
Despite considerable development in our understand-
ing of long non-coding RNAs (lncRNAs) over the past 
decade, only a fraction of annotated lncRNAs has been 
examined for biological function1. These several hun-
dred lncRNAs have yielded a growing evidence base 
from which hypotheses for generalized mechanisms of 
lncRNA function have been derived. One such hypoth-
esis for assigning lncRNA function that is gaining nota-
ble attention is the competitive endogenous RNA (ceRNA) 
hypothesis. The ceRNA hypothesis posits that specific 
RNAs can impair microRNA (miRNA) activity through 
sequestration, thereby upregulating miRNA target gene 
expression (FIG. 1). Two classes of lncRNAs in particu-
lar are reported in an increasing number of studies 
as acting as functional ceRNAs; pseudogene-derived 
transcripts and circular RNAs (circRNAs) (BOX 1).

The attraction of the ceRNA hypothesis is its 
potential to account for the function of a substantial 
proportion of the thousands of as yet uncharacterized 
lncRNAs. On this basis, it has been touted as a new 
paradigm to explain the complexities of pervasive tran-
scription, being described as the ‘Rosetta stone of a hid-
den RNA language’ (REF. 2). But the optimism behind 
this analogy has been met with growing scepticism3.

The potential for antisense RNA to sequester miRNA 
activity is not the basis of the dispute; artificial anti-
sense miRNA inhibitors sufficiently demonstrate the 
efficacy of miRNA competition. The essence of 
the underlying argument against the ceRNA hypoth-
esis is that any change in expression of an individual 
miRNA target could constitute only a tiny fraction of 
the target site abundance4. Therefore, physiological 
changes in expression of an individual lncRNA would 

be insufficient to suppress miRNA activity. Evidence 
supporting this counter-argument is growing follow-
ing a number of recent analyses using transcriptome-
wide approaches5–10. The controversy over the ceRNA 
hypothesis has been further compounded by assertions 
that ceRNA activity is a general phenomenon11, in which 
ceRNAs are defined as a functional class to describe 
the mechanism underlying regulatory functions of 
circRNAs, lncRNAs and pseudogenes.

Despite the controversy surrounding the ceRNA 
hypothesis, its fairly widespread and early acknowl-
edgement as a plausible generic mechanism for 
regulating gene expression has sparked new areas of 
research. Epitomising this interest is the proliferation 
of databases of bioinformatically-predicted ceRNA 
networks12–17. These databases acknowledge the capa
city for individual miRNAs to simultaneously silence 
hundreds of targets, as well as to collectively function 
in synergistic networks in which a single target may 
have multiple miRNA recognition elements (MREs). 
ceRNA network predictions rely on the same algo-
rithms commonly used for miRNA target prediction 
and produce an in silico list of putative targets. An 
intended utility of these databases is to discover puta-
tive miRNA binding sites as candidates for experi
mental validation18. However, the practical limitations 
in creating a database that takes into account the 
physiological constraints and stoichiometry of ceRNA 
interactions obfuscates a basis upon which to dis-
criminate signal from noise. Consequently, queries to 
such databases typically yield a bewildering picture of 
putative competitive RNA interactions that cannot be  
meaningfully interpreted.
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Long non-coding RNAs
(lncRNAs). Transcripts with little 
or no protein-coding potential 
that are greater than 200 
nucleotides in length.

Competitive endogenous 
RNA
(ceRNA). RNA that leads to 
upregulation of expression of 
a target gene by competing 
for microRNA binding sites.

MicroRNA
(miRNA). A small (20–22 
nucleotide long) non-coding 
RNA that inhibits gene 
expression by guiding the 
RNA-induced silencing 
complex (RISC) to target genes.

Endogenous microRNA sponges: 
evidence and controversy
Daniel W. Thomson1,2 and Marcel E. Dinger1,2

Abstract | The competitive endogenous RNA (ceRNA) hypothesis proposes that transcripts with 
shared microRNA (miRNA) binding sites compete for post-transcriptional control. This hypothesis 
has gained substantial attention as a unifying function for long non-coding RNAs, pseudogene 
transcripts and circular RNAs, as well as an alternative function for messenger RNAs. Empirical 
evidence supporting the hypothesis is accumulating but not without attracting scepticism. 
Recent studies that model transcriptome-wide binding-site abundance suggest that 
physiological changes in expression of most individual transcripts will not compromise miRNA 
activity. In this Review, we critically evaluate the evidence for and against the ceRNA hypothesis 
to assess the impact of endogenous miRNA-sponge interactions.
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Pol II

Ribosome

Pseudogene
A duplicated gene, identified 
through DNA homology to its 
parent gene but with 
evolutionarily acquired 
mutations.

Circular RNAs
(circRNAs). A class of RNAs 
derived mostly from 
non-canonical splicing in which 
the exon ends are joined to 
form a loop.

Antisense RNA
The reverse complement of a 
specified RNA. This differs from 
an antisense transcript, which 
refers to endogenous antisense 
transcription of an annotated 
gene.

ceRNA networks
(competitive endogenous RNA 
networks). Networks of 
interactions that arise from the 
concept that a collective pool 
of transcripts can 
synergistically compete for 
microRNA (miRNA) binding 
and that a single miRNA can 
silence several targets.

Applying these bioinformatics predictions, the 
ceRNA hypothesis has found immediate pragmatic 
application in uncovering non-coding RNA func-
tion of poorly annotated RNAs or a dual function for 
coding transcripts. However, the greatest utility of 
the ceRNA hypothesis may be to understand how col-
lective ceRNA networks — not individual transcripts 
— influence post-transcriptional regulation, particu-
larly with the use of transcriptome-wide approaches 
coupled with bioinformatic prediction.

This Review collects and critically evaluates the 
accumulating evidence describing functional ceRNA 
interactions in the context of recent counter-evidence 
from work modelling transcriptome-wide ceRNA 
interactions7,8,16,19–21 and experimentally quantifying the 
effect of a ceRNA4,5,22. The limitations of both experi-
mental and mathematical modelling data are reviewed 
in an attempt to explain the controversy on the subject 
and to deliver an objective assessment of the potential 
significance of the ceRNA hypothesis.

Artificial miRNA inhibitors
The experimental evidence underlying the biochemical 
principle behind miRNA sponges (specifically, artificial 
antisense miRNA inhibitors) predates reports of ceRNAs 
by several years. miRNAs can be inhibited either by the 
introduction of antisense oligonucleotides23–25 or by 
overexpressing transgenic reporters that contain miRNA 

binding sites26–28. The use of antisense RNAs as miRNA 
inhibitors is now routine in molecular research, and 
progress has been made towards their application as a 
new class of drug29. A range of commercially available 
reagents with varying chemistries is available for miRNA 
inhibition, as reviewed previously30.

