menu, ‘Conservation’ from the track menu,
and ‘Multiz Align,’ form the table menu. Optionally, regions
can be limited to an existing UCSC or custom track (which
needs to be uploaded independently prior to this step). This
can significantly reduce the size of the download when only
interested in a set of transcripts, for example. Next, ensure that
‘MAF—multiple alignment format’ appears in the output for-
mat menu, otherwise the appropriate track or table must be
selected. Finally, name the output file and get output (ideally,
compressed) or send the output to the Galaxy [38] platform for
post-processing (see later).

Multiple alignments form the UCSC Genome Browser employ
a different synteny and alignment algorithm than those from
ENSEMBL. The latter usually present contiguous alignments for
large syntenic blocks via the Enredo (or Mercator) and Pecan algo-
rithms [39, 40], whereas the former is optimized for total genomic
coverage and presents smaller, fragmented alignment blocks as pro-
ducedwith theTBA andMULTIZ algorithms [41]. Because of their
highly fragmented nature and variable presence of each species in
each block, TBA/MULTIZ alignments may require additional pro-
cessing, such as being ‘stitched’ together. A good summary of
approaches for processing .maf files is described by Blankenberg
et al. [42]. The ENSEMBL alignments require less processing, as
the syntenic blocks are much longer. These alignments can also
contain segmental duplications, which should be removed at the
user’s discretion (ensuring that the coordinates of the segmental
duplications for the reference species are saved for future reference).

3 Methods

The first step in any analysis of a putative noncoding RNA is to
estimate its protein-coding potential. This typically involves exclud-
ing known protein-coding genes from a reference genome annota-
tion, from mass spectrometry data (when available), as well as
computational estimation of coding potential via the analysis of
open reading frames and evolutionary information, such as synon-
ymous codon usage. The Pinstripe software suite is one example of
a recently developed bioinformatics resource that enables the dis-
crimination of coding versus noncoding transcripts, which is
accompanied by a well-described usage manual [12]. Such methods
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and additional considerations—i.e., bifunctional RNA transcripts
that are both mRNAs and ncRNAs—are reviewed in [43, 44].

There are two general approaches for the functional annotation
of noncoding RNAs: (1) homology search against known RNAs;
and (2) de novo identification of putative functional domains. The
former is more suitable for the annotation of small RNAs (e.g.,
tRNAs, snoRNAs, 5S rRNAs, snRNAs, miRNAs, etc.); however, an
increasing number of lncRNAs have been sufficiently characterized
and are amenable to this approach (see [45] and the most recent
release of RFAM). De novo computational annotation of noncod-
ing RNAs can be applied to both size categories of transcripts and
involves the elucidation of both sequence and structural character-
istics that are indicative of function. Comparison of sequence simi-
larity to orthologous genes, for instance, with BLAST [46], is a
commonly employed method for the identification of protein-
coding genes and ribosomal RNAs given their strong dependence
on sequence composition as well as crucial cellular functions. How-
ever, when comparing genes with similar functions across larger
evolutionary distances, sequence homology is outclassed by struc-
tural homology, where classical sequence alignment methods are
inefficient. Hidden Markov models [47, 48] and codon substitu-
tion matrices (e.g., PAM [49] or BLOSUM [50]) are employed to
overcome the sequence alignment barrier when faced with greater
sequence divergence than for protein-coding genes.

For noncoding RNAs, alternative computational strategies
must be employed to overcome the increased diversity of sequences
that are compatible with a given secondary or tertiary structure.
The evolutionary dynamics of noncoding RNAs are governed by
three factors: (1) They do not require the preservation of sequence
composition to convey a genetic code, i.e., codons, with the nota-
ble exception of the anticodon loop in tRNAs. (2) RNA structures
are more tolerant to nucleotide substitutions than proteins for
mutated codons. Indeed, 6 out of 16 possible canonical ribonucle-
otide combinations will form canonical base pairings, which include
Watson–Crick and G-U/U-G ‘wobble’ base pairs. Because RNA
structures can accommodate a higher frequency of base substitu-
tions than mRNAs—as long as they are consistent or compatible
with their paired nucleotide—bioinformatics tools investigating
noncoding RNAs must focus on secondary and tertiary structural
characteristics as well as primary sequence, where short patches of
high conservation may indicate important biochemical interac-
tions. (3) Since their biological function is often of regulatory
nature, they are more likely to be under positive selection for
adaptive radiation. This is most notable for lncRNAs.

