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Simultaneous expression of highly homologous RLN1 and RLN2 genes in prostate impairs their accurate
delineation. We used PacBio SMRT sequencing and RNA-Seq in LNCaP cells in order to dissect the
expression of RLN1 and RLN2 variants. We identified a novel fusion transcript comprising the RLN1 and
RLN2 genes and found evidence of its expression in the normal and prostate cancer tissues. The RLN1-
RLN?2 fusion putatively encodes RLN2 isoform with the deleted secretory signal peptide. The identifica-
tion of the fusion transcript provided information to determine unique RLN1-RLN2 fusion and RLN1
regions. The RLN1-RLN2 fusion was co-expressed with RLNT in LNCaP cells, but the two gene products
were inversely regulated by androgens. We showed that RLN1 is underrepresented in common PCa cell
lines in comparison to normal and PCa tissue. The current study brings a highly relevant update to the
relaxin field, and will encourage further studies of RLN1 and RLN2 in PCa and broader.

© 2015 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-
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ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Relaxin is a mammalian hormone that is involved in reproduc-
tion. As the name suggests, relaxin is the component of serum that
causes the relaxation of the pubic ligament in pregnant female
prior to delivery (Fevold et al., 1930; Hisaw, 1926). The human
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relaxin gene was first isolated from a cDNA library from the corpus
luteum, and later confirmed and characterized by mass spectrom-
etry (Hudson et al., 1984; Stults et al., 1990). In apes and humans,
the relaxin gene underwent a duplication generating two relaxin
genes with high sequence similarity, relaxin-1 (RLN7) and relaxin-2
(RLN2). (Arroyo et al., 2014; Crawford et al., 1984). RLN1 mRNA is
expressed in the prostate, but RLN1 peptide has never been isolated
and its function has not been explored yet (Garibay-Tupas et al.,
2000; Gunnersen et al., 1996). The ovaries and prostate are the
two major sources of RLN2 in humans. The expression of RLN2 in
ovaries is intermittent and increases during the luteal phase of the
menstrual cycle, with highest levels being produced by the corpus
luteum during pregnancy (Ivell et al., 1989). In men, RLN2 is pro-
duced continuously by the prostate, and accumulates in the semi-
nal fluid to increase sperm motility (Carrell et al., 1995; Winslow
et al., 1992). Outside normal physiology, RLN2 is a promoter of
cancer progression in several different types of cancers (Nair et al.,
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2012). In prostate cancer (PCa), RLN2 was shown to promote tumor
growth and vascularisation, and was regulated by androgens (Feng
et al., 2010; Silvertown et al., 2006; Thompson et al., 2010, 2006).
Inhibition of RLN2 signalling by a peptide antagonist in PCa showed
promising therapeutic efficacy in preclinical studies (Feng et al.,
2010; Neschadim et al., 2014).

High homology between RLN1 and RLN2 in the context of
simultaneous expression in prostate tissue hinders the accurate
characterization and functional study of individual relaxin genes in
the prostate. In addition to the canonical sequences, a 101 bp longer
alternatively spliced variant of RLN2 was discovered in the prostate
tissue (Gunnersen et al., 1996). There are several more transcript
variants predicted by automated computational analysis that are
supported by mRNA and EST data as annotated in the Aceview
database (Thierry-Mieg and Thierry-Mieg, 2006). Standard mRNA
determination methods like qPCR, microarray, and RNA-Seq all
largely depend on gene annotation databases which are incom-
plete, and change frequently with the identification of novel tran-
scripts. Recent development of PacBio single molecule real time
(SMRT) sequencing techniques aids the identification of transcript
variants due to the longer read lengths produced by this platform
(Eid et al., 2009). Although PacBio data are inherently error-prone, a
level of consensus accuracy can be achieved by multiple sequencing
passes around the SMRTBell libraries. Circular consensus sequences
(CCS) are derived from the long, raw reads providing sufficient
read-of-insert depth of coverage to improve CCS read accuracy to
>98% (Travers et al., 2010). Paired-end RNA-Seq can also be used to
characterize the expression of alternatively spliced genes using a
Sashimi Plot - this implements a mixture of isoforms (MISO) al-
gorithm and displays alternative exon usage by splice junction
reads as arcs connecting a pair of exons (Katz et al., 2015).

The aim of the present study was to use PacBio derived long
cDNA SMRT sequencing in LNCaP cells in order to dissect the
expression of RLN1, RLN2, and their transcript variants, and to
identify unique RLN1 and RLN2 regions for the purpose of more
accurate characterization. We report on a novel abundantly
expressed fusion transcript between RLN1 and RLN2. The RLN1-
RLN2 fusion putatively encodes an alternative RLN2 isoform with
an altered signal sequence domain that potentially changes the
mode of secretion. We inspected publically available RNA-Seq
datasets for evidence of RLN1-RLN2 fusion expression in normal
and PCa tissues. The fusion has substantial sequence overlap with
RLN1 and RLN2, however we designed unique RLN1-RLN2 fusion
and RLN1 gPCR primers, and determined their expression in com-
mon PCa cell lines as well as defined their androgen regulation.

