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iNKT Invariant natural killer T cells
MAIT Mucosal-associated invariant T cells
STAT3 Signal transducer and activator of transcription 3
cTfh Circulating follicular helper T cells

To the Editor
Autosomal dominant hyper-IgE syndrome (AD-HIES) is a
primary immunodeficiency characterized by severe eczema,
elevated serum IgE levels, and increased susceptibility to in-
fection with Staphylococcus aureus andCandida albicans [1].
Typical non-immunologic features include joint
hyperflexibility, delayed shedding of deciduous teeth, frac-
tures due to minor trauma, and vascular anomalies. AD-
HIES is caused by dominant-negative mutations predominant-
ly in the DNA binding and Src homology 2 (SH2) domain of
signal transducer and activator of transcription 3 (STAT3)
[1–5]. Previously named Job’s syndrome, the syndrome took
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its name from the finding of marked elevation of polyclonal
serum IgE. The STAT3-HIES clinical phenotype score in pa-
tients with elevated IgE serum levels (>1000 IU/mL) summa-
rizes the main clinical and laboratory findings in AD-HIES
(score >40) and facilitates early diagnosis of AD-HIES and
thus initiation of appropriate therapy [6].

IgE levels vary in AD-HIES over time with lower levels
in infancy, elevated levels in childhood, and declining
levels in adults [1]. The pathophysiology of the elevated
IgE is still incompletely understood: it is unclear whether
the explanation lies in the requirement for STAT3 signaling
in the B cell or in the T cells providing help to B cells in the
antibody response [7]. Recent work by Kane et al. used
conditional loss of STAT3 in B cells to show that deficien-
cy of STAT3 in B cells alone recapitulates the aberrantly
elevated IgE level, at least in the setting of a murine model
of complete STAT3 deficiency [8]. Elevated serum IgE
levels are neither essential nor sufficient for the diagnosis
of AD-HIES as: (i) singular cases of AD-HIES with normal
serum IgE in early childhood have been described and (ii)
the finding of elevated serum IgE can lead to incorrect
phenotypical diagnosis of AD-HIES [9, 10].

Numerous cellular defects have been reported in AD-
HIES, and several of these contribute to disease pathogenesis.
A lack of Th17 cells is central to the pathogenesis of candidi-
asis and perhaps staphylococcal infection in patients with AD-
HIES [11]. Lack of IL-17-mediated immunity is key to the
development of chronic mucocutaneous candidiasis and to a
lesser extent recurrent staphylococcal infection in various
PIDs [12–17]. Ma et al. demonstrated that signaling through
STAT3 downstream of the IL23R is required for Th17 devel-
opment [17]. Patients with LOF mutations in STAT3 have
reduced numbers of T follicular helper cells (Tfh) ex vivo as
evidenced by decreased proportions of circulating CD4(+
)CD45RO(+)CXCR5(+)T cells [7]. Moreover, Deenick and
Tangye described reduced numbers of invariant Natural
Killer T (iNKT) and mucosal-associated invariant T (MAIT)
cells yet normal γδ T cells in AD-HIES, pointing to a role for
STAT3 signaling in the generation and/or maintenance of
these innate-type T cells [18].

We present a molecular diagnosis of a missensemutation in
STAT3 in an 8-year-old boy with normal serum IgE levels. The
report is compelling for several reasons. First, we describe a
novel mutation in the DNA-binding domain of STAT3.
Second , a l though the immunolog ica l and non-
immunological phenotypes were explicit and severe, the ab-
sence of elevated IgE and the presence of autism led to a delay
in diagnosis and treatment. Finally, we report the patient’s
normal numbers of iNKT cells and MAIT cells yet elevated
γδ TCR T cells expressing predominantly Vδ1. This report
highlights the power of clinical acuity and the relevance of
pursuing a molecular diagnosis even if the laboratory values
do not add up.

Case Description

An 8-year-old boy born to non-consanguineous parents of
Flemish descent was admitted with S. aureus sepsis and pleu-
ropneumonia. His past medical history was noteworthy with
severe eczema from birth and extensive diaper dermatitis.
Other medical concerns included mucocutaneous candidiasis,
frequent upper and lower respiratory tract infections from
birth, gingivitis and stomatitis, and six episodes of typical
febrile seizures prior to the age of 4. Extraction of three pri-
mary teeth was necessary to allow for normal eruption of
permanent teeth. His wrist was fractured twice after minor
trauma. He was diagnosed with autism-spectrum disorder at
age 5. Because of autism with mild dysmorphic features,
Beckwith-Wiedemann syndrome (OMIM 130650), Coffin-
Lowry syndrome (OMIM 303600), and ATR-X syndrome
(OMIM 300032) were excluded by Sanger sequencing.

