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Activity-Dependent Changes in Gene Expression
in Schizophrenia Human-Induced Pluripotent
Stem Cell Neurons
Panos Roussos, MD, PhD; Boris Guennewig, PhD; Dominik C. Kaczorowski;
Guy Barry, PhD; Kristen J. Brennand, PhD

IMPORTANCE Schizophrenia candidate genes participate in common molecular pathways that
are regulated by activity–dependent changes in neurons. One important next step is to
further our understanding on the role of activity-dependent changes of gene expression in
the etiopathogenesis of schizophrenia.

OBJECTIVE To examine whether neuronal activity-dependent changes of gene expression are
dysregulated in schizophrenia.

DESIGN, SETTING, AND PARTICIPANTS Neurons differentiated from human-induced
pluripotent stem cells derived from 4 individuals with schizophrenia and 4 unaffected control
individuals were depolarized using potassium chloride. RNA was extracted followed by
genome-wide profiling of the transcriptome. Neurons were planted on June 21, 2013, and
harvested on August 2, 2013.

MAIN OUTCOMES AND MEASURES We performed differential expression analysis and gene
coexpression analysis to identify activity-dependent or disease-specific changes of the
transcriptome. Gene expression differences were assessed with linear models. Furthermore,
we used gene set analyses to identify coexpressed modules that are enriched for
schizophrenia risk genes.

RESULTS We identified 1669 genes that were significantly different in schizophrenia-
associated vs control human-induced pluripotent stem cell–derived neurons and 1199 genes
that are altered in these cells in response to depolarization (linear models at false discovery
rate �0.05). The effect of activity-dependent changes of gene expression in
schizophrenia-associated neurons (59 significant genes at false discovery rate �0.05) was
attenuated compared with control samples (594 significant genes at false discovery rate
�0.05). Using gene coexpression analysis, we identified 2 modules (turquoise and brown)
that were associated with diagnosis status and 2 modules (yellow and green) that were
associated with depolarization at a false discovery rate of �0.05. For 3 of the 4 modules, we
found enrichment with schizophrenia-associated variants: brown (χ2 = 20.68; P = .002),
turquoise (χ2 = 12.95; P = .04), and yellow (χ2 = 15.34; P = .02).

CONCLUSIONS AND RELEVANCE In this analysis, candidate genes clustered within gene
networks that were associated with a blunted effect of activity-dependent changes of gene
expression in schizophrenia-associated neurons. Overall, these findings link schizophrenia
candidate genes with specific molecular functions in neurons, which could be used to
examine underlying mechanisms and therapeutic interventions related to schizophrenia.
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G enetic studies have implicated numerous risk vari-
ants for schizophrenia.1-7 One of the next challenges
is to further understand the biological mechanisms of

the large number and diversity of genes that are associated with
schizophrenia. To do that, we need to generate functional data
capturing molecular pathways that are relevant to schizophre-
nia and examine the involvement of multiple candidate genes.
Such strategy holds the potential to advance our understand-
ing of the underlying molecular basis of schizophrenia and a
way to develop novel treatments.

Studies suggest that a convergent molecular pathway
dysregulated in schizophrenia is the signaling network that
modulates synaptic strength or the network of genes that
are targets of fragile X mental retardation protein.2,7 In addi-
tion, these networks are enriched for genes affected by
mutations in autism and intellectual disability,7 providing
further insight for a pathophysiology shared among neu-
rodevelopmental disorders. Interestingly, both gene net-
works are composed of many proteins for which expression
is regulated by neuronal activity,8 further suggesting that
schizophrenia might be driven by dysregulation of neuronal
activity–dependent synapse development and function.

Neurons differentiated from human-induced pluripo-
tent stem cells (hiPSCs) can assess human brain cellular
properties9 and have the potential to detect changes of gene
expression in response to neuronal depolarization. We used
hiPSC neurons derived from patients with schizophrenia
and unaffected control individuals and identified disease-
specific differences in gene expression as well as blunted
effects of activity-dependent changes of gene expression in
schizophrenia compared with control samples. Further-
more, these differentially expressed genes are coexpressed
in modules that are highly enriched for genes affected by
genetic risk variants in schizophrenia and other neurodevel-
opmental disorders. In this study, we aimed to determine
whether schizophrenia candidate genes converge to gene
networks that are associated with the differential effect of
activity-dependent changes of gene expression in schizo-
phrenia.

