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SUMMARY

The mechanistic target of rapamycin complex 2
(mTORC2) regulates cell survival and cytoskeletal or-
ganization by phosphorylating its AGC kinase sub-
strates; however, little is known about the regulation
of mTORC2 itself. It was previously reported that Akt
phosphorylates the mTORC2 subunit SIN1 at T86,
activating mTORC2 through a positive feedback
loop, though another study reported that S6K phos-
phorylates SIN1 at the same site, inhibiting mTORC2
activity. We performed extensive analysis of SIN1
phosphorylation upon inhibition of Akt, S6K, and
mTOR under diverse cellular contexts, and we found
that, in all cell lines and conditions studied, Akt is the
major kinase responsible for SIN1 phosphorylation.
These findings refine the activation mechanism of
the Akt-mTORC2 signaling branch as follows: PDK1
phosphorylates Akt at T308, increasing Akt kinase
activity. Akt phosphorylates SIN1 at T86, enhancing
mTORC2 kinase activity, which leads to phosphory-
lation of Akt S473 by mTORC2, thereby catalyzing
full activation of Akt.

INTRODUCTION

The mechanistic target of rapamycin (mTOR) is an essential

regulator of many major cellular functions, such as metabolism,

growth, proliferation, and survival. In executing this role, mTOR

participates in two distinct complexes called mTOR complex 1

(mTORC1) and 2 (mTORC2), enabling it to signal to distinct

sets of substrates in response to growth factors (GFs), stress,

nutrient availability, and other stimuli. Dysregulation of mTOR

is thus a common feature of many diseases, including cancer,

obesity, and type 2 diabetes (Laplante and Sabatini, 2012).

Both mTOR complexes contain the catalytic mTOR subunit,

GbL, DEPTOR, and the Tti1/Tel2 complex, while Rictor, SIN1,

and Protor1/2 are specific to mTORC2 (Bar-Peled and Sabatini,

2014). Unlike mTORC1, the function and regulation of mTORC2
C

is less well defined. Once known as the elusive PDK2, mTORC2

is best known for its role as the kinase responsible for activating

AGC kinases including Akt, SGK, and PKC, via phosphorylation

of their hydrophobic motif (HM)/turn motif (TM) sites to regulate

cell survival and cytoskeletal organization (Facchinetti et al.,

2008; Garcı́a-Martı́nez andAlessi, 2008; Ikenoue et al., 2008; Sar-

bassov et al., 2005). Loss of mTORC2 in fat and skeletal muscle

leads to impaired GF-stimulated GLUT4 translocation, glucose

transport, and glucose tolerance (Kumar et al., 2008, 2010), while

disruption ofmTORC2 in liver results in constitutive gluconeogen-

esis, impaired glycolysis, and lipogenesis (Hagiwara et al., 2012;

Lamming et al., 2014; Yuan et al., 2012), implicating an important

role formTORC2 in the regulationofglucoseand lipidmetabolism.

Although it is widely appreciated that mTORC2 is a crucial

node in GF signaling in diverse cells and tissues, the regulatory

mechanisms governing mTORC2 activity remain unclear. One

mechanism for PI3K-dependent regulation of mTORC2 involves

insulin-induced binding of the complex to ribosomes (Zinzalla

et al., 2011). Another involves post-translational modifications

of the mTORC2 complex member Rictor (Dibble et al., 2009).

Rac1 is also reported to be a regulator of both mTORC1 and

mTORC2 in response to GF stimulation (Saci et al., 2011). One

of the confounding factors in mTORC2 regulation concerns its

subcellular localization. The original models for regulation of

Akt posited that upon GF stimulation Akt translocates to the

plasmamembrane (PM) together with its upstream regulatory ki-

nases, PDK1 and mTORC2. While it remains unclear whether

mTORC2 is PM localized, there is evidence suggesting that

mTORC2 is found at the PM in different cell types (Berchtold

and Walther, 2009; Saci et al., 2011; Schroder et al., 2007).

More recently, mTORC2 also has been localized to mitochon-

dria-associated ER membranes (MAMs), where it is thought to

play an important role in Akt-mediated phosphorylation of mito-

chondrial proteins (Betz et al., 2013), and as mentioned it also

has been found at ribosomes (Zinzalla et al., 2011). Thus, it

seems that mTORC2 has a complex cellular distribution, and

that pools of mTORC2 may be found in different locations

throughout the cell. Future studies will be needed to establish

the molecular basis and function of this differential targeting.