3.1 Detecting

Homology to Known

Functional RNAs

The RFAM database encompasses several well-characterized non-
coding RNA families that are presented in multiple alignments
based on both their sequence and higher order structure topolo-
gies [51]. Until recently, the RFAM repository was mostly limited
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to entire RNA sequences, mainly small noncoding RNAs. Recent
updates to RFAM have expanded the repository to include some
lncRNAs as well as bona fide RNA structural motifs [52]. The
latter are defined as “a non-trivial, recurring RNA sequence
and/or secondary structure that can be predominantly described
by local sequence and secondary structure elements” and can be
part of a larger structure or noncoding RNA [53]. RFAM includes
Covariance Models (CMs) for each entry, or family, in the data-
base. CMs are a probabilistic representation of RNA structure
profiles that can be used to scan a genome (or transcriptome) for
sequences compatible with a given consensus structure. They can
be used by the Infernal program to scan large metazoan genomes
in minutes and report homologous hits with high accuracy [54].
The Infernal software package can also generate a CM from a
given multiple sequence and structure alignment and thus permits
using custom CMs to perform a search. Detailed instructions on
how to use Infernal can be found at http://infernal.janelia.org/
as well as in [55].

There are also alternative bioinformatics resources for RNA
structural homology search. The RNAmotif program enables
users to construct descriptors of a target RNA structure, then
scans a sequence database, and reports all compatible sequences
[56]. Although the software is somewhat out of date, RNAmotif’s
capacity to construct detailed and customized RNA structure
descriptors manually and with relative ease justify its pertinence. It
also enables the inclusion of tertiary structural elements such as
pseudoknots, triplexes, and quadruplexes. Unfortunately, it does
not consider thermodynamic stability or base-pairing probabilities
and, consequently, can produce a large amount of biologically
irrelevant hits unless the results are filtered appropriately (for a
practical example of how this may be performed, please refer to
the last paragraph of Subheading 3). Alternatively, the recently
developed LocaRNAscan algorithm [57] can consider the local
structural environment in the target sequence when performing a
scan using a base pair probability matrix (see later) as a query, which
can be generated from a single sequence or an alignment of several
sequences.

3.2 Predicting the

Structural Landscape

of Individual lncRNA

Sequences

The computational prediction of RNA secondary structures from
sequence alone was one of the first challenges in bioinformatics.
Consequently, modern software packages such as RNAfold [58],
UNAfold [59], and RNAstructure [60, 61] are quite efficient at
predicting the most thermodynamically stable RNA secondary
structure—Minimum Free Energy (MFE)—for a given input
sequence. Unfortunately, MFE structural predictions do not always
represent the biological reality and, on their own, are not usually
considered as a robust qualification of function. This is particularly
true for lncRNAs, which can be tens of thousands of nucleotides
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long. Locally stable RNA secondary structures, which might com-
pose functional units (or modules) of a lncRNA, can be overlooked
in favor of long-range base pairings that contribute more toward
lowering the overall free energy score. Furthermore, the dynamic
structural nature of RNA macromolecules also confounds RNA
structure prediction, as noncoding RNAs can form more than a
single functional structural topology (riboswitches are a good
example). It is therefore beneficial to consider an ensemble of
suboptimal structures when characterizing the function of noncod-
ing RNAs, as exemplified in Fig. 1.

A more biologically relevant alternative to the MFE structure is
the centroid, which consists of the structure with minimal distance
to all other structures in a set of suboptimal structures. The cen-
troid is usually generated through the partition function, which
estimates the statistical distribution of all possible RNA structures
within a given thermodynamic range (Boltzmann ensemble).
Although centroid estimators have been shown to outperform
MFE predictions on known RNA structures [62], they do not
necessarily inform about the stability or diversity of the structural
landscape for a given query sequence. The latter can be evaluated in
two ways: (1) through direct visual inspection of a base-pairing
probability matrix, such as that produced by the “RNAfold –p”
program in the Vienna RNA package (Fig. 1a)—a greater quantity
of smaller dots is indicative of a larger diversity of compatible base
pairings for a particular nucleotide, which is consistent with a
reduced likelihood of forming a stable structure; and (2) through
the command-line output of RNAfold, or the RNAfold webserver
[63], which produce a numerical estimate of the ensemble diversity,
as well as the frequency of the MFE within the ensemble (i.e., how
credible the MFE structure prediction is). A larger ensemble diver-
sity value suggests that the queried RNA sequence may form a
broader repertoire of structures or dynamically fluctuate between
intermediary structures.