Methods
Generation of hiPSC Neurons and RNA Sequence
Forebrain neural progenitor cells (NPCs) previously differen-
tiated from case and control hiPSCs as reported9,10 were sub-
jected to 6 weeks of neuronal differentiation and maturation
(eAppendix in the Supplement). Because all research de-
scribed herein was performed on deidentified human samples
obtained for broadly consented scientific research by either
American Type Culture Collection or the Coriell Cell Reposi-
tory, it was found to be exempt by the internal review com-
mittee of the Icahn School of Medicine at Mount Sinai. Neu-
rons were treated with 50mM potassium chloride (or
phosphate-buffered sulfate vehicle control) for the final 3 hours
prior to harvest. Five hundred nanograms of total RNA were
used as input material for library preparation using the TruSeq
Stranded Total RNA Kit (Illumina).

Preprocessing of RNA-Seq Data and Differential
Expression Analysis
Reads were mapped to hg19 reference genome using TopHat.
After exploratory analysis, we identified and included the
following 5 covariates in the differential gene expression
analysis: diagnosis, treatment, sex, age, and RNA integrity
number. For each transcript, we fit linear regression models
for the effect on gene expression of each variable, using
the limma package: gene expression ~ diagnosis + treat-
ment + covariates.

Differentially expressed genes were determined at false
discovery rate (FDR)11 of 0.05 or less. The χ2 results were
determined using the Fisher method.

Real-Time Polymerase Chain Reaction
We validated transcripts that were significant for disease
status or altered after depolarization using real-time poly-
merase chain reaction. Briefly, 500 ng of total RNA were used
for complementary DNA (cDNA) synthesis, and each cDNA
sample was amplified in triplicate using SYBR Green (Ther-
moFisher Scientific). The primers used for this analysis are
described in eTable 1 in the Supplement.

Weighted Gene Coexpression Analysis
We constructed unsigned gene coexpression networks using
the weighted gene coexpression analysis (WGCNA) package in
R (R Programming), starting with the normalized and residu-
alized (removing effect of age, sex, and RNA integrity num-
ber) expression data for 13 903 genes. For these data, we used
an R2 cutoff of 0.85, which corresponded to a selection of β = 7.
Ordered from largest (the module containing the most genes)
to smallest, each module was sequentially assigned a color
name. The less well-connected genes were arbitrarily grouped
in the gray module.

Gene Sets for Enrichment Analyses
Enrichment analysis was performed using gene sets for known
molecular pathways and biological processes, including gene on-
tology (http://www.geneontology.org)12; the Reactome data set
(http://www.reactome.org)13; and the HUGO Gene Nomenclature
Committee gene families (http://www.genenames.org).14 In
addition, to further characterize the data-driven coexpressed
modules, we generated a group of gene sets derived from
previous schizophrenia genetic findings, cell type–specific
studies, or coexpression analyses. The genes in each module

Key Points
Question Is the neuronal activity-dependent change of gene
expression dysregulated in schizophrenia?

Findings In this genetic analysis, candidate genes converged to
gene networks that are associated with differential effect of
activity–dependent changes of gene expression in schizophrenia.

Meaning Candidate genes for schizophrenia might act through
dysregulation of the ability of neurons to activate molecular
processes in response to depolarization.
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were tested for overlap using Fisher exact test and FDR
correction across all modules and all gene sets tested.

Enrichment of Modules With Genetic Risk Loci
We tested the enrichment of modules for genes found in ge-
netic loci previously associated with schizophrenia, includ-
ing (1) 108 loci discovered in a common variant genome-wide
association study1; (2) a literature consensus of 12 copy num-
ber variant regions collated from numerous rare copy num-
ber variant studies15; and (3) 756 nonsynonymous (mostly
missense but also including 114 loss-of-function [nonsense,
essential splice site, or frameshifting indels]) de novo
mutations.2-6 In addition, we used published de novo muta-
tions across 3 neurodevelopmental disorders, including au-
tism spectrum disorders,16-19 intellectual disability,20-23 and
epilepsy.24,25