2. Materials and methods
2.1. Cell lines

Immortalized prostate epithelial cells RWPE-1 (ATCC CRL-
11609) were grown in keratinocyte serum-free media supple-
mented with recombinant human epidermal growth factor (5 ng/
ml final concentration) and bovine pituitary extract (50 ng/ml).
Immortalized prostate epithelial cells BPH-1, HPR-1, and PCa cell
lines PC-3 (ATCC CRL-1435), 22RW1 (ATCC CRL-2505), DU145
(ATCC HTB-81), LNCaP (ATCC CRL-1740), C4-2B (from Dr Leland
Chung, Cedars-Sinai Medical Center, USA), DuCaP (from Dr Mat-
thias Nees, Faculty of Medicine, Turku University, Finland) were
cultured in RPMI1640 supplemented with 5% FBS. LAPC4 cells were
grown in IMDB medium supplemented with 5% FBS. HEK293T were
cultured in high-glucose DMEM, supplemented with 2 mM -
glutamine and 1 mM sodium pyruvate and 10% heat inactivated
FBS. All media and supplements were sourced from Gibco (Life
Technologies, Mulgrave, VIC, AU). All cells were grown in a cell

culture incubator at standard conditions (37 °C, 5% CO,).
2.2. PacBio sequencing

Clontech SMARTer cDNA Synthesis. Long cDNA was prepared from
1 pg of DNase-treated LNCaP total RNA using the Clontech SMARter
PCR Synthesis Kit (Clontech Laboratories, Mountain View, CA, USA).
Second-strand ¢cDNA was prepared in sixteen PCR reactions with
2 pl undiluted first-strand cDNA, 0.24 pM Clontech 5’ PCR Primer
IIA and KAPA HiFi HotStart ReadyMix (Kapa Biosystems, Inc., Wil-
mington, MA, USA) for 14 cycles in the standard SMARTer PCR
cycling conditions. The second-strand PCR production was purified
and concentrated through a single QIAquick PCR Purification Kit
(QIAGEN Sciences, Germantown, MD, USA) and the concentration
was determined using the Qubit dsDNA HS Assay Kit (Life Tech-
nologies, Grand Island, NY, USA). cDNA-Capture and Amplification.
The cDNA was hybridized with a custom NF1 probe set (Gutmann
et al., 2013). Here, 780 ng of the cDNA library was mixed with
5 ng Cot-1 DNA (Invitrogen, Carlsbad, CA, USA) and 100 ng of NF1
probe. Hybridization was carried out in the presence of NimbleGen
hybridization buffers (Roche NimbleGen, Madison, WI, USA) and
processed per NimbleGen's SeqCap EZ Library SR user guide in-
structions. The solutions were denatured and allowed to hybridize
at 47 °C for 72 h. Post hybridization and PCR steps are described in
Cabanski et al. (2013). In brief, we performed 14 PCR cycles for the
enriched cDNA library. Pacific Biosciences Sample Prep and
Sequencing. Captured cDNA was converted into a 2 kb Pacific Bio-
sciences (Pacific Biosciences of California, Inc., Menlo Park, CA, USA)
library, according to the standard protocol using 500 ng of captured
genomic DNA or cDNA and the DNA Template Prep Kit 2.0 (250 bp —
3 Kb). The resulting libraries were prepared for sequencing with the
P4 polymerase and C2 chemistry using the MagBead protocol and
DNA/Polymerase Binding Kit P4. The libraries complexes were
prepared with 30 pM library and a 10:1 ratio of P4 DNA polymerase
to library. Each library complex was sequenced on two SMRT cells
with 180 min movie lengths using the MagBead Standard Seq v2
protocol. Circular consensus sequences were called using the
ReadsOnlInsert_CCS protocol through the SMRT Portal interface.
The minimum full pass and minimum predicted accuracy filters
were set at 2 and 90%, respectively. Detection of RLN1-RLN2 fusion.
The RLN1-RLN2 fusion was identified from full-length CCS reads
spanning the length of the entire transcript. For a transcript to be
reported, we required at least two independent CCS reads to
contain identical nucleotide sequences over the entire length of the
transcript.