We recently showed that the mTORC2 subunit SIN1 is a phys-

iological Akt substrate in 3T3-L1 adipocytes and HEK293 cells,
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Figure 1. Insulin-Induced Phosphorylation of SIN1 T86 Is Blocked by Akt Inhibitors, but Not by mTORC1 or S6K Inhibitors, in Different

Cell Lines

(A) Schematic shows the PI3K-Akt/mTOR signaling network.

(B) HeLa and HEK293E cells were serum starved for 1.5 hr, treated with MK-2206 (MK, 10 mM), GDC-0068 (GDC, 10 mM), PF-4708671 (PF, 10 mM), or rapamycin

(R, 100 nM) for a further 30 min, followed by insulin (100 nM, 10 min). Samples were analyzed by western blotting (n = 3 biological replicates).

(C) Cell lines were serum starved and treated with inhibitors and insulin as in (B) (n = 2 biological replicates).

Phospho-SIN1 antibody validation and quantitative analysis of (B) are shown in Figure S1.
and that phosphorylation of SIN1 T86 by Akt positively regulates

mTORC2 signaling in vivo and mTORC2 kinase activity in vitro

(Figure 1A). This revealed a new mechanism for GF-regulated

mTORC2 activity (Humphrey et al., 2013). Subsequently, Liu

et al. also described GF-dependent phosphorylation of SIN1 at

T86, as well as at another site, T398 (Liu et al., 2013), which

was not identified in our study or in other large-scale phospho-

proteomics studies to date (Hornbeck et al., 2012). The authors

confirmed our findings in 3T3-L1 adipocytes, but reported that in

HeLa cells, S6K, but not Akt, is the principal kinase responsible

for SIN1 T86 phosphorylation. It was suggested that these differ-

ences may reflect cell-type- or context-specific kinase-sub-

strate specificity (HeLa versus 3T3-L1 adipocytes) (Liu et al.,

2013). Moreover, this study reported that phosphorylation of

SIN1 inhibits mTORC2 activity, indicative of a negative feedback
938 Cell Reports 12, 937–943, August 11, 2015 ª2015 The Authors
loop between mTORC1 and mTORC2 independent of IRS-1 and

Grb10 (Figure 1A). Here we report a comprehensive analysis of

kinase selectivity toward SIN1 T86 in a range of cell types under

diverse experimental conditions. These data provide evidence

that Akt is the major physiological kinase responsible for SIN1

phosphorylation at T86 in diverse cellular contexts, supporting

the previously identified positive regulatory loop between Akt

and mTORC2.

RESULTS AND DISCUSSION

Insulin-Induced SIN1 T86 Phosphorylation Is Blocked by
Inhibitors of Akt, but Not S6K, in Diverse Cell Lines
To explore the role of Akt versus S6K as the SIN1 T86 kinase in

a context-dependent manner, we performed small-molecule
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Figure 2. Insulin-Induced Phosphorylation

of SIN1 T86 Is Blocked in Akt1/2, but Not in

Raptor and S6K1/2, Knockout MEFs

(A) Control or iRapKO MEFs were treated with or

without 1 mM 4-Hydroxytamoxifen (4-OHT) for

3 days to induce Raptor KO. Treated cells were

serum starved for 2 hr followed by insulin (100 nM,

10 min), and samples were analyzed by western

blotting.

(B) Akt1/2 double knockout (Akt1/2 DKO), S6K1/2

double knockout (S6K1/2 DKO), and control MEF

cells were serum starved for 2 hr followed by in-

sulin (100 nM, 10 min), and samples were analyzed

by western blotting.

n = 3 biological replicates. Quantitative analysis is

shown in Figure S2.
inhibitor treatments in numerous cell lines derived from different

species and tissues of origin. We also studied the effects of two

different classes of Akt inhibitor as follows: (1) MK-2206, an allo-

steric inhibitor; and (2) GDC-0068, an ATP-competitive inhibitor.