As mentioned earlier, secondary structure prediction of indi-
vidual lncRNA sequences is not a trivial task. Fortunately, the
computational prediction of locally stable structural elements has
been shown to be more accurate than global RNA structural pre-
dictions for long RNA polymers [64]. This finding is consistent
with the general hypothesis that lncRNAs function via local struc-
tural (or unstructured) domains, such as protein-binding motifs or
RNA–DNA interactions (see Subheading 1). RNAplfold from the
Vienna RNA package [58] and its enhancement in LocalFold [64]
both offer a useful solution for the manual inspection of local
structural topologies in long noncoding RNAs. The tools produce
a base-pairing probability matrix that spans the entire RNA
sequence but limits the range of base-pairing interactions to a
user-definable threshold (Fig. 1d). This facilitates the identification
of locally stable (or unstable) structures, which can reveal putative
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Fig. 1 Representation of RNA secondary structure predictions for single sequences. (a) An RNA base-pairing
probability matrix representing both the minimum free energy structure prediction (below the diagonal) and
suboptimal base-pairing probabilities (above the diagonal) of a serine tRNA that forms five helices. The RNA
sequence of interest is displayed on the X and Y axes, where each dot represents possible base pairings
between bases (x,y). The size of the dots is indicative of the frequency (or probability) of the base pairings in a
Boltzmann ensemble of suboptimal structures, as calculated by McCaskill’s partition function algorithm in the
Vienna RNA package [58]. The base pairs forming the validated biological structure (b) are highlighted in blue
and numbered accordingly, whereas the unpaired bases forming the anticodon are highlighted in green. (c)
The MFE prediction forms a structure that is quite divergent to the actual tRNA, although the biological
structure is perceptible in the suboptimal base pairings. (d) A base-pairing probability matrix generated by the
RNAplfold algorithm on a ~400 nt section of the 30 end of the NEAT1 lncRNA. Locally stable base pairings are
displayed as described for (a), however the sequence is represented on the diagonal (i.e., the upper quadrant
of (b) is rotated 45�). In the lower left, the bases associated to the base pairs (dots) are highlighted in blue. In
the lower right, the tRNA-like structure at the 30 end of NEAT1 (as illustrated in Fig. 2c) is highlighted in red
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functional regions as well as guide the design of small interfering
RNAs for knockdown experiments. Alternatively, there are software
tools, such as Rnall [65], RNAsurface [66], RNAlfoldz (part of
the Vienna RNA package [58]), that can facilitate the identification
of RNA subsequences presenting strong local structural stability,
although a user-defined maximal base-pairing span is required.

3.3 Inferring

Function from an

Individual RNA

Sequence

If noncoding RNAs function through the formation of stable sec-
ondary structures, can structure predictions alone be used for de
novo functional annotation of ncRNAs? This question was first
examined over 30 years ago by comparing the RNA structure (or
‘folding’) score of a native RNA sequence to that of shuffled
sequences, under the premise that functional RNAs should form
more stable structures than random sequences [67–69]. This strat-
egy produced promising results, but it was consequently shown
that the relatively higher stability of native noncoding RNA
sequences reflected local biases in sequence composition rather
than structural features alone [70]. In particular, the energetic
contributions of base-stacking interactions were ignored (the
order of consecutively arranged base pairs can significantly alter
the free energy score). Some reports have since successfully applied
this approach to certain classes of noncoding RNAs by using ade-
quate background models that control for dinucleotide content
[71, 72]. Known and novel RNA elements have also been predicted
in the yeast genome using a similar strategy, several of which were
subsequently experimentally validated [73].