2.3. Analysis of RNA-Seq

RNA-Seq from LNCaP cells. LNCaP cells were seeded in a 10 cm
culture dish and treated with 10 nM dihydrotestosterone (DHT) as
described in the section ‘Short-term androgen deprivation assay’
below. Total RNA was isolated using the Norgen RNA Plus extraction
kit (Norgen, Acacia Ridge, QLD, AU). RNA-Seq was carried out on
total RNA using an Illumina TruSeq Stranded mRNA Sample Prep Kit
with Set A indexes (Illumina, Scoresby, VIC, AU) and sequenced on
[llumina HiSeq2500 v4.0 platform (Kinghorn Centre for Clinical
Genomics (KCCG), Sydney, NSW, AU). Sequencing reads were
generated by quality trimming using Trimgalore v.03.7 (Babraham
Institute, http://www.bioinformatics.babraham.ac.uk/projects/
trim_galore/) and aligned to the GRCh38/hg38 genome using
STAR v.2.4.0j (Dobin et al., 2013). RNA-Seq from normal and PCa
tissue. Transcript splice-site usage was assessed on RNA-Seq data
sets comprising 14 PCa tumors and adjacent benign tissue (Ren
et al., 2012). RNA-Seq reads were mapped using Tophat2
(GRCh37/Hg19 assembly), and splice sites were visualized using
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indexed BAM files and the Integrative Genomics Viewer (Kim et al.,
2013; Robinson et al.,, 2011). llluminaHiSeq_RNASeqV2 from 193
samples generated by the TCGA Research Network were accessed at
http://cancergenome.nih.gov/(September 4, 2013) and were ana-
lysed as previously described (Li et al., 2010). Correction of the RLN1-
RLN2 fusion sequence informed by Illumina RNA-Seq from LNCaP cells.
We generated the bowtie (Langmead et al., 2009) index files for the
corrected RLN1-RLN2-2 fusion transcript sequence (genome as-
sembly GRCh38/Hg38 matched). The reads from Illumina RNA-Seq
from LNCaP cells were then aligned to the RLN1-RLN2-2 fusion
transcript and the bam file was generated and visualized in RNA-
SegBrower (An et al., 2015).

2.4. Inducible stable shRNA cell line models

Lentivirus particles were generated in HEK 293T host cells
transfected with X-tremeGENE HP DNA Transfection Reagent
(Roche, Sydney, NSW, AU) and inducible lentiviral pTRIPZ shRNA
plasmids targeting either the androgen receptor (AR) (shAR), RLN2
(shRLN2), or a negative control (shNT) (Thermo-Fisher Scientific,
Richlands, QLD, AU). The pCMV-8.2R lentiviral packaging plasmids
and pCMV-VSVG were kindly provided by Dr Brett Hollier
(Queensland University of Technology, Brisbane, QLD, AU). Virus
particles were collected 48 h and 72 h after transfection, and
filtered through 45 pm filters. Target cells (LNCaP) were infected
with the virus supernatant and 8 pug/ml protamine sulphate (Sig-
ma—Aldrich, Castle Hill, NSW, AU). Transfected cells were then
selected with 2 pg/ml Puromycin Dihydrochloride (Life Technolo-
gies, Mulgrave, VIC, Australia). We observed some cells expressing
red fluorescent protein (RFP) indicating inducible promoter
leakage; therefore we used an Astrios EQ cell sorter (Beckman
Coulter, Lane Cove, QLD, Australia) to remove cells with leaky
inducible promoter.

2.5. Inhibition of androgen signalling

Short-term androgen deprivation assay. LNCaP cells were seeded
into T25 flasks, and incubated in RPMI1640 + 5% FBS for 3 days. The
medium was then changed to RPMI 1640 supplemented with 5%
charcoal stripped serum (CSS) and incubated for 2 days, then
changed to RPMI 1640 supplemented with 10 nM DHT or 1 nM
R1881, and incubated for 48 h with DHT top-up at 24 h. The
reference group was kept in CSS. Long-term androgen deprivation
assay. LNCaP cells were seeded into T25 flasks and incubated in
RPMI 1640 + 5% FBS for 3 days. The medium was then changed to
RPMI 1640 supplemented with 5% CSS, and incubated for 10 days
with medium changes every 3 days. Inducible AR knock-down.

LNCaP cells were seeded onto T25 flasks and incubated in RPMI
1640 + 5% FBS for 3 days. The medium was then changed to RPMI
1640 supplemented with 5% CSS, and incubated with or without
1 pg/ml of doxycyline (dox) for 48 h. The medium was then sup-
plemented with 10 nM DHT, and incubated for 48 h. The reference
group was kept in CSS.