As next-generation inhibitors, both demonstrate improved po-

tency and specificity compared with earlier Akt inhibitors (Lin

et al., 2013; Tan et al., 2011). SIN1 T86 phosphorylation was

blocked by both Akt inhibitors in HeLa and HEK293 cells (Fig-

ure 1B; Figure S1); but, in contrast to previous studies (Liu

et al., 2013), neither mTORC1 nor S6K inhibitors (rapamycin

and PF-4708671, respectively) had any effect on SIN1 T86

phosphorylation in HeLa cells, despite potently inhibiting insu-

lin-stimulated S6 and Rictor phosphorylation (Figure 1B; Fig-

ure S1C). Overall, the pattern of SIN1 pT86 mirrored that of Akt

substrates (PRAS40 pT246 and AS160 pT642) and mTORC2 ac-

tivity (Akt pS473 and NDRG1 pT346), but was in stark contrast to

mTORC1 substrates (ULK1 pS757 and S6K pT389) and S6K

substrates (S6 pS235/236 and Rictor pT1135). We observed

similar patterns in 3T3-L1 fibroblasts, L6 Myotubes, and three

cancer cell lines (HepG2, PC3, and DU145) (Figure 1C), suggest-

ing that SIN1 pT86 is not dependent on mTORC1 or S6K activity

in different cell types, rather it is an ubiquitous and highly

conserved Akt substrate.

Insulin-Induced Phosphorylation of SIN1 T86 Is Blocked
in Akt1/2, but Not in Raptor and S6K1/2, KnockoutMEFs
We next utilized a genetic approach to explore the role of

mTORC1/S6K on SIN1 T86 phosphorylation, using 4-Hydroxyta-

moxifen (4-OHT)-inducible Raptor knockout (iRapKO) mouse

embryonic fibroblasts (MEFs). Since Raptor is an essential

component of mTORC1, but not mTORC2, its deletion selec-

tively disrupts the mTORC1/S6K pathway. Consistent with
Cell Reports 12, 937–94
previous studies, insulin-stimulated S6K

activity was almost completely abolished

in iRapKO cells, while Akt signaling was

elevated following serum starvation (Akt

pT308 and TSC2 pT1462; Figure 2A; Fig-

ure S2A; Cybulski et al., 2012). This is

likely due to elimination of the mTORC1/

S6K-mediated negative feedback to

IRS1 (Harrington et al., 2004; Shah et al.,
2004) and Grb10 (Hsu et al., 2011; Yu et al., 2011), resulting in

elevated PI3K-Akt signaling. Notably, SIN1 pT86 was increased

in the 4-OHT-induced iRapKO cells, consistent with it being an

Akt substrate as opposed to a substrate of mTORC1/S6K.

We next performed similar studies in Akt1/2 and S6K1/2

double-knockout (DKO) MEFs. As expected, insulin-stimulated

phosphorylation of the S6K substrate S6 pS235/236 was

completely abolished in S6K1/2 DKO MEFs. In contrast, SIN1

pT86 was unaffected. Moreover, insulin-induced phosphoryla-

tion of SIN1 was attenuated to a similar extent as other Akt sub-

strates in Akt1/2 DKO cells (Figure 2B; Figure S2B), albeit not

completely, due to functional compensation by Akt3 (Liu et al.,

2006). Collectively, these data indicate that genetic ablation of

S6K has little effect on SIN1 T86 phosphorylation, but that

pT86 is dependent on Akt activity.

Akt Is the Major SIN1 T86 Kinase under Diverse
Conditions
Since mTORC1 is involved in multiple GF-signaling pathways,

we next investigated phosphorylation of SIN1 T86 in response

to other stimuli. Epidermal growth factor (EGF) and serum

robustly increased SIN1 pT86, as well as the Akt substrate

AS160 pT642 and the SGK substrate NDRG1 pT346, in HEK

cells. Phosphorylation at each of these sites was blocked by

MK-2206, but not by the S6K inhibitor PF-4708671, while S6K

substrates (S6 pS235/236 and Rictor pT1135) were potently

blocked by PF-4708671, demonstrating its efficacy in the assay

(Figure 3A; Figure S3A).

Phorbol myristate acetate (PMA), which promotes mTORC1

activity independently of the PI3K/Akt pathway (Aeder et al.,

2004), activated both S6K and to a lesser extent Akt (Fig-

ure 3B). While PMA-induced S6K activity was blocked by S6K
3, August 11, 2015 ª2015 The Authors 939
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Figure 3. Akt Is theMajor SIN1 Kinase under

Diverse Cellular Conditions

(A) HEK293 cells were serum starved for 1.5 hr,

treated with indicated inhibitors for a further

30 min, followed by EGF (100 ng/ml, 30 min) or

10% fetal bovine serum (30 min). Samples were

analyzed by western blotting.