Results
Differential Expression Between Cases With Schizophrenia
and Controls
In previous publications, we directly reprogrammed fibro-
blasts from 4 patients with schizophrenia and 6 control indi-
viduals into hiPSCs and differentiated these disorder-specific
hiPSCs into forebrain NPCs10 and neurons.9 As previously re-
ported, spatial patterning, replication, and propensity to-
ward neuronal differentiation of NPCs does not appear to vary

based on psychiatric diagnosis.9,10 When differentiated to neu-
rons, forebrain NPCs yield a population of forebrain hiPSC
neurons that are vesicular glutamate transporter 1–positive and
so are presumably excitatory glutamatergic neurons, al-
though approximately 30% of neurons are glutamate decar-
boxylase 67–positive (GABAergic).9

In this study, we compared global transcription of hiPSC
forebrain neurons from 4 control participants and 4 patients
with schizophrenia (eTable 2 in the Supplement) with or with-
out potassium chloride-induced depolarization (PCID). RNA
sequencing was performed and we obtained, on average, 21.5
million paired-end reads, among which 94% were mapped on
the genome (eTable 2 in the Supplement). Following data nor-
malization, there were 13 903 genes for analysis, of which 12 678
were protein coding. Multidimensional scaling separated con-
trol samples from schizophrenia samples and phosphate-
buffered sulfate from potassium chloride–treated samples
(eFigure 1 in the Supplement). We first explored transcrip-
tional changes related to schizophrenia by identifying differ-
entially expressed genes (DEGs) between schizophrenia and
control neuronal samples. We identified 1669 DEGs at FDR of
0.05 or less (eTable 3 in the Supplement), as illustrated by the
heat map (Figure 1A) and volcano plots (Figure 1B). Among the
1669 DEGs, 854 were upregulated and 815 were downregu-
lated in schizophrenia with a moderate to strong effect (mean
log2 fold change [FC], 3.91; range, 0.77-14.50). eFigure 2 in the
Supplement shows illustrative examples for 2 DEGs that have
also been previously associated with schizophrenia genetic

Figure 1. Differential Expression Between Control and Schizophrenia Human-Induced Pluripotent Stem Cell (hiPSC) Neurons
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A, Bivariate clustering of samples (columns) and the 1669 differentially
expressed genes for diagnosis at false discovery rate of 0.05 or less (rows)
shows the case-control differences as marked by the cyan-pink horizontal color
bar at top. Higher or lower expression per sample is marked in cyan or red,
respectively. The vertical color bar indicates whether genes are coding or

noncoding and the distribution of false discovery rate for each comparison.
B, Volcano plots of −log10 P value vs log2 fold change for control and
schizophrenia hiPSC neurons. Among the 1669 differentially expressed genes,
854 were upregulated and 815 were downregulated in schizophrenia. The most
significant differentially expressed genes are indicated.
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loci1: CACN2B (log2 FC, −2.1; P = 8.7 × 10−4 at FDR 1.6%) and
GRM3 (log2 FC, 3.3; P = 2.5 × 10−3 at FDR 3.0%). The results
from the DEG analysis were validated for 4 transcripts using
quantitative polymerase chain reaction (eFigure 3 in the
Supplement).

We examined differential expression in a previous sample
that generated gene expression data using microarrays from
4 patients with schizophrenia (12 microarrays) and 4 control
individuals (12 microarrays).9 While these arrays differed from
RNAseq in their capture features, the correlation of test sta-
tistics for differential expression in this current data set com-
pared with the previous was significant: Spearman correla-
tion ρ = 0.62 (P = 5.7 × 10−161) for the subset of significantly
DEGs also present in the previous data set (n = 1509 genes)
(eFigure 4 in the Supplement). Pathway enrichment analysis
across a broad set of pathways was conducted for interpreta-
tion of the list of DEGs. The most enriched categories in-
cluded pathways related to organization of extracellular ma-
trix, cell adhesion, and binding of calcium ion (eFigure 5 in the
Supplement). We note that pathway enrichment analysis using
the DEGs from the microarray analysis show enrichment for
similar pathways, with the exception of the biological pro-
cess related to the response to retinoic acid that shows higher
enrichment in this data set (data not shown). Overall, these re-
sults indicate that only a few specific pathways are affected
in schizophrenia vs control neurons.