2.6. Quantitative real-time PCR

Total RNA was extracted using the RNAeasy Kit (Qiagen, Chad-
stone Centre, VIC, AU) before reverse transcription with SuperScript
Il Reverse Transcriptase (Life Technologies, Mulgrave, VIC, AU)
according to the manufacturer's protocol. Subsequent quantitative
PCR (qPCR) was carried out on the ViiA7 or 7900HT Real-Time PCR
System (Life Technologies, Mulgrave, VIC, AU) with SYBR Green, or
using Universal TagMan detection (Life Technologies, Mulgrave,
VIC, AU). Gene expression was determined using the 2-AACt
method, and normalized to the housekeeping gene RPL32. Data is
expressed relative to the reference group. Experiments were
repeated a minimum of 3 times. Primer sequences are detailed in
the Supplementary Table 1.

2.7. Statistical analysis

Results are representative of at least three independent exper-
iments with triplicate samples generating similar findings. Differ-
ences between experimental groups were statistically evaluated by
multiple t-tests, followed by the Holm—Sidak test for multiple
comparisons. p < 0.05 was considered statistically significant.
Statistical analysis was performed using Prism 6 (GraphPad Soft-
ware Inc.).

3. Results
3.1. Identification of novel RLN1-RLN2 fusions in PCa

To comprehensively identify RLN1 and RLN2 transcript vari-
ants, we used long cDNA-Cap and SMRT sequencing in LNCaP
cells, and queried for circular consensus sequences (CCSs) that
mapped to the RLN1-RLN2 locus. We found CCSs identical to the
annotated RLN1 gene, but interestingly, no CCS corresponded
to the annotated RLN2 gene (GENCODE Version 19). Instead,
the search retrieved sequences of two longer RLN2 transcript
variants which were fused to the RLN1 gene, generating two
fusion transcripts RLN1-RLN2-1 and RLN1-RLN2-2 (Fig. 1,
Supplementary Fig. S1). The inherent error-proneness of the
SMRT sequencing technology hindered the determination of the

GENCODE Version 19

RLNI Wl
RLNI W

RLNIT W

SMRT Sequencing

RLNI-RLN2-1
RLNI-RLN2-2

Fig. 1. Identification of the RLNT-RLN2 fusion in LNCaP cells using SMRT sequencing. The figure was extracted from the UCSC Genome Browser where the circular consensus
sequences (CCS) of RLN1 and RLN2 identified by SMRT sequencing were aligned to the RLN1/RLN2 genomic locus using BLAT tool. GENCODE Version 19 annotated RLNT and RLN2
transcript variants are shown in black. Combined CCS sequences of RLN1 are shown in orange and RLN1-RLN2 fusion CCS transcripts in blue. The arrowed-line represents introns and
show directionality of the transcripts. The golden rectangles show an overlay between the annotated RLN1 and RLN2 and the transcripts identified by SMRT sequencing. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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precise nucleotide sequence of the fusion transcripts. Therefore,
we aligned the sequences of the novel fusion transcripts RLN1-
RLN2-1 and RLN1-RLN2-2 to the human genome assembly
GRCh38/hg38 using the Blat tool in the UCSC genome browser
(Kent, 2002; Kent et al., 2002). The sequences of the fusion
transcripts were then corrected to match the genomic sequence.
In order to increase the degree of certainty of the fusion tran-
script sequence, we mapped individual sequencing reads gener-
ated by a standard Illumina paired-end RNA-Seq from LNCaP cells
to the corrected RLN1-RLN2-2 fusion sequence. We utilized a
recently in-house developed RNASeqBrowser tool (An et al,
2015) and observed that the raw sequencing reads perfectly
aligned to the corrected sequence of the RLN1-RLN2-2 fusion,
confirming its legitimacy (Supplementary Fig. S2). The mapping
of raw sequencing reads highlighted only 3 differences in the
nucleotide sequence of the RLN1-RLN2-2 fusion that could be
ascribed to the difference between the human genome assembly
GRCh38/hg38 and LNCaP genome (Supplementary Fig. S2). To
additionally confirm the expression of the RLN1-RLN2 fusion
transcripts, we analysed Illumina paired-end RNA-Seq from
LNCaP cells using Sashimi Plot representation of RNA-Seq data in
the Integrative Genomic Viewer. Sashimi Plots display alternative
exon usage by drawing splice junction reads as arcs connecting a
pair of exons (Katz et al., 2015). Both novel fusion transcripts
RLN1-RLN2-1 and RLN1-RLN2-2 were clearly observed in the
Sashimi Plot of RNA-Seq from LNCaP cells (Fig. 2A). We then
inspected Ren et al. RNA-Seq data comprising PCa tumors and
adjacent benign tissue, and found similar splice junction reads
between exons of novel fusion transcripts to those in LNCaP cells,
suggesting broader representation of the RLNI1-RLN2 fusion
(Fig. 2B, C) (Ren et al,, 2012). In support of the newly identified
RLN1-RLN2 fusion transcript the sequence of a similar longer
RLN2 variant was recently predicted by an automated computa-
tional analysis that was supported by mRNA and EST evidence
(accession number: XM_011518003.1, March 2015)
(Supplementary Fig. S3).