Oligonucleotide miRNA inhibitors (also referred 
to as antimiRs31, antagomiRs24 or other names with 
commercial propriety) typically comprise small single-
stranded RNA oligonucleotides with near perfect com-
plementarity against a miRNA. The oligonucleotides are 
modified to improve their stability thereby increasing 
their efficacy. Modifications include 2′‑O‑methylation, 
cholesterol modification24, locked nucleic acid (LNA) 
modification25 or a hairpin structure such as that found 
in miRIDIAN inhibitors (Dharmacon) and tough decoy 
(TuD) constructs32. These are introduced into cells by 
transfection or in vivo by viral transduction. In addi-
tion, nanoparticle vehicles have been developed for 
tissue-specific delivery for use as therapeutics33.

Constructs have also been developed for artificial 
miRNA sponges that express 3′ untranslated regions 
(3′ UTRs) containing multiple miRNA-binding sites28. 
The advantage of this type of miRNA sponge compared 
to antisense oligonucleotides is the potential for indu
cible, stable expression that is driven by promoters such 
as U6 or cytomegalovirus (CMV), which are among the 
strongest drivers of expression in mammalian systems34.

Figure 1 | The competitive endogenous RNA mechanism.  a | While the competitive endogenous RNA (ceRNA), 
such as a pseudogene, remains transcriptionally silent, the parent mRNA is transcribed and exported to the cytoplasm 
where it is targeted by the microRNA–guided RNA-induced silencing complex (miRNA–RISC), leading to accelerated 
degradation, blocked translation and decreased expression. b | When the pseudogene with competing target sites (red) 
becomes transcriptionally active, it competes for miRNA targeting and binding of RISC complexes. This sequesters 
miRNA–RISC complexes away from the parent gene and results in increased parent gene expression. AGO, Argonaute; 
Pol II, RNA polymerase II.
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miRNA recognition 
elements
(MREs). MicroRNA (miRNA) 
binding sites that are 
canonically found in the 
3′ untranslated region of a 
target mRNA and have 
sequence similarity to the 
5′ seed region of the miRNA.

miRNA sponges
Antisense RNA transcripts that 
inhibit microRNA (miRNA) 
activity. These molecules can 
be artificially introduced or, if 
endogenous, are equivalent to 
competitive endogenous RNAs.

The widespread use of artificial antisense RNAs as 
miRNA inhibitors is proof of the basic biochemical 
principle for RNA competition. However, their applica-
tion is not confined to physiological expression levels, as 
concentrations that are typically used in miRNA knock-
down experiments (10–100 nM transfection of oligo
nucleotides)35 far exceed the total cellular concentration 
of the most highly expressed miRNAs36. Nevertheless, 
studies using antisense miRNA inhibitors illustrate the 
necessity of high inhibitor concentrations to effectively 
silence miRNAs. The efficacy of introduced artificial 
miRNA inhibitors by any method depends on their con-
centration in the cell, which in turn is also directly influ-
enced by the stability of the inhibitor35,37,38. However, the 
functional quantity is difficult to measure as transfected 
oligonucleotides accumulate in non-functional vesicles, 
such as lysosomes, thereby providing an artificially 

high quantitation following whole-cell lysis36. Despite 
reaching unphysiologically high levels, artificial miRNA 
sponges are only capable of partial inhibition34, often 
no more than 50% against highly expressed miRNAs, 
which are typically less susceptible to knockdown35,38.

Experimental evidence for ceRNAs
An appealing aspect of the ceRNA hypothesis is that it 
provides a pathway for predicting a non-coding func-
tion of any uncharacterized RNA transcript by the 
identification of putative miRNA binding sites. The 
hypothesis is now supported by experimental evidence 
for an accumulating number of lncRNAs, particularly 
circRNAs39,40 and pseudogene-derived lncRNAs41–46, but 
also other lncRNAs41,44,47–52, expressed 3′ UTRs53,54, viral 
non-coding RNAs 55,56 and genomic viral RNAs4,7,9,34,57–59 
(FIG. 2). Furthermore, and consistent with a developing 
understanding of RNA with multiple functions60, many 
protein-coding transcripts (that is, mRNAs) also elicit 
non-coding function by the ceRNA mechanism53,61–70.

Despite the relative ease in identification of putative 
ceRNA interactions using sequence searching algo-
rithms13,14,71–74, experimentation is essential to identify 
bona fide miRNA targets and ceRNA interactions. 
At the most basic level, the experimental framework 
for identification of a ceRNA interaction involves 
showing that overexpression of the putative ceRNA 
leads to increased expression of the competing tran-
scripts or observing the reciprocal relationship when 
the ceRNA is inhibited. This is often interrogated on 
a gene-specific level using well-established methods 
of measuring gene expression, such as quantitative 
reverse transcription-PCR (qRT-PCR) or western blot-
ting. To demonstrate that changes in expression are the 
direct result of miRNA competition, experiments can 
be carried out that involve simultaneous knockdown 
of specific miRNAs and/or the cellular components 
required for small RNA biosynthesis, such as by the use 
of Dicer-deficient cells75. The benchmark methodology 
in demonstrating direct miRNA targeting also incorpo-
rates the use of reporter assays containing miRNA bind-
ing sites, showing activity specific to the miRNA  
target sequence76.

Additional experimental strategies for identify-
ing and validating ceRNA interactions largely mimic 
those that have been employed for identifying miRNA 
targets77. These involve perturbation of miRNA levels 
in vitro or in vivo, followed by gene expression analysis to 
evaluate coordinated downregulation of the competing 
target genes. Analyses using microarray or sequencing 
technologies78–80 can then provide a transcriptome-wide 
view of miRNA–target interactions. RNA sequencing, 
following biochemical enrichment of components of the 
RNA-induced silencing complex (RISC) components, par-
ticularly the Argonaute (AGO) family, has been applied 
previously for the identification of miRNA target gene 
networks81,82. The same approaches — particularly HITS–
CLIP (high-throughput sequencing of RNA isolated by 
crosslinking immunoprecipitation; also known as 
CLIP–seq) — are now also being applied and analysed 
to identify ceRNA networks5,57.

Box 1 | Non-coding RNAs

MicroRNAs
MicroRNAs (miRNAs) are small (20–22 nucleotides long) non-coding RNAs that have 
become recognized over the past decade as important regulators of gene expression. 
Functional miRNAs are bound to Argonaute (AGO), the core protein of the RNA- 
induced silencing complex (RISC). miRNAs control gene expression by guiding RISC 
to target mRNAs, causing RNA degradation or translational repression. miRNAs are 
capable of targeting hundreds of genes, as supported by computational, proteomic, 
transcriptomic and AGO immunoprecipitation studies, which enables their potential to 
regulate at least two-thirds of a eukaryotic transcriptome.