Activity-Dependent Differential Gene Expression Analysis
We next examined transcriptional changes related to PCID.
We identified 1199 DEGs at FDR of 0.05 or less (eTable 4 in
the Supplement). Among the 1199 genes, 595 were upregu-
lated and 604 were downregulated in response to PCID
with a moderate effect (average log2 FC, 1.26; range,
0.45-4.82) (Figure 2A). Unsupervised clustering shows a
clear separation of PCID signatures in controls but less clear
in schizophrenia, indicating a less significant effect of PCID
on gene expression in schizophrenia (Figure 2B). eFigure 6
in the Supplement shows 2 illustrative examples for
SLC38A2 (log2 FC, 4.2; P = 1.4 × 10−8 at FDR 0.007%) and
THNSL1 (log2 FC, 2.7; P = 2.1 × 10−7 at FDR 0.02%) that are
upregulated and downregulated in response to PCID,
respectively.

We examined PCID signatures in a previous sample that
generated gene expression data in mouse cortical neurons.26

We found a moderate and significant correlation between our
PCID signatures and mouse cortical neuron signatures after
PCID for 1 hour (Spearman correlation ρ = 0.23; P = 7.7 × 10−15)
or 6 hours (Spearman correlation ρ = 0.27; P = 2.6 × 10−20)
(eFigure 7 in the Supplement). Pathway enrichment analysis
showed enrichment for molecular functions and biological pro-
cesses related to transcription factor activity, regulation of tran-
scription, and signaling by ERBB4 and NRG (eFigure 8 in the
Supplement).

Figure 2. Differential Expression Between Untreated and Treated Potassium Chloride (KCL)–Induced Depolarization (PCID)
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A, Volcano plots of −log10 P value vs log2 fold change for untreated and treated
PCID. Among the 1199 genes, 595 (red) were upregulated and 604 (green)
were downregulated in response to PCID (nonsignificant genes are shown in
black). The most significant differentially expressed genes are indicated.
B, Bivariate clustering of samples (columns) and the 1199 differentially
expressed genes for PCID at a false discovery rate of 0.05 or less (rows) shows

the untreated and treated differences in schizophrenia and control samples, as
marked by the cyan-pink and orange-green horizontal color bars at top for
diagnosis and PCID treatment, respectively. Higher or lower expression per
sample is marked in cyan or red, respectively. The vertical color bar indicates
whether genes are coding or noncoding and the distribution of false discovery
rate for each comparison. PBS indicates phosphate-buffered sulfate.
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Potassium Chloride–Induced Depolarization Signatures
Are Attenuated in Schizophrenia
Based on the more prominent separation of PCID signatures
in control samples compared with schizophrenia, we per-
formed separate DEG analysis in each group (Figure 2B). Re-
markably, whereas 594 genes were PCID DEGs in controls at
FDR of 0.05 or less (eTable 5 in the Supplement), only 59 genes
were differentially expressed in schizophrenia (eTable 6 in the
Supplement). This was not simply an issue of statistical thresh-
olds because relaxing the statistical criteria for differential ex-
pression (FDR ≤0.1) identified 1112 differentially expressed
genes in control participants and only 169 in patients with
schizophrenia, confirming the large difference observed in
PCID signatures. We note that PCID signatures were consis-
tent in terms of directionality (upregulated or downregu-
lated) in both control participants and patients with schizo-
phrenia (Figure 3A). The results from the DEG analysis were
validated for 4 transcripts using quantitative polymerase chain
reaction (eFigure 9 in the Supplement).

To further quantify the disease effect (control and schizo-
phrenia) on the PCID transcriptional variability, we applied a
linear mixed model for each gene and quantified the total vari-
ance of PCID within each diagnostic group.27 Genome-wide
variation across PCID accounted for a median of 7.1% varia-
tion in control samples. In schizophrenia samples, the varia-
tion explained was 4.9%, confirming our previous observa-
tion of attenuated effect of PCID on gene expression in
schizophrenia compared with controls (Figure 3B). We then
ranked genes based on the difference of the variance of PCID
signature in control participants vs patients with schizophre-
nia. We identified 2040 genes (control signatures) where more
than 20% and less than 20% of their variation was explained

by treatment in control participants and patients with schizo-
phrenia, respectively. On the other hand, only 1111 genes
(schizophrenia signatures) had less than 20% and more than
20% of their variation explained by treatment in control par-
ticipants and patients with schizophrenia, respectively. The top
20 control signatures and an illustrative example for KIF5B
gene are provided (eFigures 10 and 11 in the Supplement). Path-
way enrichment analysis on the top 5% of control signatures
showed enrichment for molecular functions and biological pro-
cesses related to transcription factor activity and regulation
of transcription (eFigure 12 in the Supplement).