3.2. Novel RLN1-RLN2 fusion has an alternative putative ORF

The novel RLN1-RLN2 fusion transcripts contained incomplete
nucleotide sequences of both RLN1 and RLN2 and acquired novel
exons in the intergenic region between the genes. In order to
investigate whether the RLN1-RLN2 fusion transcripts encode novel
putative open reading frames (ORF) we analysed the sequences
with the Translate Tool (Expasy, http://web.expasy.org/translate/).
The shorter RLN1-RLN2-1 fusion transcript putatively translated
into a RLN2 peptide with a truncated C-peptide and an A-chain, and
was therefore not considered for further investigation. The analysis
of the longer RLN1-RLN2-2 fusion transcript predicted a novel RLN2
isoform with an alternative start codon within a novel exon of the
fusion (Fig. 3). The new putative RLN2 isoform contained intact
functional domains of RLN2 (B-chain, C-peptide and A-chain), but
lost the entire signal sequence that is essential for its secretion via
the endoplasmic reticulum (ER)-Golgi secretory pathway (Fig. 3).
Instead, the signal sequence was replaced by a short leader peptide
MNTSKAVA (Fig. 3). We also unveiled an LNCaP specific single
nucleotide polymorphism in the C-peptide region of RLN2 (and of
RLN1-RLN2-2) that affected the change of amino acid from

isoleucine to asparagine in the
(Supplementary Fig. S2).

sequence KKLI/NRNR

3.3. Identification of unique RLN1-RLN2 fusion and RLN1 regions

The RLN1-RLN2-2 fusion showed a significant overlap with the
annotated RLN1 and RLN2 genes. In order to characterize the
expression of the fusion, we aligned both novel fusion transcripts
using the BLAT tool in the USCS genome browser (Kent, 2002; Kent
etal., 2002), and designed the qPCR primers in unique RLN1-RLN2-2
regions. The forward primer for specific detection of RLN1-RLN2-2
fusion was designed to span the junction between the novel exon of
the fusion and the downstream fusion exon that is shared with the
annotated RLN2. The reverse primer was designed in a region
shared by RLN2 and RLN1-RLN2-2 fusion (Fig. 4A). Similarly, we
designed qPCR primers in the RLNT unique region (Fig. 4A). In order
to test the specificity of the primers, we stably transfected LNCaP
cells with a doxycycline inducible lentiviral vector encoding shRNA
targeting the annotated RLN2 gene (shRLN2). LNCaP cells stably
expressing non-targeting shRNA (shNT) were used as a control. The
addition of doxycycline in shNT cells had no effect on the expres-
sion of RLN1-RLN2-2 fusion, whereas the addition of doxycycline to
ShRLN2 cells resulted in a significant decrease in the levels of RLN1-
RLN2-2 fusion (Fig. 4B). These results confirmed that the novel exon
of the fusion is linked to the exon of the annotated RLN2 gene. RLN2
knock-down (shRLN2) had no effect on RLN1 levels. Although the
expression of RLN1 decreased with doxycycline treatment, we
observed no difference between the control (shNT) and shRLN2
cells, confirming the specificity of RLN1 primers (Fig. 4C).

3.4. Underrepresentation of RLN1 in PCa cells

The RLN1-RLN2-2 fusion and RLN1 are overlapping same strand
transcripts (Fig. 1). We thus predicted an association between the
expression of RLN1 and RLN1-RLN2-2 fusion. We first determined
the expression of RLN1 in 3 normal and 7 PCa cell lines. RLN1 was
abundantly expressed only in LNCaP cells, whereas in other PCa
cells, the expression was >80-fold lower (Fig. 5A). Similarly, the
expression of the RLN1-RLN2-2 fusion was highest in LNCaP cells,
and marginal in the other PCa cells (Fig. 5B). The unexpected low
expression of RLN1 in common PCa cell lines was a surprising
observation as RLN1 is expressed in prostate tissue (Hansell et al.,
1991). We found further evidence of prostate tissue specific
expression of RLN1 by accessing the Su et al. GeneAtlas microarray
dataset (Fig. 5C) (Su et al., 2004). Next, we examined a publically
available TCGA RNA-Seq dataset from normal and PCa tissue sam-
ples to investigate whether the expression of RLNT is limited to
normal prostate tissue. We showed that both normal and PCa tissue
expressed high levels of RLN1 (Fig. 5D). The median expression of
RLNT in normal prostate tissue was 42.5 transcripts per million
reads (TPM) and 12.7 TPM in PCa tissue.