(B) 3T3-L1 fibroblast cells were serum starved for

24 hr before treatment with PMA (250 ng/ml)

together with inhibitors (MK-2206, 10 mM; PF,

10 mM; and U0126, 10 mM) for 20 min or insulin

(100 nM) for 10 min. Samples were analyzed by

western blotting.

(C) HEK293E cells were transferred to amino acid-

free KRPHmedium containing dialyzed serum and

then treated with amino acids for the indicated

times.

(D) HeLa cells were treated as in Liu et al. (2013)

(Liu et al. conditions, left) or as in Humphrey et al.

(2013) (Yang et al. conditions, right). Specifically,

cells were serum starved for 24 hr and treated with

the indicated inhibitors simultaneously with insulin

(100 nM) for 30 min (left), or they were serum

starved for 1.5 hr and treated with the indicated

inhibitors for a further 30 min, followed by insulin

(100 nM) for 10 min (right). Samples were analyzed

by immunoblotting.

n = 3 (A and C) or 2 (B and D) biological replicates.

Quantitative analysis of (A) and (C) is shown in

Figure S3.
(PF-4708671) and MEK inhibitors (U0126), neither of these com-

pounds blocked PMA-induced phosphorylation of SIN1 (Fig-

ure 3B). Conversely, the Akt inhibitor (MK-2206), which had no

effect on PMA-induced S6K activity, completely blocked PMA-

induced Akt and SIN1 pT86 phosphorylation (Figure 3B).

Nutrients, particularly amino acids, are essential for mTORC1

activity. Even in the presence of serum, amino acid with-

drawal inhibits mTORC1 and S6K activity, and this is restored

by the re-addition of amino acids (Hara et al., 1998). We

found that amino acid withdrawal completely blocked the

activity of mTORC1 and S6K, while SIN1 pT86 was not

impaired (Figure 3C). In contrast, acute re-stimulation with

amino acids moderately inhibited Akt phosphorylation and ac-

tivity, presumably due to negative feedback by mTORC1/S6K

on IRS1 and Grb10 (Hsu et al., 2011; Yu et al., 2011).

Analogous to other Akt substrates, SIN1 pT86 was blunted

following amino acid re-stimulation (Figure 3C; Figure S3B).

These data suggest that, in the context of amino acid sensing

under normal growth conditions, SIN1 pT86 is not dependent
940 Cell Reports 12, 937–943, August 11, 2015 ª2015 The Authors
on mTORC1 or S6K activity, but mirrors

Akt substrate phosphorylation.

Two major differences between our

study and that of Liu et al. (Humphrey

et al., 2013; Liu et al., 2013) is that they

used longer starvation durations (12–

24 hr compared with our 1.5–2 hr) and

they added inhibitory compounds simul-

taneously with insulin for 30 min, whereas

we pre-incubated cells with inhibitor
compounds for 30 min prior to insulin stimulation. We replicated

these various conditions and found that, irrespective of starva-

tion duration or timing of the addition of inhibitors and GFs,

SIN1 pT86 was blocked by both Akt inhibitors, but was unaf-

fected by S6K and mTORC1 inhibitors, while pS6K levels were

almost completely abolished by both compounds (Figure 3D).

Temporal Analysis of GF-Mediated SIN1 T86
Phosphorylation
We previously showed that, in 3T3-L1 adipocytes, Akt is acti-

vated very rapidly (<1 min) following insulin addition, whereas

the mTORC1/S6K pathway is activated more slowly (R5 min),

and SIN1 pT86 temporal phosphorylation mirrored that of Akt

substrates (Humphrey et al., 2013). Indeed, this observation sug-

gested to us that SIN1 T86 is likely a substrate of Akt and not

S6K. Thus, we further investigated the temporal relationship be-

tween Akt versus S6K vis-à-vis SIN1 phosphorylation. Cells were

first stimulated with insulin for 10 min to activate the Akt pathway

and rapamycin was then added. We reasoned that if S6K is a
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Figure 4. Temporal Analysis of SIN1 T86 Phosphorylation

(A) HeLa cells were serum starved for 24 hr, stimulated with insulin (100 nM), and harvested at the indicated time points, or they were stimulated with insulin

(100 nM) for 10 min and subsequently rapamycin was added (R, 100 nM) for a further 10 or 20 min.