Competitive endogenous RNA
A competitive endogenous RNA (ceRNA) is a transcript targeted by a miRNA that, in 
doing so, sequesters the activity of the bound miRNA, effectively de‑repressing other 
targets of that miRNA. It is comparable in action to an artificially introduced miRNA 
sponge but distinguished by its endogenous origin.

ceRNA network
A collective pool of transcripts that synergistically sequester miRNA activity through 
competition for the same individual miRNA or a collection of miRNAs.

Long non-coding RNAs
Long non-coding RNAs (lncRNAs) are pragmatically described as transcripts with 
little or no protein-coding potential that are greater than 200 nucleotides long, 
distinguishing them from mRNAs and classes of small non-coding RNA, such as miRNAs, 
small nucleolar RNAs (snoRNAs) or tRNAs. Diverse roles for lncRNAs have been 
described, including functions in chromosome modification, transcriptional regulation 
and post-transcriptional processing. There are several classes of lncRNAs described by 
their origin (such as pseudogene, intergenic- or intronic-derived lncRNAs) or their 
mechanism of biosynthesis (such as circular RNAs).

Pseudogene transcripts
Pseudogenes are degenerate copies of genes that are synthesized mostly through 
DNA duplication (duplicated pseudogenes) and retrotransposition of cellular RNAs 
(processed pseudogenes). In humans, there are 14,467 annotated pseudogenes 
(Gencode v21), of which ~9% have been recently estimated to be actively transcribed. 
Although the potential for pseudogene transcripts to code for proteins is 
acknowledged, the majority of transcribed pseudogenes are thought to be lncRNAs 
owing to accumulated mutations causing frame shift mutations or premature stop 
codons. As transcribed pseudogenes commonly share miRNA-binding sites with their 
parent genes, they are considered attractive candidates as ceRNAs.

Circular RNAs
Circular RNAs (circRNAs) mostly originate from a non-canonical form of alternative 
splicing, whereby the splice donor site of one exon is ligated to the splice acceptor 
site of an upstream exon. circRNAs are more resistant to exonucleases than linear 
transcripts and are therefore more stable, which is thought to enable more efficient 
suppression of miRNA activity than linear transcripts.
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3′ untranslated regions
(3′ UTRs). The ends of 
messenger RNAs that follow 
the stop codon.

Dicer
A key protein in the microRNA 
(miRNA) and small interfering 
RNA (siRNA) biosynthesis 
pathways. Dicer is an 
endonuclease that cleaves 
double-stranded RNA and 
miRNA precursor transcripts.

RNA-induced silencing 
complex
(RISC). A protein complex 
that uses a single stranded 
guide RNA (for example, a 
microRNA (miRNA) or small 
interfering RNA (siRNA)) to 
elicit post-transcriptional 
gene silencing.

Argonaute
(AGO). A family of proteins 
that bind a guide RNA as 
part  of the microRNA 
(miRNA) or small interfering 
RNA (siRNA) pathway.

HITS–CLIP
(High-throughput sequencing 
of RNA isolated by crosslinking 
immunoprecipitation). 
A sequencing method to 
identify microRNA (miRNA) 
targets and functional miRNAs.

Pseudogenes as ceRNAs. A large number of eukaryotic 
pseudogenes are actively transcribed, often in a tissue
specific manner, which suggests a coordinated regulation 
and function83. Several modes of action have been pro-
posed for pseudogene transcripts that mostly overlap with 
the same mechanisms described for lncRNAs84 (BOX 1), 
notwithstanding the evidence that many pseudogenes 
are translated85.

Owing to their origin as gene copies, pseudogenes 
typically exhibit high sequence homology to their par-
ent gene. Consequentially, an expressed pseudogene will 
share miRNA target sites that may compete for miRNA 
binding.

The capability of pseudogenes to act as ceRNAs 
is supported experimentally for a number of tran-
scribed pseudogenes including PTENP1 (REFS 43–45), 
OCT4P4 (also known as POU5F1P4)41, BCAS4 unitary 

pseudogene42, CYP4Z2P pseudogene46 and BRAFP1 
(REF. 75). PTENP1 was the first reported pseudogene
derived ceRNA to have a role in cancer. PTENP1 is 
a sense transcribed pseudogene that is homologous 
to the tumour suppressor PTEN but with a mutation 
that prevents translation43. PTENP1 shares conserved 
miRNA seed target sites with PTEN for the miR‑17, 
miR‑21, miR‑214, miR‑19 and miR‑26 miRNA fami
lies43. In DU145 prostate cancer cells, miR‑19a and 
miR‑19b miRNA mimics were found to downregu-
late both PTEN and PTENP1 at the mRNA level (by 
50–75%), and treatment with an inhibitor cocktail of all 
predicted targeting miRNAs increased the expression 
of both PTEN (by ~50%) and PTENP1 (by ~25%)43. 
A luciferase reporter with a 3′ UTR for the miRNAs tar-
geting both PTEN and PTENP1 showed that inhibition 
of the 3′ UTR was directly due to these shared miRNA 

Figure 2 | The active transcriptome available for microRNA binding competition.  The genome encodes diverse RNA 
classes including mRNAs, circular RNAs (circRNAs), expressed 3′ untranslated regions (3′ UTRs), pseudogenes and long 
non-coding RNAs (lncRNAs). Transcription of all RNA classes constitutes the transcriptome, which collectively can 
compete for miRNA targeting. The majority of active transcripts (those associated with the RNA-induced silencing 
complex (RISC)) available for microRNA targeting consist of coding transcripts (that is, mRNAs).
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Small nuclear RNAs
(snRNAs). A class of nuclear 
localized RNAs with roles in 
splicing and RNA modification.

binding sites43. Expression of the PTENP1 3′ UTR alone 
was shown to increase expression of PTEN (by 50%) in 
a Dicer-dependent manner and to act as a tumour sup-
pressor, which was demonstrated with colony-forming 
assays43. However, the generalization of these observa-
tions to all other transcribed pseudogenes has little basis. 
Pseudogene transcripts are frequently localized to the 
nucleus, and other functions including their translation 
into proteins or peptides have been reported85.