3.5. RLN1-RLN2 fusion and RLN1 are inversely regulated by
androgens

The expression of RLN2 has been shown to be negatively regu-
lated by androgens in LNCaP cells (Thompson et al., 2006). The
androgen responsiveness of RLN2 led us to investigate the androgen

Fig. 2. RLN1-RLN2 fusion exons were observed in RNA-Seq data from LNCaP and from normal and PCa tissues. Expression of transcripts at the RLN1/RLN2 genomic locus is rep-
resented by a blue wiggle plot (RNA-Seq coverage). Arcs in the RNA-Seq coverage plot represent the junction between exons and the number informs the quantity of split reads
between the exons. Black arcs show split reads between the exons of novel fusion transcripts RLN1-RLN2-1 and RLN1-RLN2-2 and the red arcs show the exon—exon junctions that
were not identified by SMRT sequencing in LNCaP. The shadowed area shows an overlay of RLNT and novel RLN1-RLN2 fusion transcripts with the junctions from RNA-Seq datasets
generated using Sashimi Plot Tool and extracted from the Integrated Genome Viewer. A. GENCODE v.19 annotated RLN1 and RLN2 transcript variants (black) and RNA-Seq data from
LNCaP cells. B. RNA-Seq data from Ren et al. (2012) study from benign prostate tissue and C. PCa tissue. (For interpretation of the references to color in this figure caption, the reader

is referred to the web version of this article.)
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are unchanged (downstream C-peptide and A-chain not shown).

regulation of the RLN1-RLN2-2 fusion and RLN1. Charcoal-stripped
fetal bovine serum (CSS) was used to grow LNCaP cells in the
absence of androgens for a period of 10 days. The removal of an-
drogens resulted in a steady increase in the levels of the RLN1-
RLN2-2 fusion (Fig. 6A). Although the levels of RLN1 were higher
in the absence of androgens, the increase was marginal in com-
parison to the RLN1-RLN2-2 fusion (Fig. 6A). To further confirm that
the increase in expression of the RLN1-RLN2-2 fusion was a result of
androgens, we performed a similar experiment where LNCaP cells
were first grown in CSS for 2 days followed by the 2 day treatment
with androgens (10 nM DHT or 1 nM R1881). The treatment of
LNCaP cells with androgens abolished the increase in expression of
the RLN1-RLN2-2 fusion (Fig. 6B). This androgen suppression
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resulted in 60—75% lower levels of RLN1-RLN2-2 fusion in androgen
treated cells compared to control (Fig. 6B). Contrary to the RLN1-
RLN2-2 fusion, the addition of androgens resulted in up-
regulation of the expression of RLNI, indicating an inverse
androgen regulation of the transcripts (Fig. 6C). To further assure
that the inverse androgen regulation of RLN1-RLN2-2 and RLNT is a
result of androgen directed signalling, we specifically inhibited the
AR by doxycycline induced shRNA knock-down (shAR). DHT
treatment in control cells (shNT) suppressed the expression of
RLN1-RLN2-2 fusion in both doxycxyline induced and non-induced
cells (Fig. 6D). This suppression was still evident in non-induced
shAR cells, but doxycycline induced AR knock-down impaired this
suppression, confirming that androgen signalling down-regulates

RLNI

shNT

shRLN2-2

[ No DOX DOX

Fig. 4. Identification of unique sequences of RLN1-RLN2-2 fusion and of RLN1. A. GENCODE V.19 RLN1 and RLN2 transcripts (black) are aligned to novel fusion transcripts RLN1-RLN2-
1 and RLN1-RLN2-2. The canonical exons of RLN1 and RLN2 are overlaid to the fusion transcripts (gold rectangle) demonstrating the shared and unique regions of the transcripts. The
arrows above transcripts represent the position of unique primer sets and the star represent the shRNA target sequence. The expression of B. RLN1-RLN2-2 and C. RLN1 after the
doxycycline (DOX, 250 ng/ml) inducible knock-down of RLN2. (n = 3; error bars, SE), *p < 0.05, ***p < 0.005. (For interpretation of the references to color in this figure caption, the

reader is referred to the web version of this article.)
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Fig. 5. Co-expression of RLN1 and RLN1-RLN2-2 fusion and underrepresentation of RLN1 in PCa cell lines. Relative gene expression of A. RLN1 and B. RLN1-RLN2-2 in common PCa
cell lines (n = 3; error bars, SE). C. The expression of RLNT in a publically available high-density microarray dataset from different human tissues (Su et al., 2004). The vertical line
represents a 10x value of the Median expression in all tissues. The expression value for each tissue is an average of 2 microarray experiments with 11 probes for RLN1. D. Expression
of RLN1 determined from a TCGA RNA-Seq dataset from 36 benign prostate and 157 PCa tissues. The scatter plot represents expression values (transcripts per million, TPM) in each

tissue sample; M (Median)

the levels of RLN1-RLN2-2 (Fig. 6D). Contrary to RLN1-RLN2-2, the
expression of RLN1 was increased after DHT treatment in control
cells, but this increase was suppressed by AR knock-down (Fig. 6E).
The changes in expression of the androgen responsive gene PSA
were determined in all assays to confirm that the levels of andro-
gens were depleted, or that the AR knock-down was efficient, and
AR signalling decreased (Supplementary Fig. S4).