(B) WT and S6K1/2 DKO MEFs were serum starved in DMEM for 24 hr before adding insulin (100 nM). Cells were harvested at the indicated time points and

samples were analyzed by immunoblotting.

(C)WTMEFswere serum starved for 1.5 hr, treatedwith GSK2334470 (PDK1i, 1 mM) andMK-2206 (MK, 10 mM) for a further 30min, followed by insulin (100 nM) for

10 min. Samples were analyzed by immunoblotting.

n = 3 (B and C) or 2 (A) biological replicates. Quantitative analysis of (B) and (C) is shown in Figure S4.
late-acting SIN1 T86 kinase, then SIN1 pT86 should become

attenuated under these conditions. Rather, we found that late

inhibition of S6K caused complete blockade of pS6 phosphory-

lation, but SIN1 pT86 was unimpaired, arguing against this hy-

pothesis (Figure 4A). If S6K were a late SIN1 kinase, one would

have expected attenuation of SIN1 T86 phosphorylation relative

to other Akt substrates at later but not earlier time points, but this

was not evident. Moreover, time-course studies in wild-type

(WT) and S6K1/2 DKO MEFs showed that phosphorylation of

S6 and Rictor were completely blocked in S6K1/2 DKO MEFs,

whereas SIN1 pT86 persisted (Figure 4B; Figure S4A). Although

a moderate decrease in SIN1 pT86 was observed at 20 min and

later time points relative to 10min, phospho-Akt (both pS473 and

pT308) and phospho-PRAS40 displayed the same decrease,

indicating that the temporal pattern of SIN1 phosphorylation

again mimicked Akt and its substrates in both cell types (Fig-

ure 4B; Figure S4A).

Acute Inhibition of PDK1 Impairs GF-Dependent
mTORC2 Activity
In our current model, Akt phosphorylation at T308 by PDK1 is

required for SIN1 T86 phosphorylation, and this in turn enhances

mTORC2 activity via an as yet undefined mechanism. Therefore,

disruption of PDK1 activity should inhibit both SIN1 pT86 and

mTORC2 activity. We observed a significant inhibition of SIN1

pT86 in PDK1�/� cells compared with their WT controls, sug-
C

gesting that PDK1 and Akt pT308 are indeed important for

SIN1 T86 phosphorylation (Figure S4B). However, unlike

pT308, elevated Akt pS473 was observed in PDK1�/� cells

compared with PDK1+/+ cells (Figure S4B; Williams et al.,

2000). Cells lacking PDK1 exhibit increased PI3K activity and

this may explain elevated Akt pS473 in these cells (Williams

et al., 2000). Chronic activation of PI3K could result in long-

term compensatory mechanisms activating mTORC2 via alter-

nate pathways, such as the PI3K-ribosome-mTORC2 pathway

(Zinzalla et al., 2011). This hypothesis is supported by a time-

course study using PDK1 inhibitors, in which acute inhibition of

PDK1 resulted in transient inhibition of Akt pS473 (1–2 hr), and

this inhibitory effect disappeared gradually during prolonged

pharmacological inhibition of PDK1 (Nagashima et al., 2011).

To confirm this result, we acutely inhibited PDK1 using a

different PDK1 inhibitor, GSK2334470. In agreement with the

previous study, after 30 min of treatment, 75% of Akt pT308

phosphorylation was blocked, while SIN1 pT86 and Akt pS473

were inhibited by 57% and 33%, respectively (Figure 4C; Fig-

ure S4C). This moderate but significant inhibition of Akt pS473

demonstrates that mTORC2 activity is at least partially PDK1-

dependent, while the remaining effect of GF-dependent

mTORC2 activity may depend on other factors, including trans-

location to the PM and PIP3 binding. Furthermore, Newton

and colleagues showed that neither kinase-dead nor a T308A

Akt mutant became phosphorylated on S473 in response to
ell Reports 12, 937–943, August 11, 2015 ª2015 The Authors 941



stimulation, supporting our model (Toker and Newton, 2000).