3.4 Detecting

Functional 2D Motifs

via Comparative

Genomics

The biological significance of lncRNAs has often been questioned
since they (generally) display lower conservation of primary
sequence than proteins in evolutionary comparisons [24, 74].
Conservation of RNA secondary or tertiary structure has rarely
been considered in such analyses, partially due to the more complex
bioinformatic analyses required to investigate such phenomena.
However, probing evolutionary data for evidence of RNA struc-
tural conservation is not substantially more difficult in practice than
evaluating primary sequence conservation. In this section, we
describe how to leverage the hallmark signature of RNA structural
conservation, i.e., base pair covariation, to identify putative func-
tional RNA motifs in multiple sequence alignments, using existing
software.

We recently showed that measuring RNA structure conserva-
tion from genomic sequence alignments of 32 mammals could
identify evidence of purifying selection on RNA structure motifs
that span over 13 % of the human genome, while presenting little
overlap with known sequence-constrained regions [33]. Evolution-
arily Conserved Structure (ECS) predictions with the human
genome as reference can be visualized in the UCSC genome
browser (Fig. 2) as follows:
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1. Browse to http://genome.ucsc.edu (or any UCSC Genome
Browser mirror), navigate to the ‘Genomes’ tab, then select
the hg19 human genome assembly.

2. Click on the ‘track hubs’ button, then select the ‘My hubs’ tab.

3. Paste in the URL for the ECS track hub (http://www.marti
nalexandersmith.com/hubs/ecs/hub.txt), then ‘Add Hub.’
The URL can also be obtained via the supplementary informa-
tion from [33].
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Fig. 2 Visualization of ECS predictions in the UCSC Genome Browser. (a) The NEAT1 lncRNA locus presenting
several ECS predictions from [33]. Six subtracks are displayed: SISSIz, SISSIz with RIBOSUM scoring, and
RNAz-derived results for all significant predictions and those with structure topologies and alignments
available to view on a web server (see Subheading 3). (b) Expanded, zoomed in view of the tracks with
structure representations. The RNA secondary structure consensus, flanked by the outermost base pair, is
represented by a thicker rectangle. The color of the bars corresponds to a relative measure of their scores
(darker ¼ stronger score). (c) Detailed illustration of a segment of the predicted structure and alignment
obtained by clicking on an ECS prediction from (b), which also provides general predictions statistics, a dot-
bracket representation of the consensus structure and the consensus sequence generated on the spot via the
Vienna RNA package [58]
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4. Browse to any region of interest, zooming out if the ECS track
hub titles appear and nothing is displayed under them in the
browser (usually,>1 KB of genomic span should be sufficient).
ECS predictions are split according to the algorithms that were
used to make the predictions (RNAz, SISSIz, and SISSIz þ
RIBOSUM). Although all the ECS predictions are statistically
significant (with a � 1 % false-positive rate), they are color
coded based on their relative scores (darker ¼ less likely to
arise by chance). After fully expanding the tracks, either by
clicking on the title of the track or in the individual track
configuration below the browser, the scores associated to the
predictions are displayed as the name of each ECS prediction.
SISSIz-derived predictions will display Z-scores, which repre-
sent the degree of observed structural conservation (in number
of standard deviations) from the mean of a background distri-
bution produced from SISSIz’s null model. There are two
subtracks for each employed algorithm: one supporting struc-
ture representations, one without. Those with structure repre-
sentation also have larger segments annotated within individual
ECSs; these correspond to the positions within the sampled
genomic alignments that contain the outermost base pairs
forming the conserved structure prediction (Fig. 1).

5. Expand the ECS track display settings to ‘pack’ or ‘full’ view by
clicking on the title bar or by selecting the appropriate view in
the drop-down menu below the browser interface window.

6. Directly click on a bar corresponding to an ECS prediction of
interest. Depending on the nature of the subtrack, this will
either: (1) link to a page with a rundown of the statistics for
the ECS of interest as well as a description of the methodology;
or (2) link to an external page with detailed statistics for the
selected ECS, a colored and annotated figure of the consensus
secondary structure corresponding, the multiple sequence
alignment (colored and annotated) that was used to make the
prediction, as well as the consensus structure and sequence in
dot-bracket format (Fig. 1c). The ECS tracks with structure
representations that link to an external page (as described
earlier) will display bars with thin and thick segments; the
thinner extremities correspond to regions in the sampled align-
ment that are not contained within the predicted secondary
structure, whereas the thicker internal portion of the bars
represents regions contained within the ECS prediction (see
Note 1).