Network Analysis and Identification of Diagnosis
and PCID-Dependent Expression Changes
To identify discrete groups of coexpressed genes showing tran-
scriptional differences relevant to diagnosis or PCID, we con-
structed a coexpression network using the entire data set.
Genes were clustered into 15 coexpression modules based on
high similarity of expression patterns across samples. Genes
that clustered into specific modules based on similar coex-
pression patterns were also DEGs for diagnosis or PCID sta-
tus, indicating that they participate in common biological pro-
cesses (Figure 4A).

We then examined whether the identified coexpression
networks recapitulate molecular processes related to diagno-
sis and PCID status. We used the module eigengene (the first
principal component of the expression pattern of the corre-
sponding module) to summarize gene expression trajectories
across samples and evaluated the relationship of the 15 mod-
ule eigengenes with diagnosis and PCID status (Figure 4B;
eTable 7 in the Supplement). We found 2 modules strongly
associated with diagnosis status at FDR of 0.05 or less. One

Figure 3. Comparison of Gene Expression Changes After Potassium Chloride–Induced Depolarization (PCID) in Control and Schizophrenia Samples
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A, Scatterplot comparing the t statistic for PCID treatment differential
expression between controls and cases with schizophrenia. The numbers in the
key indicate the count of differentially expressed genes at a false discovery rate
of 0.05 or less for controls only, schizophrenia only, both schizophrenia and
controls, or nonsignificant genes. B, Violin plots of the percentage of variance

explained by individual, PCID in control and schizophrenia samples, sex, age,
and RNA integrity number (RIN) across all genes. Every gene is represented in
the violin plot of each variable. Numbers in the x-axis indicate the median of
percentage of variance explained by each experimental variable over all the
genes.
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module was upregulated in schizophrenia (turquoise) and was
enriched for ribosome markers and for genes belonging to 3′
untranslated region–mediated translational regulation (eFig-
ure 13 in the Supplement). The other module was downregu-
lated in schizophrenia (brown) and was enriched for neuro-
nal markers, as well as for genes belonging to fragile X mental
retardation protein targets (eFigure 13 in the Supplement).

We also found 2 modules strongly associated with PCID
status at FDR of 0.05 or less. One module was upregulated with
potassium chloride treatment (yellow) and was enriched for
genes belonging to tRNA processing and ZNF gene family (eFig-
ure 13 in the Supplement). The other module was downregu-
lated with potassium chloride treatment (green) and was en-
riched for genes belonging to regulation of transcription and
ZNF gene family (eFigure 13 in the Supplement). Both mod-
ules were significant when we examined the association of
module eigengene with PCID in control samples, while only
the green module was significant in schizophrenia. These re-
sults are consistent with the less significant effect of PCID on
gene expression (and module eigengene) in schizophrenia
samples compared with control samples.

Genetic Variants Associated With Schizophrenia
and Enrichment in Differentially Expressed Genes
To further interpret the coexpressed modules, we examined
whether modules are enriched for genes that have been pre-
viously associated with schizophrenia and other neurodevel-
opmental illnesses (autism, epilepsy, and intellectual dis-
ability) (Figure 5; eTable 8 in the Supplement). Common
schizophrenia risk variants defined based on the most recent
large-scale genome-wide association study from Psychiatric
Genomics Consortium 21 were enriched for 5 modules at
P < .05. Interestingly, 3 of the 5 modules were associated with
disease status: brown (observed to expected ratio, 1.51;
P = .003) and turquoise (observed to expected ratio, 1.30;
P = .02) or PCID-yellow (P = .03). A significant overlap of the
yellow module (observed to expected ratio, 1.51; P = .05) was
identified with genes that lie within genomic regions that have
been associated with large cytogenomic deletions in schizo-
phrenia; no significant effect was observed for schizophrenia-
associated duplicated regions.