The steady-state expression levels of pseudogenes 
seldom reach that of their parent genes42,83. Assuming 
that a ceRNA needs to be at near equimolar concentra-
tion to the collective pool of competing transcripts, as 
suggested by mathematical models7–10, most individual 
pseudogenes are too lowly expressed to function as viable 
competitive targets. However, characteristics unique to 
pseudogenes could allow for greater activity. Pseudogenes 
share several MREs with their parent gene, thereby dras-
tically increasing target abundance. Also, many processed 
pseudogenes are present as families, by virtue of their 
derivation from retrotransposition of the same mRNA. 
As a result, although not yet evaluated experimentally, 
groups of pseudogenes that have very similar sequences 
could in principle be accumulatively expressed to reach 
target site abundance sufficient to act as ceRNAs.

circRNAs as ceRNAs. circRNAs are much more stable 
than linear transcripts as they do not have free ends 
that are susceptible to exonuclease digestion, which is a 
characteristic that is thought to facilitate their effective-
ness as miRNA sponges39,40. circRNAs are typically synthe-
sized through a non-canonical form of alternative splicing 
in which the splice donor site of one exon is ligated to 
the splice acceptor site of an upstream exon40,86,87. The 
first circRNA was discovered over two decades ago, and 
it is derived from the testis-determining gene Sry (sex-
determining region Y)88. Recently, circRNAs have gained 
interest following reports describing their widespread and 
abundant expression in eukaryotes39,40,87,89–93.

Although the function of most circRNAs remains 
elusive, at least three circRNAs have been experimen-
tally shown to act as ceRNAs: cIRS‑7 (also known as 
CDR1‑AS) regulates miR‑7 activity in the central nerv-
ous system40; an Sry-derived circRNA acts as a sponge 
for miR‑138 (REF. 39); and cir-ITCH controls the level of 
itchy E3 ubiquitin protein ligase (ITCH) by sponging 
miR‑7, miR‑17 and miR‑214 in oesophageal squamous 
cell carcinoma (ESCC)94.

Following the initial observations of circRNAs 
acting as ceRNAs, it was asserted that this mechan
ism may be a common function of all circRNAs39. 
However, there is now considerable counter-evidence to 
this assumption. With the exception of cIRS‑7, which 
contains 73 selectively conserved miR‑7 target sites, and 
Sry-derived circRNA, which has sites for miR‑138, the 
vast majority of circRNAs do not contain such distinct 
miRNA-binding sites87,91,92. Depletion of polymorph
isms of putative miRNA-binding sites in circRNAs has 
been suggested to indicate a conserved role involving  
miRNAs95. However, assessment of circRNA conser-
vation is confounded by the majority of annotated 

circRNAs overlapping coding exon loci73. Furthermore, 
not all miRNAs that target circRNAs are suppressed (for 
example, miR‑671, which downregulates expression of 
CDR1‑AS with a concomitant decrease in CDR1 mRNA 
levels96). In this case, the targeted circRNA is cleaved in 
an AGO2 (also known as slicer)‑dependent manner, 
limiting its potential to act as a miRNA sponge. In addi-
tion, AGO co‑immunoprecipitation experiments do not 
indicate an appreciable enrichment of circRNA-derived 
exons among AGO family-bound transcripts, which 
would be expected if circRNAs were acting as ceRNAs5.

Viral miRNA sponges. Viruses are known to exploit vari
ous mechanisms to manipulate host gene expression97. 
Among the most efficient of these, and thought to be 
preferred over protein-based factors, is a mechanism 
using non-coding RNAs98. There is now growing evi-
dence that viruses produce non-coding RNAs that serve 
as miRNA sponges, providing interesting adaptions to 
the ceRNA mechanism that could account for increased 
ceRNA activity.

A report of two viral small nuclear RNAs (snRNAs) 
that each downregulate a host miRNA55 offered the 
first insight into the potential for viral control of host 
phenotype through a miRNA-sponge mechanism. The 
intriguing herpesvirus saimiri (HVS) produces more 
non-coding RNAs than any other class of mammalian 
virus55, of which the HVS uracil-rich RNAs (HSURs) are 
the most abundantly expressed gene products in HVS-
transformed T cells99,100. Two of the HSUR snRNAs con-
tain predicted binding sites for the abundant primate 
(host) miRNAs (miR‑16, miR‑27a and miR‑142‑3p). 
Co‑immunoprecipitation with epitope-tagged HSUR 
constructs validated miR‑16 and miR‑27a binding to 
HSUR2 and HSUR1, respectively. Levels of miR‑27a were 
further shown to be downregulated in HVS-transformed 
cells with concurrent upregulated expression of its 
target genes55.

As well as representing the first described case of 
viral RNA competing with host miRNA expression, the 
HVS snRNAs represent the first example of a natural 
small RNA sponge. The high abundance and structure of 
snRNAs, similar to the short hairpin inhibitors used for 
miRNA knockdown (for example, the miRIDIAN miRNA 
hairpin inhibitors manufactured by Dharmacon), bestow 
these non-coding RNAs with favourable characteristics to 
act as effective miRNA inhibitors. However, the predomi
nantly nuclear localization of HSURs defies the canoni-
cal view that miRNAs act in the cytoplasm, although the 
authors do note that the HSURs are shuttled between 
the nucleus and the cytoplasm55,101.

As well as small RNAs, other genomic RNAs from 
retroviruses can act as miRNA sponges. For example, the 
two miRNA binding sites in the 5′ UTR of hepatitis C 
virus (HCV) bind and sequester host miR‑122, reducing 
the binding of miR‑122 to other targets57. Importantly, 
this example delivers a slightly different mode of action 
of competition for miRNAs. Whereas cellular miRNA 
targets are degraded following binding, it was shown 
that HCV RNA is stabilized by miR‑122 binding and 
is required for viral replication102,103. This constitutes a 
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SILAC
(Stable isotope labelling by 
amino acids in cell culture). 
A proteomic approach 
using quantitative mass 
spectrometry.

Polysome profiling
The analysis of mRNAs 
associated with elongating 
ribosomes to identify 
translationally active mRNAs.

Centred pairing
A non-canonical mechanism of 
microRNA (miRNA) targeting in 
which six or more nucleotides 
in the centre of the miRNA 
bind target genes.

G‑bulge
MicroRNA (miRNA) targeting of 
complementary nucleotides 
where a guanosine (G) 
nucleotide is skipped resulting 
in a ‘bulge’.

positive feedback loop in which the HCV genomic RNA is 
its own substrate for replication57, providing a mechanism 
by which the miRNA sponging effect is amplified.

mRNAs as ceRNAs. Coding transcripts are, in general, 
more abundant than lncRNAs58,59, they show the high-
est conservation of miRNA binding sites, particularly in 
the 3′ UTR104, and make up the majority of miRNA tar-
gets82,104. A reasonable deduction to make from this is that 
mRNAs should exert the majority of influence in RNA 
competition. Focus on lncRNAs may be driven by the 
attraction of finding function for poorly annotated tran-
scripts; nonetheless, an accumulating number of reports 
indicate roles of protein-coding transcripts in sequester-
ing miRNAs through the ceRNA mechanism, including 
CD44 (REF. 62), FN1 (REF. 63), VCAN53,64, FOXO1 (REF. 65), 
OCT4B (also known as POU5F1B)66, AEG1 (also known 
as MTDH)67 and PTEN67–70.