7. Any combination of subtracks (i.e., all ECS predictions, pre-
dictions with structure representations, or the results for indi-
vidual algorithms) can be hidden (or redisplayed) by clicking
on the link in the title of the ECS predictions track, located in
the drop-down controls section of the UCSC browser below
the main window.
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There are several caveats pertaining to the data currently
contained within the ECS track hub for the UCSC browser.
These data are derived from genome-wide screens that are resource
intensive and, consequently, were applied to heuristic and not
necessarily accurate genome-scale multiple sequence alignments
(alignment errors can often be observed via close inspection of
alignments from step 6). The quality and amount of significant
ECS predictions will undoubtedly improve by realigning the que-
ried sequences with more robust algorithms, such asClustal Omega
[75],MAFFT [76] or, ideally, RNA structure alignment algorithms
(reviewed in [77]).

Another caveat is that the above-mentioned ECS predictions
are generated from sliding windows of �200 nucleotides (nt),
which includes multiple genome alignment columns that can pri-
marily be composed of indels. This means RNA base pairs that are
more than 200 nt apart are ignored. Furthermore, the sampled
alignment windows are offset by 100 nt, therefore conserved RNA
structures smaller than 200 nt may also be missed given an incom-
plete sampling of the structure’s boundaries.

An additional issue with the functional annotation of lncRNAs
is that many are spliced, often comprising relatively small exons.
Although the biological motives for lncRNA splicing remain enig-
matic, one possibility is that constitutively spliced exons are joined
to maintain the formation of higher order structures, whereas
alternatively spliced exons contain self-contained modular units.
Probing multiple alignments for evidence of RNA structural con-
servation in spliced transcripts would thus require pasting the
alignment blocks together first (reviewed in [42]), as well as addi-
tional considerations like splice site conservation and syntenic con-
tinuity in other species.

Performing a de novo scan for ECSs in multiple sequence
alignments, either from another reference species or from a set of
spliced alignments, can be quite computationally intensive. The
approach used for the genomic screen published in [33] can none-
theless be performed by anyone with basic command-line experi-
ence. For large alignments (whole genomes or chromosomes)

1. Download and install the following software packages (requires
compilation and linking the binaries to the environmental
$PATH variable):

(a) SISSIz 2.0 and RNAz 2.0 [78] available at http://marti
nalexandersmith.com/ecs or via links provided in their
original manuscripts (N.B. SISSIz 2.0 was released in
[33]).

(b) The Vienna RNA package at http://www.tbi.univie.ac.at/
RNA [58], preferably version 1.8.5 (newer versions may
not be compatible with the software in step 2).
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2. Download the JAVA archive containing the binary code
required to scan .maf files from the following URL (in the
software section): http://martinalexandersmith.com/ecs.

3. Ensure that the multiple (genome) sequence alignments have
the reference species in the first row with genomic coordinates
in the appropriate field of the .maf file. This will be used to
output the genomic coordinates of the predictions during the
scan. Also, ensure that the alignments present sufficiently long
blocks (see Subheading 2 and Note 2).

4. Launching the following command (in the appropriate direc-
tory) from a UNIX terminal will provide more verbose infor-
mation on the basic usage and available parameters: ‘java –jar
MafScanCcr.jar.’ Some options include window size, step or
‘sliding’ distance, realignment of the input with the multiple
sequence alignment programMAFFT, number of processors to
use, etc.

5. Execute the program with the selected parameters. The pro-
gram will load one alignment block of the .maf input file at a
time, with an optional realignment step to increase accuracy at
the expense of computation time. Next, N windows are sam-
pled concurrently, where N is the number of specified proces-
sors (the alignments can also be run in parallel on a computer
cluster).