4. Discussion

In this study we used SMRT sequencing of full length RNA
transcripts in PCa LNCaP cells in order to dissect the expression of
RLN1, RLN2, and their transcript variants, and to identify unique
sequences of RLN1 and RLN2 for more accurate characterization. We
report on a novel abundantly expressed fusion transcript
comprising the RLN1 and RLN2 genes which encodes a putative
RLN2 isoform with an altered signal sequence domain that poten-
tially modifies its mode of secretion. By employing a Sashimi Plot
visualization of RNA-Seq data, we showed the presence of the

unannotated fusion in both normal and PCa tissue. We designed
unique RLN1-RLN2 fusion and RLN1 qPCR primers, and found that
the RLN1-RLN2 fusion and RLN1 were co-expressed in various PCa
cell lines but inversely regulated by androgens in LNCaP cells. We
showed that RLN1 was surprisingly underrepresented in PCa cell
lines in comparison to normal and PCa tissue.

We have identified a novel longer RLN2 transcript variant rep-
resenting a fusion between RLN1 and RLNZ2 in LNCaP cells (Fig. 1).
Despite the use of northern blotting in previous PCa studies, longer
RLNZ transcripts have not been observed (Ivell et al., 1989). We have
however used a recent state of the art SMRT sequencing technique
and obtained RLN1-RLN2 fusion sequences in PCa cells (Fig. 1).
Additionally, we have observed fusion specific exons in RNA-Seq
from normal and PCa tissues (Fig. 2B, C). Further evidence of the
RLN1-RLNZ fusion comes from a recent study where several longer
RLN2 transcripts were predicted from de novo assembly of 7256
RNA sequencing (RNA-seq) libraries of tumors, normal tissue, and
cell lines from 25 independent studies (Supplementary Fig. S5)
(Iyer et al., 2015). The size of the fusion transcript was 2 kbp,
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androgens), DHT (physiological androgen, 10 nM), (n = 3, error bars, SE).

making it twice the size of either RLN1 or RLN2. The expression and
tissue specificity of RLN1, RLN2, and their variants, has been pre-
viously investigated using cloning techniques from cDNA libraries,
northern blotting and qPCR (Garibay-Tupas et al., 2000; Gunnersen
et al,, 1996; Hudson et al., 1984). Interestingly, initial northern blots
performed in RNA samples from ovaries with RLN2 specific probes
revealed a longer transcript of the similar size (2 kbp) as the fusion
transcript we identified in PCa cells LNCaP (Hudson et al., 1984). The
longer variant was considered to be a potentially longer primary
RLN2 mRNA species that was probably truncated into a mature
RLN2 by cleavage in the alternative polyadenylation site but this
had not been explored further. In another study, the longer 2 kbp
variant of RLN2 was confirmed by northern blotting in ovaries, and
interestingly the expression was found to be increasing with the
luteal phase of the menstrual cycle (Ivell et al., 1989). Thus, the
evidence from the literature indicates that the longer RLN2 tran-
scripts observed in the ovarian samples resemble the size of the
novel RLN1-RLN2 fusion transcript identified in our study. There-
fore, it would be interesting to investigate the expression of the
RLN1-RLN2 fusion in ovaries.

The novel RLN1-RLN2 fusion putatively encodes a RLN2 isoform
that retains all the functional domains of RLN2, but lacking the
signal sequence responsible for secretion through the ER-Golgi
complex and release into the cell exterior. The lack of a secretory
signal could therefore obstruct the secretion of the RLN2 peptide
from the cells. However, some secretory proteins lack the signal
peptide and utilize alternative secretory pathways. For example,
IL1B is a secretory inflammatory cytokine without a signal sequence
and was consequently not found in the ER or Golgi but instead was
translated by free polyribosomes (Lopez-Castejon and Brough,
2011). One of the proposed secretory pathways of IL1f included
shedding by microvesicles or exosomes. Interestingly, prostate
gland epithelial cells are known to secrete vesicles called prosta-
somes into the seminal fluid (Sahlen et al., 2002). Thus, it is possible

p<0.001; ns -non significant.