The tumour suppressor gene PTEN has been studied 
in depth for its capacity to act as a ceRNA105. Because of 
this, representative suppositions have been postulated 
towards roles of ceRNAs in general106. PTEN has been 
implicated in ceRNA networks in a number of cancers 
including glioblastoma68,70, melanoma69 and prostate 
cancer68. PTEN has also been shown to compete for 
miRNA binding with ZEB2 (REF. 69), CNOT6L68, VAPA69, 
VCAN64 and many more coding transcripts that have been 
identified through analysis of gene expression networks70. 
Not restricted to coding transcripts, PTEN competes with 
miRNA binding with the PTENP1 pseudogene43.

An important outcome of these studies on PTEN, as 
well as other studies on mRNAs, is the observation that 
expression of the 3′ UTR alone is capable of eliciting 
ceRNA effects62–65,67, indicating a non-coding function of 
coding transcripts. These data provide further evidence 
that transcripts from the same loci can exert multiple 
functions through independent mechanisms60, in this case 
both protein-coding and non-coding functions.

Taken together, studies focusing on PTEN have 
helped elucidate a ceRNA network that puts competition 
for miRNA binding at the forefront of many cancers105. 
Despite attracting marked interest, these studies high-
light the futility of focusing exclusively on individual 
transcripts (in this case PTEN) as ceRNAs, when in fact 
competition networks may be the influence underlying 
disease states.

ceRNA networks
Evidence for transcriptome-wide competition for miRNA 
binding. The majority of evidence experimentally vali-
dating ceRNA interactions assesses one or a few miRNAs 
against a ceRNA–target pair. Owing to experimental 
limitations, demonstration of direct ceRNA interaction is 
often restricted to individual genes. However, individual 
miRNAs are capable of targeting hundreds of genes, as 
shown by computational, proteomic, transcriptomic and 
AGO immunoprecipitation studies104. Using the highly 
studied miR‑124 as an example, miRNA mimic over
expression downregulates hundreds of mRNAs enriched 
in the miR‑124 seed sequence: at the transcript level 
measured by microarray107, at the protein level measured 

using SILAC (stable isotope labelling by amino acids in cell 
culture)108, actively translated transcripts measured using 
polysome profiling109 and transcripts associated with the 
RISC complex demonstrated using AGO HITS–CLIP82. 
Indeed, hundreds of thousands of miRNA–target inter
actions are estimated, a proportion of which are sup-
ported by some experimental evidence ranging from 
altered expression following miRNA perturbation, to 
validation at the sequence level with engineered reporter 
assays110. On this basis, the potential for a vast ceRNA 
network that broadly influences the transcriptome is 
avidly speculated111. The potential for ceRNA networks 
to influence miRNA activity has been largely investigated 
by predicting ceRNA interactions using bioinformatics 
tools developed previously for the prediction of miRNA 
targets. Indeed, any study of ceRNA interaction relies to 
some extent on target prediction, whether it is to identify 
candidate ceRNAs or to model target abundance.

Bioinformatic prediction of ceRNA interactions. The most 
widely used miRNA target discovery algorithms search 
for evolutionary conserved, 6‑nucleotide interactions 
between the 5′ end of the miRNA known as the seed 
region and the 3′ UTR of the target mRNA. These ‘rules’ 
of targeting are based on numerous computational and 
biochemical studies showing the importance of the seed 
region. Nonetheless, miRNA targeting is also influenced 
by the 3′ region of the miRNA and the molecular context 
of the target site. Indeed, several alternative modes for 
miRNA targeting have been described including centred 
pairing112 and G‑bulge sites113. Therefore, the validity of 
target prediction tools is hindered by the simplified rules 
used to represent targeting interactions, with different 
algorithms producing vastly different results77,114,115.

Using miRNA target discovery algorithms, such as 
TargetScan71 and miRanda72, several studies have devel-
oped databases of ceRNA interactions. These databases 
include the Competing Endogenous mRNA DataBase 
(ceRDB)13, the Database of human long non-coding 
RNAs acting as competing endogenous RNAs (lnCeDB 
(Human))14, Linc2GO116, miRcode73, DIANA-LncBase 
Predicted v.2 (REF.  74) and the LncRNA-associated 
Competing Triplets DataBase (LncACTdb). Bioinformatic 
algorithms typically allow specification of various 
user-defined parameters to maximize true positives and 
minimize false positives and negatives. In this way, dif-
ferent algorithms limit choices to restrict observations to 
mRNAs13 or to include lncRNAs14,20,73,74,116, circRNAs74 or 
viral miRNA targets117.

Although many predictions rely completely on 
sequence information, others also incorporate gene 
expression data to better predict the presence of miRNA–
target pairs118–120 and AGO HITS–CLIP data has been 
included to enrich for active AGO-bound RNA targets12,74. 
Although incorporation of these analyses improves the 
capability to predict physiologically relevant ceRNA inter-
actions16, in practice it is difficult to compile the optimal 
combination of data sets effectively77, which is illustrated 
by the lack of consensus between different databases such 
as miRSponge17 compared to starBase, DIANA-LncBase 
and LncACTdb17.
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(ENCODE). An international 
consortium with the goal to 
build a comprehensive list of 
functional elements in the 
human genome.

Modelling of ceRNA networks from gene expression data. 
In principle, the extent to which genes are regulated by 
ceRNAs can be assessed by listing all miRNA–target pairs 
and evaluating whether mRNAs targeted by the same 
miRNAs are significantly more correlated in expression 
(FIG. 3a). Comparison of miRNA target predictions with 
gene expression databases shows that miRNAs and pre-
dicted targets are more likely to have inversely correlated 

gene expression, as expected for miRNA–target pairs. 
However, this approach does not consider the effect 
of common transcription factors or other regulatory 
mechanisms and is dependent on in silico predictions. 
Nonetheless, these results offer an opportunity to identify 
‘networks’ of ceRNA interaction7,9,16,70,121.

Using this approach, in silico ceRNA networks, also 
referred to as miRNA–target bioclusters, were com-
pared to Encyclopedia of DNA Elements (ENCODE) 
gene expression data looking at both mRNA and miRNA 
expression16. Each miRNA–target biocluster represented 
a manageable number of miRNAs and mRNAs connected 
by target prediction, and these were shown to be inversely 
correlated in expression as expected for miRNA–target 
pairs. In support of the ceRNA hypothesis, mRNAs within 
miRNA–target bioclusters showed correlation in expres-
sion suggestive of expression buffering within commonly 
targeted mRNAs16.