6. The program will save all sampled subalignments that score
above the respective thresholds for each employed algorithm.
Genomic coordinates associated to significant ECS predictions
for the alignment’s reference species are also emitted to the
standard output in browser extendable (.bed) format. Simply
redirect the standard output to a file, e.g., ‘> output.bed’ from
the UNIX terminal. Alternatively, genomic coordinates can be
recovered from the file names of the saved alignments, which
encode a 6-field underscore delimited bed-compatible entry.
Furthermore, the name field of the .bed entries also encodes
colon-delineated statistical information about the alignment
used to make the ECS prediction. This includes (in order):

(a) Number of retained sequences.

(b) Raw mean pairwise identity (including indels).

(c) Mean pairwise identity (normalized to the shortest gapless
sequence length).

(d) Relative gap (indel) content.

(e) Standard deviation of the (normalized) mean pairwise
identity.

(f) Normalized Shannon entropy.

(g) Relative GC content.
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(h) Scoring algorithm employed: s ¼ SISSIz 2.0; r ¼ SISSIz
2.0 with RIBOSUM scoring; z ¼ RNAz-2.0.

The fifth field of the .bed entries represents the score associated
with the predictions. The scores have been modified to accom-
modate representation in the UCSC genome browser, which
only supports integer values. Z-scores from SISSIz predictions
are multiplied by �100 (�2.54 ¼ 254), whereas RNAz-
derived scores are simply multiplied by 100 (0.85 ¼ 85).

7. The topology of a given ECS prediction can be visualized by
running the RNAalifold program from the Vienna RNA pack-
age on the multiple alignment associated to the predicted ECS.
The default RNAalifold options are suitable for ECS predic-
tions from SISSIz and RNAz, but the RIBOSUM scoring
option ‘-r’ should be used otherwise.

8. Because the ECS predictions are based on a consensus, it is
possible that the reference species forms a structure that is not
compatible with the consensus. To evaluate the likelihood of
this structural congruence, an auxiliary program is available to
process the alignments output from step 6 (see the supplemen-
tary information of [33]). The ParseAlifold.jar program per-
forms twomain tasks: (1) trimming the genomic coordinates of
the reference species to the outermost base pairs of the consen-
sus structure; (2) measuring the relative difference between the
native secondary structure for the sampled reference sequence
and that produced from constraining the structure to the con-
sensus, as produced from the ‘RNAfold –C ’ command from
the Vienna RNA package [58]. This is done for both the
minimum free energy and the base-pairing probabilities gener-
ated from the partition function implemented in RNAfold,
where the probabilities of base pairs from the consensus are
extracted from the base-pairing probability matrix. The .bed 6
plus formatted output prints to the terminal’s standard output
and contains the following additional fields:

(a) Average base-pairing probability of the minimum free
energy structure for the reference species. If the base is
unpaired, this value is calculated as 1—the sum of all
probabilities for the given base.

(b) Average base-pairing probability of consensus-
constrained reference structure.

(c) Base-pairing probability ratio (constrained/native).

(d) Free energy (kcal/mol) of the consensus-constrained ref-
erence sequence.
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(e) Minimum free energy (kcal/mol) of the native reference
sequence.

(f) Free energy ratio (constrained/native).

(g) Length of prediction (nt).

(h) Dot-bracket secondary structure mask of RNAalifold
consensus. Ex: (((((. . .))))).

3.5 The Next

Frontier: Functional

Parsing of lncRNAs

In higher eukaryotes, recurring RNA structural motifs that display
evidence of evolutionary conservation provide a tangible basis for
the functional annotation of noncoding sequences, as they may
indicate protein-interaction domains that potentially nucleate reg-
ulatory networks. For example, Parker et al. [79] performed a
similar analysis using evolutionarily conserved RNA secondary
structures predicted with EvoFold [80] to generate profile Stochas-
tic Context-Free Grammars (SCFGs), which were then used to scan
the human genome for paralogs to the RNA structural predictions.
The results were grouped into RNA families based on their struc-
tural similarities and revealed 220 families of RNA structures,
including 172 novel RNA structure families.