Basic immunological work-up was normal (Table SI).
Upon the first visit to the pediatric primary immunodeficiency
clinic, AD-HIES was suspected. However, serum IgE level
was normal at 180 IU/mL. More extensive analysis showed
low switched memory B cells (compatible with but not
specific for AD-HIES) and high CD3(+) γδTCR(+) T cells
(+/− 20% of CD3(+) cells). The anti-polysaccharide antibody
response to unconjugated pneumococcal vaccine was normal.
The NIH score for HIES and STAT3-HIES were both 42
(probable AD-HIES) [1, 6]. Sanger sequencing of STAT3
showed a heterozygous variant: g.40485745T>G resulting in
the replacement of a highly conserved histidine amino acid at
position 332 in the DNA-binding domain of STAT3 by proline
(H332P; Figure S1, S2). This variant was not found in public
databases. Polyphen2 score is 0.995 (probably damaging),
and SIFT score is 0.051 (tolerated). CADD score
(NC_000017.10 g.40485745T>G, NM_003150.3
c.995T>G) (Ensembl genome browser 75 public database;
Assembly GRC37/hg19) is 25.9 and MSC for CADD is
15.290. The amino acid at position 332 is conserved through-
out species (Figure S3). The substitution occurred de novo, as
it was absent in both parents (data not shown).

We studied the functional impact of the H332P substitu-
tion. Tyrosine phosphorylation of STAT3 at position 705 after
IL-21 stimulation was intact in the index patient (see Online
Supplement for Materials and Methods; Figure S3). Binding
of H332P STAT3 to DNA was decreased compared to the
control; similar results were observed for STAT3 from patients
with previously confirmed pathogenic mutations.
Functionally, STAT3-dependent inhibition of LPS-induced
TNF-α production mediated by IL-10 in monocyte-derived
macrophages was abolished in the patient compared to a
healthy control [6] (see Online Supplement for Materials and
Methods; Fig. 1) confirming the LOF effect of the mutation.
The impact of the p.H332P mutation on the crystal structure of
STAT3 is shown in Fig. 2. Amino acid position 332 is situated
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in the core of the DNA binding domain in the vicinity of an
asparagine residue at position 466, which binds the DNA se-
quence (Fig. 2a) [19]. The positively charged H332 forms a salt
bridge with the negatively charged phosphate backbone of the
DNAhelix. TheH332Pmutation disrupts this salt bridge, there-
by hampering the interaction with the DNA strand (Fig. 2b).

The percen tage of IL-17A-produc ing CD4(+
)CD45RA(−)T cells following S. aureus enterotoxin B stimu-
lation was significantly decreased in the index patient and two
additional STAT3 deficient AD-HIES patients with known
pathogenic mutations compared to healthy donors (p =
0.017) (Fig. 3a, b). In IL-17A secretion after stimulation with
PHA, heat-inactivated C. albicans and S. aureus was low
(Fig. 3c, d) whereas IFN-γ secretion was normal. The percent-
age of Tfh cells was decreased in the index patient and in

confirmed AD-HIES patients compared to healthy individuals
(p = 0.024, Fig. 3e). There was a predominance of Vδ1+ T
cells (7.6% of CD3(+) cells) in the index patient (Fig. 3f)
and he had normal numbers of iNKT cell and MAIT cells
(Fig. 3g, h).

Discussion

This report highlights several aspects of PID in general and
AD-HIES in particular. First, the infectious phenotype of the
described patient was highly suggestive of a PID, specifically
AD-HIES. Nevertheless, the patient only came to our attention
after he had been admitted to a tertiary care hospital with
S. aureus sepsis. The NIH score and adapted STAT3 HIES
score were both predictive of a STAT3mutation. We identified
a novel mutation in the DNA-binding domain of STAT3
(H332P) and validated it by analyzing its effect on DNA bind-
ing and on cytokine production. Different amino acid substi-
tutions at the same position have previously been reported
(H332Y, H332L) [20]. This case highlights the high sensitiv-
ity of the clinical phenotype of AD-HIES to detect a STAT3
loss of function mutation, independent of the level of IgE.
Especially in children, investigations for AD-HIES should
not be delayed because of normal IgE. At least two other
pediatric cases of AD-HIES with normal IgE have been de-
scribed (2 months and 7 years of age) [10]. By the age of 8,
both children had IgE levels above 1000 kU/L (personal com-
munication, Chandesris and Picard). The cases reported with
the H332Y and H332L STAT3 mutations had elevated IgE
(>1000 kU/L) suggesting that the normal IgE in the index
patient is not a feature of the novel mutation (personal com-
munication, E Renner). The normal IgE in this report is there-
fore surprising and unexplained.