Transcriptome-wide RNA competition
A large endogenous target pool can decrease miRNA 
activity. The suppressive effect that a large pool of endo
genous targets can have on miRNA activity has been 
observed by comparing transcriptome-wide target abun-
dance predictions to a high-throughput assay of miRNA 
activity22. This approach, termed Sensor-seq, uses RNA 
sequencing (RNA-seq) to quantify the degradation of 
a reporter construct pool, each with target sites for one 
of 291 miRNAs. By comparing Sensor-seq results to cel-
lular miRNA abundance, it was noted that some highly 
expressed miRNAs exhibited relatively weak activity 
in comparison to similarly highly expressed miRNAs 
that correlated with a high number of predicted target 
sites22 (FIG. 3b). This gives an experimental framework by 
which the entire pool of target transcripts can detectably 
decrease miRNA activity.

An important consideration from this work is that 
only the most abundant miRNAs have detectable activ-
ity, as over 60% of miRNAs detected by sequencing have 
no discernable activity when measured by Sensor-seq22. 
This finding is supported by earlier work in which lowly 
expressed miRNAs (<100 copies per cell) were found 
to have little regulatory capacity26; the same conclusion 
was reached from an experiment in which 20 individual 
reporters were assayed with target sites against miRNAs 
of varying endogenous expression levels122.

Overexpressed miRNAs with a larger target pool have 
diluted activity. An alternative approach to measuring 
the suppressive effect of a large pool of endogenous 
targets is to compare predicted target abundance with 
miRNA target repression following miRNA overexpres-
sion (FIG. 3c). Using this approach, predicted miRNA 
target abundance has been compared to microarray 
data sets of genes that are downregulated following arti-
ficial miRNA overexpression78–80. This has revealed that 
miRNA efficacy can be diluted when a greater number 
of target transcripts are predicted.

However, as these experiments compare different 
miRNAs with different binding affinities, the observed 
differences may be due to the binding strength rather 

Figure 3 | Strategies used to assess transcriptome-wide competition for microRNA 
binding. a | MicroRNA (miRNA)–target clusters are predicted using target prediction 
algorithms with no preconceptions of gene expression. miRNA–target cluster 
predictions are overlayed to databases of gene expression (mRNAs) and miRNA 
expression. Within predicted miRNA–target clusters, physiological miRNA repression 
is demonstrated by miRNAs and their targets being inversely correlated in expression. 
To demonstrate that mRNA targets within the same biocluster are competing for 
miRNA targeting, common miRNA targets show correlated expression, supporting 
the competitive endogenous RNA (ceRNA) hypothesis. b | miRNA activity (for example, 
that measured using reporter assays) compared to miRNA abundance (for example, that 
measured using small RNA sequencing (RNA-seq)) are weakly correlated. Discordance 
between miRNA activity and abundance (denoted as *) can be investigated by measuring 
and comparing target abundance of each miRNA. c | miRNA target genes are identified 
by miRNA overexpression followed by gene expression analysis. Comparing 
downregulated genes to predicted miRNA target site abundance is capable of showing 
that overexpressed miRNAs with a greater target pool have diluted activity. 
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Sensor-seq
A high-throughput assay of 
microRNA (miRNA) activity as 
measured by high-throughput 
sequencing of a pool of 
reporter constructs each with 
binding sites for individual 
miRNAs.

Individual-nucleotide 
resolution CLIP
(iCLIP). A crosslinking immuno-
precipitation (CLIP) technique 
for identifying protein–RNA 
interactions, in which the direct 
crosslinking site can be 
identified where the reverse 
transcribed cDNA is truncated.

than target site frequency. Subsequent experiments to 
distinguish between these possibilities, by substituting 
the two adenines in the Caenorhabditis elegans miRNA 
lsy‑6 for the adenine analogue 2,6‑diaminopurine (DAP) 
to increase the binding strength without changing tar-
get abundance, found that although either property was 
associated with the targeting efficiency of 3′ UTR sites, 
the number of predicted target sites had an independent, 
statistically significant effect80.

Physiological ceRNA expression changes do not affect 
highly expressed miRNAs. An important factor in assess-
ing the potential impact of the ceRNA hypothesis is the 
capacity of a single transcript to contribute to the greater 
pool of potential binding sites thereby affecting miRNA 
activity. To address this question, Denzler et al.4 intro-
duced a transcript in vivo at controlled levels to compete 
for binding to miR‑122, a miRNA highly expressed in 
the liver. The team found that at physiological expres-
sion levels of 5.1 × 103 miR‑122 target sites per cell, the 
introduced target was insufficient to affect miRNA 
levels, target gene expression or downstream physiologi-
cal responses4. This was concluded to be the result of the 
relatively high abundance of other miR‑122 targets, which 
was calculated to be ~1.5 × 105 binding sites. Furthermore, 
it was noted that neither the individual endogenous target 
nor the entire pool of predicted miR‑122 target sites were 
capable of reaching this abundance in a physiological 
setting or even at levels predicted in pathological states. 
The model reinforced by Denzler et al. is that changes in 
ceRNA abundance must approach the target abundance 
of the miRNA to de‑repress miRNA targets.

Mathematical models predict that ceRNA inhib
ition most optimally occurs when the miRNA and tar-
gets are at near equimolar concentrations7–9. ceRNA 
expression must approach that of the target abundance 
before it can exert de‑repression of the miRNA target10. 
In the case of miR‑122, the most abundant miRNA in 
hepatocytes and comparable to one of the most highly 
expressed miRNAs in any mammalian system4, physio-
logical changes in target expression were unable to reach 
these levels4. Although this work does not exclude the 
possibility that lowly expressed miRNAs may be sus-
ceptible to ceRNA interaction, it provides an indica-
tion of the limited potential for individual ceRNAs to 
influence post-transcriptional regulation. As discussed 
previously, only the most highly expressed miRNAs 
are capable of exerting target repression as observed by 
functional assays22,122.

The abundance of most individual targets is insufficient 
to alter active miRNAs. The assessment of miRNA target 
abundance typically relies on whole-cell RNA-seq quanti
fication. With the understanding that only transcripts 
associated with RISC and AGO engage in competition, 
this approach potentially overestimates the number of 
actively competing transcripts. This limitation can be 
overcome using AGO HITS–CLIP, which specifically 
enriches active AGO-bound RNAs81,82,123, and therefore 
allows more accurate quantification of the active miRNA 
target pool5,57,124.