The brown module was significantly enriched for non-
synonymous and loss-of-function de novo mutations across

Figure 4. Coexpression Networks in Potassium Chloride-Induced Depolarization (PCID) in Control and
Schizophrenia Samples
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multiple neurodevelopmental diseases, including autism, epi-
lepsy, and intellectual disability, but not schizophrenia. In ad-
dition, the turquoise module was significantly enriched for de
novo mutations in autism. Schizophrenia de novo mutations
were enriched for 3 modules; none of these modules were as-
sociated with disease or PCID status. Finally, we examined the
effect of schizophrenia-associated genetic signal in aggregate
and identified a significant effect for 3 of the 4 modules that
were associated with disease or PCID status: brown (χ2 = 20.68;
P = .002), turquoise (χ2 = 12.95; P = .044), and yellow
(χ2 = 15.34; P = .0218). The hub nodes (most connected genes)
are illustrated for the brown, turquoise, and yellow modules
(eFigure 14 in the Supplement).

Discussion
Neuronal depolarization regulates synaptic function by induc-
ing gene expression and protein synthesis of synaptic mol-
ecules in dendrites.8 A previous study reported activity-
dependent changes in neurotransmitter release in neurons
differentiated from these same hiPSC lines.28 Here, we report
changes in gene expression in response to depolarization. These
genes participate in molecular functions and biological pro-
cesses related to regulation of transcription, and they show con-
sistent changes with gene expression studies in mouse corti-
cal neurons.26 Thus, the transcriptome of hiPSC neurons is
induced in response to neuronal depolarization, indicating

that they are a relevant platform for the study of activity-
dependent changes in neuropsychiatric diseases.

Compared with control samples, hiPSC neurons derived
from patients with schizophrenia showed alterations of
gene expression consistent with a previous study9 and are en-
riched in molecular pathways related to organization of extra-
cellular matrix and cell adhesion. These extracellular matrix
proteins include gene families, such as neural cell adhesion
molecules, neuroligins, and neurexins, that are critical for
cellular differentiation and migration29 and are postulated
as a possible mechanism for the etiopathogenesis of
schizophrenia.30 Previous studies have demonstrated that
schizophrenia NPCs have abnormal expression for extracel-
lular matrix and cell adhesion genes,10,31 accompanied by defi-
cits in migration.10

By examining the higher-order organization of the tran-
scriptome, we identified specific modules to be associated with
disease status and PCID. We identified 2 modules that were sig-
nificantly deregulated in schizophrenia and 2 modules that
were altered in response to PCID. Similarly, to differential ex-
pression analysis, we observed a blunted effect of activity-
dependent changes of module activity in schizophrenia. By
testing the enrichment of modules with schizophrenia can-
didate genes, we found a strong enrichment of genetic vari-
ants with the disease-associated modules and the PCID-
associated network that was only activated in control
samples but not schizophrenia. These data support the
notion that the impairment of different but not mutually

Figure 5. Enrichment of Coexpression Modules With Genetic Risk Variants for Schizophrenia and Other Neurodevelopmental Diseases
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exclusive molecular pathways contributes to the etiology of
schizophrenia. For instance, schizophrenia may arise from
early defects in neurodevelopment, followed by global dys-
regulation of synaptic function and impairment of neu-
rotransmission. This is consistent with findings in the
brown module, which participates in neurodevelopment
and synaptic function, has a strong enrichment for schizo-
phrenia variants, and is associated with the disease status.
Alternatively, another possibility is that causative factors
involve dysregulation of activity-dependent signaling path-
ways either locally at the synapse or globally, leading to
deficits in activity-dependent gene transcription. This is
consistent with results in the yellow module, which is
enriched for schizophrenia risk variants and has a strong
association with PCID in controls.

While our study shows convergence of genetic variants to
specific dysregulated coexpressed networks, it fails to iden-
tify driver genes. This can be the focus of future studies, where
incorporating larger sample sizes and including additional
times for PCID treatment would allow us to generate directed

networks, such as causal probabilistic networks, and identify
specific genes that drive abnormalities in schizophrenia.
Finally, future studies should collect additional functional
data, such as quantification of secreted neurotransmitters and
electrophysiological measurements, which would allow in-
vestigating the effect of dysregulated gene expression on neu-
rons’ physiology.

Conclusions
In this study, we examined the effect of depolarization on gene
expression in hiPSC neurons from patients with schizophre-
nia and control individuals. Schizophrenia neurons failed to
induce the gene expression of specific transcripts to the same
degree that occured in control samples. These transcripts clus-
ter in coexpressed networks that contain candidate genes for
schizophrenia and other neurodevelopmental diseases. Over-
all, these findings provide further insight into the function and
mechanism of schizophrenia candidate genes.
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