Second, the presence of autism and mild developmental
delay combined with some dysmorphic features had led to
referral to clinical genetics and multiple diagnostic Sanger
sequencing runs, diverting attention from the obvious in-
fectious phenotype. One patient with AD-HIES and autism
has previously been reported [21–24]. Several PIDs are
associated with developmental delay and autism-spectrum
disorders, e.g., Di George syndrome, Coronin1A deficien-
cy, and GATA2 deficiency [22–24]. In light of this espe-
cially in children, a diagnosis of autism and presence of
dysmorphic features cannot be uncoupled from the infec-
tious phenotype and a genetic diagnosis explaining the
entire phenotype should be sought. This has important
therapeutic implications: in the index case, adequate anti-
biotic and antifungal prophylaxis led to excellent control of
infections with an important functional impact on the
child’s behavior both at school and at home.

Third, an essential role for STAT3 signaling in controlling
unconventional T cell number and function was recently
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Fig. 1 Binding of H332P STAT3 to DNA (upper panel) and STAT3-
dependent inhibition of LPS-induced TNF-α production (lower panel). a
STAT3-dependent DNA-binding capacity of nuclear extracts as ratio of
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unstimulated condition for STAT3 WT LCL (control), STAT3 H332P
LCL (patient), and two LCLs with confirmed STAT3 mutations in the
DNA-binding domain (H382WandH437P) (TransAmSTAT3). b STAT3
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n = 3) and AD-HIES patient (H332P STAT3). Presented is the TNF-α
release after LPS stimulation with or without addition of IL-10
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identified [18]. The index patient has normal numbers of
iNKT cells and MAIT cells. We identified another STAT3
deficient patient (G617V) with normal iNKT and MAIT cell
numbers in our cohort (unpublished observation). However,
another AD-HIES patient included as a positive control
showed low numbers of these cells, in accordance with earlier

findings [18]. These findings stress the variability in uncon-
ventional T cell numbers in AD-HIES. Interestingly, the index
patient has high numbers of Vδ1+ cells, which usually con-
stitute a minority of blood γδ TCR T cells [25]. We hypothe-
size that the peripheral blood expansion of Vδ1+ Tcells in this
patient results from chronic infection with Candida sp.
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symbol (Y705H)]. c, d IL-17A (c) and IFN-γ (d) production (pg/mL)
by PBMC from healthy donors (black symbols; n = 6–11), compared to
the index patient (red symbol) and one AD-HIES patient with confirmed
pathogenic LOF mutation in STAT3 (Y705H (blue symbol)) after
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Candida albicans (HKCA) and heat-inactivated S. aureus (HKSA) as
measured by ELISA. e Percentage of cTfh cells [CD4(+)CD45RO(+
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Fig. 2 The influence of the
H332P mutation on the crystal
structure of STAT3 and its impact
on DNA binding. The STAT3
dimer bound to DNA is
represented as a cartoon (blue to
red for N to C termini) on the left
side. a depicts the zoom in on the
wild-type structure in which the
positively charged His332 binds
the negative phosphate backbone
of the DNA represented by the
dashed yellow lines (salt bridge).
b In the mutant structure, this salt
bridge is lost, hampering the
interaction with the DNA strand
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Interestingly, the two other STAT3+/− patients had no docu-
mented or reported Candida infection. Two recent papers
demonstrate that in HIV patients with candidiasis Vδ1+ T
cells are important sources of IL-17 [26, 27]. More research
is needed on the function of γδ TCRT, MAIT, and iNKTcells
in conditions of Th17 deficiency, especially since these un-
conventional T cells have been implicated in recognition of
S. aureus and C. albicans, two key pathogens in AD-HIES.

In conclusion, we report a novel loss-of-function mutation
in STAT3 in a patient with a typical clinical phenotype of AD-
HIES yet with normal serum IgE. Although elevated IgE is a
hallmark of the disease, it is not essential for the diagnosis of
AD-HIES. Moreover, the patient displays increased γδ T cell
numbers in the peripheral blood as well as normal NKT and
MAITcells adding to the mystery of unconventional T cells in
monogenic PID syndromes. Finally, even in the era of next
generation sequencing, clinical acuity sometimes prevails: in
the absence of clear biochemical or immunological (in the
sense of hematological) phenotype, the diagnostic pathway
should be followed including molecular diagnosis if the clin-
ical phenotype is strongly suggestive of a particular PID.
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