AGO individual-nucleotide resolution CLIP (iCLIP), a vari
ation of HITS–CLIP, combined with absolute miRNA and 
mRNA quantitation, in human embryonic and mesen-
chymal stem cells, showed that with the exception of the 
most highly expressed miRNA families, the total target 
pool (defined as all 6-, 7-, and 8‑mer 3′ UTR targets in 
iCLIP libraries) exceeded the miRNA concentration. 
Moreover, mRNA-seq with or without AGO induction, 
revealed miRNA-mediated repression. Consistent with 
previous observations of miRNA functionality22, only 
8–12 miRNA seed families in embryonic stem cells and 
mesenchymal stem cells exhibited detectable binding 
activity5. Of the eight most active embryonic stem cell 
miRNA families, only six were expressed at concentra-
tions greater than their 3′ UTR 8‑mer target pool. Single-
cell miRNA reporter assays further support that the most 
highly expressed miRNA families, such as miR‑294 and 
let‑7, are unsusceptible to ceRNAs. One exception was 
the active miR‑25 miRNA family, which has exception-
ally low target abundance relative to its expression, where 
high-affinity ceRNA induction far below that of the entire 
target pool (~3,000 copies of 8‑mer reporter sites, ~15% 
of total 6-, 7- and 8‑mer pool) led to a modest (~30%) 
reduction in miRNA activity.

In summary, these experiments support previous evi-
dence7,9,16 that miRNA–target ratios determine the suscep-
tibility of target repression to target competition5. With 
the exception of extreme scenarios in which the target 
pool is exceptionally small and the ceRNA has high affin-
ity, the high abundance of the majority of active miRNAs 
are unlikely to be susceptible to ceRNA competition 
(FIG. 4). Furthermore, despite the differences in experi
mental systems, and much lower total miRNA target 
pool estimates, assessments of ceRNA susceptibility using 
AGO iCLIP support previous calculations showing the 
inability of highly abundant miRNAs to be sequestered 
by ceRNAs within physiological expression levels4. The 
study also highlights that AGO-bound miRNA targets are 
predominantly composed of 3′ UTR sites of mRNAs with 
proportionally little binding in non-protein-coding tran-
scripts5. As the pseudogene and lncRNA classes constitute 
only 1.7% of the average 7- and 8‑mer miRNA binding 
pool in embryonic stem cells, coding transcripts are best 
positioned to exert the major competitive influence to 
miRNA activity (FIG. 2).

Models of enhanced ceRNA activity
There is a discernable disconnect between the stoichio-
metric models of ceRNA interaction and the number of 
individual ceRNAs experimentally reported. Although 
models assessing transcriptome-wide target abundance 
indicate that individual transcripts do not (except under 
exceptional circumstances)4–6 physiologically reach the 
required abundance to elicit competition6, reports sup-
ported by experimental evidence are growing. The field 
would benefit from molecular models to better describe 
how ceRNA activity can be enhanced beyond solely a 
function of abundance.

Modelling of transcriptome-wide stoichiometry usu-
ally relies on the false assumption that a cell is akin to 
an aqueous solution. A pertinent argument to explain 
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Pathway divergence
A signalling pathway that is 
amplified when signals from 
the same ligand activate a 
variety of different effectors 
leading to diverse cellular 
responses.

discordance between lowly abundant transcripts and 
function is that compartmentalization or subcellular 
localization will increase RNA concentration at the 
site of activity. This argument is reiterated in recent 
articles, speculating that trapping miRNAs in P‑bodies 
or other sites of miRNA-mediated RNA decay would 
amplify ceRNA regulation6,75. This concept adheres to 
the understanding that lncRNAs can show highly spe-
cific localization and expression patterns125. However, 
this raises the question: what are the subcellular com-
partments where ceRNA activity occurs? The premise 
is that ceRNAs must be in close association with active 
RISC-associated miRNAs82,126. With this assumption, 
supported by some evidence126, the application of AGO 
immunoprecipitation techniques is ideally suited for 
discerning the specific subcellular localization of active 
ceRNAs. Thus, investigating ceRNAs at their subcellular 
localized level should be as straightforward as analysis 
of the AGO HITS–CLIP data. Nonetheless, the potential 
for enriched expression through subcellular localization 
remains as an argument to enhanced ceRNA function. 
Justifiably, there remains the possibility that com-
partmentalization of ceRNA activity may occur inde-
pendently of the RISC complex, although this argument 
remains largely speculative.

It is also frequently observed that lncRNA expres-
sion can be highly temporally regulated, which results 
in coordinated spikes in expression127, prompting 
speculation that coordination of lncRNA expression 
may enhance ceRNA activity through highly regulated 
co‑expression of a miRNA and its competing targets128.

Another factor that influences ceRNA activity is 
the stability of the ceRNA as it is understood to be an 
important consideration when designing artificial oligo
nucleotide miRNA inhibitors. Stability of endogenous 
transcripts is highly variable129 as there are identi
fied structural components of endogenous transcripts 
that allow greater stability, such as hairpin secondary 

structures or in the case of circRNAs, which are far less 
susceptible to exonucleases39,40. Similarly, the struc-
tural context of the miRNA binding site, such as that 
offered by alternative 3′ UTR isoforms, is recognized 
as influencing miRNA binding130. This is supported 
by the observation that when the target site is unstable, 
as in the case for perfectly complementary target sites 
that are cleaved by AGO2, the miRNA is less likely to 
be sequestered. Imperfect base pairing has been shown 
to increase miRNA binding for up to 20 times longer 
than a perfectly complementary target124. However, in 
mammals (as opposed to plants) most miRNA target 
sites are imperfectly complementary to the miRNA131, 
meaning this scenario does not provide an exceptional 
argument to specifically enhanced ceRNA activity of just 
a few lncRNAs.

Several molecular pathways have recently been 
described that explain how subtle regulation of the 
ceRNA mechanism may be amplified through down-
stream processes57,128. For example, the modest upregu
lation of transcription factors by miRNA competition 
with lowly expressed lncRNAs may have magnified 
downstream consequences through signalling to mul-
tiple effector targets, a concept known as pathway 
divergence. This claim is validated to some extent by the 
observation that 88% of lncRNAs share miRNA bind-
ing sites with transcription factor mRNAs that are also 
downregulated upon lncRNA knockdown128. Another 
promising mechanism for enhanced ceRNA activity is 
that of the HCV RNA. In addition to having binding sites 
to effectively sequester the highly abundant miR‑122, the 
HCV RNA is also stabilized by miR‑122, constituting 
a positive feedback loop, which effectively enhances its 
ceRNA activity57.

Limitations of ceRNA validation
The possibility cannot be excluded that the discrep-
ancy between transcriptome-wide modelling data and 
experimental validation is a consequence of limitations 
specific to each approach. Here, we summarize notable 
limitations to both experimental and bioinformatics 
approaches used to investigate the ceRNA mechanism.