that the fusion encoded RLN2 isoform is secreted from prostate
cells enclosed in prostasomes. The membrane enclosed RLN2
would have limited functionality in the seminal fluid and would be
protected from degradation until reaching the target tissue.
Opposing to the hypothesis of the prostasomal secretion of the
fusion encoded RLN2, the RLN2 peptide identified in the seminal
fluid was identical to the one isolated from the ovaries thus without
a fusion specific alternative MNTSKAVA leader sequence (Winslow
et al.,, 1992). However in the mentioned study, RLN2 peptide was
enriched from the sample of seminal fluid with an RLN2 antibody
that might have failed to recognize the fusion encoded RLN2. In
order to further investigate the cellular trafficking and function of
the novel fusion encoded RLN2 isoform we aim to determine the
precise nucleotide sequence of the fusion by sequencing of the
cDNA clones and investigating its role in the next phase of our
study.

The RLN1-RLN2 fusion has a significant overlap with RLN1 and
RLN2 and thus unique regions are severely restricted (Figs. 1 and 3),
providing technical challenges for the accurate characterization of
their expression. The fusion transcript overlapped the 3’ end of the
first and the 5’ end of the second RLN1 exon, which represents a
prime template for qPCR primers to be able to discriminate be-
tween mRNA and genomic DNA. However in the case of RLNI,
primers designed near the exon junction would not be able to
discriminate between RLN1 and RLN1-RLN2 fusion transcripts.
Therefore we designed qPCR primers in unique RLN1 regions at the
3’ end of the second exon. RLN1 specific primers were used previ-
ously, however their specificity was determined based on testing of
different primer sets and selecting for those that were able to
discriminate between the expression of RLN1 in corpus luteum and
prostate tissue. For instance, RLN1 has been shown to be expressed
in prostate tissue but not in the corpus luteum by northern blotting
(Garibay-Tupas et al., 2000; Gunnersen et al., 1996). Confirming the
validity of our unique RLNT region, the reverse primer for RLN1 in
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both studies was designed in a region that we identified to be
unique for RLN1 (Fig. 4).

Using our specific RLN1 qPCR primers, we observed that RLN1
mRNA is underrepresented in PCa cell lines. We found that RLN1
was abundantly expressed only in LNCaP cells out of the 3 normal
and 7 PCa cell lines tested. However, RLN1 has been shown to be
expressed in the prostate tissue (Gunnersen et al., 1996; Hansell
et al., 1991). Specifically, we showed that RLN1 is a unique pros-
tate tissue transcript (Fig. 5C) and abundantly expressed in normal
prostate and cancer tissue (Fig. 5D). Thus, LNCaP cells best reflect
the RLN1 expression observed in PCa and is the most relevant cell
line for the use in further studies of RLN1 biology.

Androgens and androgen-regulated genes are important in the
onset and progression of PCa. We observed that the RLN1-RLN2
fusion is down-regulated by androgens (Fig. 6B). The suppression of
annotated RLN2 was previously shown in LNCaP cells and tissues,
however the primers used were unable to distinguish between
RLN2 and the RLN1-RLN2 fusion (Thompson et al., 2006). In the later
study, the RLN1-RLN2 fusion transcript might have contributed to
the majority of the qPCR signal considering the abundant expres-
sion of the fusion in LNCaP cells. Androgen regulation of RLN1 has
not been previously shown, although Xu et al. showed AR binding
upstream of the RLN1 gene, and co-regulation of RLN1 expression
by AR and RNF6 (Xu et al., 2009). We demonstrate that RLN1 was
up-regulated by androgens (Fig. 6C, E). Thus, we show here that
although both RLN1 and the RLN1-RLN2 fusion transcript initiate
from the same genomic locus and share parts of the genomic code,
they are nevertheless inversely regulated by androgens. Since the
transcription start site of RLN1 is located just upstream of the RLN1-
RLN2 fusion, it would be interesting to investigate to what extent
the transcription of RLN1 directly controls the expression of the
fusion transcript.

In conclusion, our study implemented a state of the art SMRT
sequencing technique in LNCaP cells, and identified a novel fusion
transcript comprising the RLN1 and RLN2 genes. The fusion tran-
script encodes a putative RLN2 with a deleted secretory signal
peptide indicating a potentially biologically important alteration.
We have unveiled an association between the expression and
regulation of RLN1-RLN2 fusion and RLN1, and discovered a sur-
prising underrepresentation of RLN1 in PCa cell lines. Although
RLN1-RLN2 was identified in PCa cells, we show evidence of its
expression in normal prostate tissue. Further characterization of
the RLN1-RLN2 fusion product will shed new light on its role in PCa
as well as foster fundamental research in the field.
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