Also consistent with our proposal, Hemmings and colleagues

(Andjelkovi�c et al., 1997) showed that targeting of kinase-dead

Akt to the PM was sufficient to trigger phosphorylation at T308,

but not S473. However, stimulation of these cells with IGF1 re-

sulted in a 2-fold increase in pT308 and a 5-fold increase in

pS473. These data are consistent with the notion that transloca-

tion of Akt to themembrane is sufficient for themost part for T308

phosphorylation (PDK1 displays constitutive activity toward Akt),

while this is not the case for S473 phosphorylation, because the

latter also requires GF-dependent activation of mTORC2.

Interestingly, both genetic and pharmacological inhibition of

PDK1hadnoeffect on thephosphorylation of twoothermTORC2

substrates, Akt T450 (TM) and PKCa S657 (HM) (Figure 4C; Fig-

ure S4B). Both of these sites are phosphorylated by mTORC2,

but are not regulated by GF stimuli, although they are important

for Akt and PKCa function, respectively (Facchinetti et al.,

2008; Guertin et al., 2006; Hauge et al., 2007; Ikenoue et al.,

2008). Sabatini andcolleagues have shown that there are five iso-

forms of SIN1, and that these isoforms can form three distinct

forms of mTORC2 (Frias et al., 2006). Importantly, only two of

these mTORC2 isoforms are responsive to insulin. The mTORC2

containing the short isoform of SIN1, which lacks a pleckstrin ho-

mology (PH) domain, has constitutive activity (Frias et al., 2006).

This finding could explain the distinct effects of PDK1 activity to-

ward different mTORC2 substrates. The activity of PDK1 as well

asAkt andSIN1T86phosphorylation are each responsive toGFs,

and it is therefore reasonable that SIN1 pT86 enhances the acute

GF-dependent component of mTORC2 activity (as measured by

Akt pS473), but not the GF-insensitive component of mTORC2

activity (as measured by Akt pT450 and PKCa pS657). Future

studies examining these possibilities are likely to be very fruitful.
Conclusions
Collectively, our results reveal that Akt is the predominant SIN1

T86 kinase under a wide range of cellular contexts. Furthermore,

we have been unable to observe a discernible role for the

mTORC1/S6K pathway in this biological process despite earlier

reports. While we cannot exclude the possibility that under con-

ditions of hyperactive S6K (such as in the case of TSC2 deletion)

(Gao et al., 2002) that this kinase could phosphorylate substrates

outside of its normal physiological reach, including SIN1 T86, our

data reveal that this does not appear to be a feature of the cellular

architecture under normal conditions. Importantly, the finding

that Akt phosphorylates and positively regulates mTORC2 ki-

nase activity, combined with the fact that complete disruption

of the mTORC2 sites in Akt affects some, but not all, Akt sub-

strates (Hagiwara et al., 2012; Jacinto et al., 2006) is inconsistent

with the canonical model of Akt signaling in which mTORC2 is

positioned simply upstream of Akt. Further studies are required

to unravel the true biological function of this pathway as well

as the physiological role of Akt S473 phosphorylation in vivo.
EXPERIMENTAL PROCEDURES

Amino Acid and Inhibitor Treatment

For amino acid treatment, subconfluent cells were incubated for 2 hr in Krebs-

Ringer-phosphate-HEPES (KRPH) buffer containing dialyzed serum and
942 Cell Reports 12, 937–943, August 11, 2015 ª2015 The Authors
treatedwith amixture of amino acids corresponding to the concentrations pre-

sent in DMEM for the indicated times.

For inhibitor assays, subconfluent cells were incubated for 1.5 hr in serum-

free media and treated for 30 min with 10 mM MK-2206, 10 mM GDC-0068,

10 mM PF-4708671, 100 nM rapamycin, 1 mM GSK-2334470, or vehicle

(DMSO), followed by 100 nM insulin for 10 min.

Immunoblotting

Cells were rinsed twice with ice-cold PBS, solubilized in 2% SDS in PBS, son-

icated, and spun at 15,0003 g for 15 min. Protein content was determined by

bicinchoninic acid (BCA) assay. Proteins were separated by SDS-PAGE, trans-

ferred to polyvinylidene fluoride (PVDF) membranes, and immunoblotted as

described in the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2015.07.016.
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