Many of the limitations of experimental evidence 
towards ceRNA interactions encompass the lack of 
physiological relevance of overexpression systems. It is 
difficult to replicate physiological miRNA expression 
with the introduction of miRNA mimics, particularly 
owing to the difficulties of directly measuring the activ-
ity of introduced miRNAs if transfected oligonucleotides 
collect in lysosomes where they do not elicit miRNA 
activity36. This is also the case for exogenous expression 
of putative ceRNAs, whereby absence of a complemen-
tary inhibition experiment inherently limits interpreta-
tion. miRNA activity at endogenous expression levels 
can more appropriately be investigated using target 
reporter constructs or miRNA-sensor reporters (includ-
ing Sensor-seq). However, expression of a reporter at 
higher than physiological levels may itself contribute to 
saturating miRNA activity. This effect is observed when 
titration of a miRNA sensor reporter reveals increased 
miRNA activity at lower reporter concentrations122. 

Figure 4 | Schematic of relative cellular abundance of microRNAs and predicted 
target sites.  The abundance (copies per cell) of individual microRNAs (miRNAs; black 
line) is shown whereby the top ~10 most abundant miRNAs make up the majority of all 
cellular miRNAs. The total number of predicted miRNA target sites for each miRNA 
typically outnumbers the abundance of the miRNA. Predicted miRNA target sites consist 
of mRNAs (blue line), long non-coding RNAs (lncRNAs; purple line) and pseudogenes 
(orange line). The majority of predicted target sites are within mRNAs.
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Small interfering RNA
(siRNA). siRNAs, which are also 
called silencing RNAs, act 
within the RNA-induced 
silencing complex (RISC) to 
guide gene silencing. The term 
can refer to a synthetic RNA 
duplex or an endogenously 
derived RNA from a 
double-stranded precursor.

CRISPR
A specific gene-editing 
technique using guide RNAs 
and CRISPR-associated protein 
9 (Cas9).

AGO immunoprecipitation techniques are capable of 
quantifying endogenous expression of both miRNAs and 
targets; however, many AGO HITS–CLIP protocols rely 
on an epitope-tagged AGO overexpression132. Exogenous 
AGO overexpression has been observed to have differing 
effects on cellular localization to P‑bodies which could 
potentially affect endogenous RISC activity133.

In addition, Dicer-knockout cell lines have been used 
extensively to demonstrate the dependence of a molec-
ular or cellular mechanism on miRNAs75. The role of 
Dicer in miRNA biogenesis is widely understood104; 
however, pleiotropic effects of Dicer have also been 
observed75,134. It is also difficult to distinguish the coding 
from non-coding function of an mRNA through inhib
ition alone, given that gene knockout or small interfering 
RNA (siRNA)-induced silencing cannot be designed 
specifically to either function. Although several studies 
have used overexpression of the 3′ UTR alone to rectify 
this problem62–65,67.

An underlying and overwhelming limitation of 
studies assessing ceRNA activity, in particular math-
ematical modelling studies, is that they are wholly 
dependent upon the application of miRNA–target 
prediction algorithms. Limitations and shortfalls of 
miRNA prediction algorithms are widely appreci-
ated77,115,135–138. For example, many algorithms include 
only the 3′ UTR of coding transcripts for target pre-
dictions as is the case for TargetScan139, Probability of 
Interaction by Target Accessibility (PITA)140, miRanda141 
and TargetProfiler142. In addition, many algorithms rely 
on conservation between species139,143, rarely take expres-
sion levels into account139,140,143, and often only small 
numbers of transcripts are investigated when looking at 
ceRNA networks.

Concluding remarks
The exciting prospect of uncovering lncRNA function 
through the ceRNA mechanism has generated substantial 
interest. Key to its success is its potential as a global mech-
anism. However, this is proving to be a double-edged 
sword: although it can provide a mechanism explaining 
the function for any RNA, it must also be scrutinized 
in the context of the entire transcriptome (FIG. 2).

Understanding how RNA–RNA competition takes 
place in the context of all cellular transcripts has neces-
sitated the application of transcriptome-wide approaches 
to understand how miRNA sponges function within 
physiological limits. Furthermore, understanding the 
stoichiometry of both the miRNA and ceRNA is crucial 
given that miRNA efficacy is determined by its cellular 
abundance22 or, more accurately, its abundance within 
RISC complexes122. The implication of this is that the 
required number of competing transcripts is much 
higher for more active miRNAs.

Recent studies address the viability of miRNA-sponge 
interactions on a transcriptome-wide scale. Optimal 
ceRNA interactions have been modelled to occur 
when miRNA and target levels are near equimolar7,9,16. 
Supporting this, it has been shown that lowly expressed 
miRNAs can be susceptible to ceRNAs5. Equally, the 
need for large changes in target abundances diminishes 
the ability of individual transcripts to disrupt the activ-
ity of highly expressed miRNAs4,5. This is particularly 
relevant when considering non-coding RNAs that typi
cally contribute to only a tiny fraction of the total pool 
of miRNA targets5.

Conversely, clarification of models of enhanced 
ceRNA function may explain how ceRNA activity could 
be manifested beyond solely as a function of its expres-
sion, such as scenarios in which ceRNA concentration is 
spatially or temporally enriched to meet the high expres-
sion requirement for ceRNA activity or if RNA stabil-
ity is increased. There is still considerable speculation 
around these models, although progress is being made 
in describing molecular pathways that may explain how 
minor transcriptomic changes elicit larger downstream 
responses through positive feedback loops57 or pathway 
divergence though transcription factor regulation128.

Limitations to experimental manipulations to study 
ceRNA interactions require more critical evaluation. 
Many studies have used miRNA overexpression to study 
ceRNA interactions, using transfected oligonucleotide 
inhibitors or expression vectors. As these experiments 
are typically outside of the realms of physiological 
expression, they overestimate the potential activity of 
a ceRNA. A clearer physiological picture is observed 
when overexpression is controlled within physiologi-
cal ranges4 or when miRNA suppression experiments 
support these claims, which has been performed using 
miRNA inhibitors, but ideally would be done with gene 
knockout technologies such as CRISPR, thus avoiding 
potential saturation of RISC complexes.

Considering the evidence collectively, the ceRNA 
hypothesis shows greatest utility in accounting for 
pathologies associated with exceptional transcriptome 
changes, such as the widespread remodelling of 3′ UTRs 
and polyadenylation dynamics observed in cancer144, 
rather than as a general mechanism to predict the func-
tion of individual non-coding genes, such as lncRNAs 
and pseudogenes.

Finally, this Review has focused on the potential 
for competition between miRNAs and miRNA tar-
gets; however, the insights gained from work in this 
area have far-reaching impact as new examples of RNA 
competition are being discovered in biological pro-
cesses as diverse as miRNA suppression from alternative 
RNA-binding proteins145 to RNA competition during 
retrotransposition146.
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