However, as effective as bioinformatic methods may be, they
seldom indicate what biological functions or processes are involved
(unless, of course, there is a high level of homology to well-
characterized RNAs). Assigning biological functions to novel RNA
structuralmotifs canbe achieved viamodern experimental techniques
predicated on high-throughput sequencing, such as RNA immuno-
precipitation (RIP-Seq), crosslinking immunoprecipitation (CLIP-
Seq), and chromatin isolation by RNA purification (ChiRP-Seq).
These methods can identify the RNAs interacting with specific pro-
teins, providing sets of RNA sequences that share the same protein-
binding characteristics. The increasing availability of next-generation
sequencing technologies will likely increase contributions to public
specialized databases such as starBase [81], which contains numerous
RNAseqdata sets relating toRNA–protein interactions.Mining these
data with advanced bioinformatics tools will bridge the gap between
functional annotation of lncRNAs and RNA structure prediction.

Computational identification of RNA structures common to a
set of sequences can currently be performed via clustering algo-
rithms based on pairwise comparison scores, obtained through
either RNA structure alignment algorithms (e.g., CARNA [82],
LocaRNA [83], FOLDALING [84, 85]) or other secondary struc-
ture comparison strategies (e.g., GraphClust [86], RNACluster
[87], and NoFold [88]). These approaches have been applied to
small RNA sequences and have successfully identified both known
and yet to be characterized noncoding RNA families based on their
shared secondary structures [79, 83, 85, 87, 88]. Unfortunately,
lncRNA sequences are not directly amenable to such structure-
motif enrichment approaches because they may harbor extraneous
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sequence elements, thus requiring additional processing such as the
extraction of subsequences presenting stable RNA structure
domains. Refining the aforementioned methods and applying
them to sequencing data that target RNA–protein interactions
will help identify new functional RNA structure motifs, which
can, in turn, serve to index genomic sequences. This strategy will
lay the foundations required to unravel the structure–function
relationships of lncRNAs, categorize their repertoires, and annotate
the expanses of noncoding sequences in vertebrate genomes.

4 Notes

1. Sense or antisense? Given the complementary nature of canoni-
cal RNA base pairs (G–C/C–G), it is not uncommon to find
that both strands of DNA produce high scoring, consensus
secondary structure predictions. When these bidirectional
structure predictions arise in regions with little or no associated
transcription, determining the most likely orientation of the
putative transcript can be quite difficult. Sequences with high
GC content are more susceptible to this phenomenon because
there are fewer G–U base pairs, which can effectively be used to
discriminate the host transcript’s orientation (the antisense
A–C base pair does not contribute to canonical Watson–Crick
base pairing). Occasionally, visual inspection of the alignments
and consensus RNA secondary structures can be sufficient to
identify the most likely orientation, i.e., the strand that pro-
duces more base pairs (G–U in particular). Otherwise, the most
likely orientation can sometimes be determined by using the
RNAstrand program [89], a machine learning algorithm
which was specifically developed for this purpose (not covered
here).RNAstrand generates a score which estimates the orien-
tation of a consensus RNA secondary structure from a given
multiple sequence alignment used as input.

2. Genomic alignments and block sizes. As a strict minimum, the
blocks should be at least the length of the window size for
sampling structure conservation (by default, 200 nt). The lon-
ger the blocks are, the more consecutive overlapping windows
will be sampled, which will provide greater genomic coverage
of the computational screen. Usually, alignments with more
species will present shorter blocks given the greater diversity of
synteny. In this case, ‘stitching’ the alignment blocks together
can also abrogate synteny in nonreference sequences (i.e., all
but the first row in the alignment), which may introduce
uncertainty in the consensus structure evaluation as noncon-
tiguous sequences are treated as contiguous. For example, a
500 nt segment from human chromosome 12 might align to a
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250 nt segment from mouse chromosome 3 and 250 nt from
mouse chromosome 6, therefore any windows sampled between
the segment joining both mouse chromosomes will not reflect
the biological reality (unless these regions are prone to fusion or
trans-splicing events, an unlikely predicament). From a practical
viewpoint, the multiple genome alignments produced by the
Enredo-Pecan-Ortheus pipeline [39, 90] (available via the
ENSEMBL comparative genomics portal: http://ensembl.
org/info/genome/compara/index.html) present much longer
syntenic blocks than those from TBA/Multiz [41] (accessible via
the UCSCGenome Browser comparative genomics tracks), thus
avoiding the need to ‘stitch’ several small alignments together.
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