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Abstract Data from our laboratory show that the auditory
brain is highlymalleable by experience.We establish a base of
knowledge that describes the normal structure and workings at
the initial stages of the central auditory system. This research
is expanded to include the associated pathology in the audi-
tory brain stem created by hearing loss. Utilizing the congen-
itally deaf white cat, we demonstrate the way that cells,
synapses, and circuits are pathologically affected by sound
deprivation. We further show that the restoration of auditory
nerve activity via electrical stimulation through cochlear im-
plants serves to correct key features of brain pathology caused
by hearing loss. The data suggest that rigorous training with
cochlear implants and/or hearing aids offers the promise of
heretofore unattained benefits.
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Introduction

During the nearly 65 years since Levi-Montalcini (1949)
reported on the importance of afferent fibers for the develop-
ment of acoustic centers in the chick embryo, a tremendous
body of data has amassed indicating that the structural and
functional integrity of neurons are radically altered by changes
in the amount of afferent input that they receive. When a fiber

system is damaged, atrophic changes may appear in the cells
to which it is connected. Such transneuronal degeneration has
been produced in a variety of brain structures, including the
cochlear nucleus, olfactory bulb, spinal cord, lateral genicu-
late, subcortical trigeminal centers and pyriform cortex
(Mathews and Powell 1962; Cook et al. 1965; Gelfan et al.
1972; Lund et al. 1973; Belford and Killackey 1979;
Westenbroek et al. 1988). These effects are more striking in
young animals and importantly, pathologic changes can occur
in the absence of actual tissue damage. The observation that
abnormalities can be produced by functional deprivation has
emphasized the role of neural activity in the development and/
or maintenance of brain structure.

Substantial alterations at the cellular level occur following
manipulations of afferent activity. With regard to the auditory
system of birds and mammals, deafening in neonates (ferrets,
Moore and Kowalchuk 1988; cats, Lustig et al. 1994; guinea
pigs, Lesperance et al. 1995) or adults (cats, Powell and
Erulkar 1962; chickens, Parks 1979; Born et al. 1991; mice,
Trune 1982a, 1982b; ferrets, Moore 1990; rats, Hildebrandt
et al. 2011) produces atrophic and reactive changes in the
central pathways. The expression of these changes can appear
as the atrophy of dendrites (Benes et al. 1977; Deitch and
Rubel 1984, 1989), somatic shrinkage (Parks 1979; Trune
1982a, 1982b; Saada et al. 1996), chromatolysis (Powell and
Erulkar 1962), RNA downregulation (Steward and Rubel
1985) and altered axonal projections along the central path-
way (Nordeen et al. 1983; Moore and Kowalchuk 1988; Parks
et al. 1990; Illing et al. 1997; Tirko and Ryugo 2012). Such
changes are much more striking when deafness is induced in
neonates compared with in adults (Powell and Erulkar 1962;
Trune 1982a, 1982b; Hashisaki and Rubel 1989; Mostafapour
et al. 2000). Acute pharmacologic blockade of electrical ac-
tivity in the auditory nerve is also capable of producing central
structural changes (Sie and Rubel 1992; Pasic et al. 1994). A
broad range of homeothermic species appear dependent on
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neural activity to maintain normal brain organization and
function. Furthermore, the similarity of neural reactions to
manipulations of the sensory environment indicate that com-
mon principles are involved. The generality of effects signifies
that neuroplasticity can be studied by using a variety of
species, methods and tools to yield important contributions
and insights.

In contrast to the effects of deprivation, stimulation paradigms
(such as conditioning to certain frequencies) often produce ex-
panded representations of neural regions or increased sensitivity
that are specific to the conditioning frequencies (e.g., Robertson
and Irvine 1989; Bakin and Weinberger 1990; Recanzone et al.
1993; Suga et al. 2002; Suga 2011). These studies emphasize the
extent to which the brain is selectively responsive to the type and
amount of afferent activity, although the cellular and molecular
mechanisms underlying these changes have not been revealed.
Nevertheless, these kinds of plastic changes are speculated to be
controlled by balancing excitation and inhibition, by exerting
centrifugal influences on ascending pathways and/or by modu-
lating sensory receptors by way of the auditory efferents.

Historically, experimental studies of acoustic depriva-
tion or deafferentation have been performed on phenotyp-
ically normal subjects. Cochlear ablation, auditory nerve
section and pharmacologic blockade of the cochlea are
known to produce central changes that are hypothesized
to result from such deprivation (Rubel and Parks 1988).
Invasive surgical effects, however, can be complicated by
variables such as direct and/or indirect insults to the blood
supply, collateral surgical damage, inflammation and in-
fection. Chemical deafening by the neurotoxic effects of
drug application raises caveats because of the multiple
modes of pharmacologic action. Ototoxic drugs that kill
auditory receptors in the inner ear potentially have
“downstream” effects that act directly or indirectly on
structures of interest, even if they are remote from the
site of application. Thus, we need to consider both the
direct and indirect consequences of experimentally in-
duced deafness in order to interpret the results properly.

Over the last several decades, the use of gene mutations
that result in deafness has been growing. Many forms of
hereditary deafness are accompanied by other abnormalities,
such as blindness (Usher’s syndrome, Keats and Corey 1999)
or motor pathologies (Ames Waltzer, Osako and Hilding 1971;
Whirler, Fleming et al. 1994). “Uncomplicated” forms of
deafness have assumed greater prominence because they bet-
ter resemble deafness found in humans (Fraser 1976). Today, a
“cornucopia” of gene candidates that are associated with
deafness is available (Eisen and Ryugo 2007; Lewis and
Steel 2012). Amyriad of possible genetic events, any of which
may appear innocuous, can nevertheless initiate certain down-
stream processes that result in deafness.

In this context, there may be no perfect model that can be
used to study the effects of deafness expressed by inner ear

pathology and that is free of potential complications of indi-
rect effects on the very brain structure under study. That said,
however, models of deafness that selectively block auditory
nerve activity will serve as the strongest argument for a causal
link between deafness, neural activity and brain structure and
function. A corollary is that the restoration of activity to a deaf
system should propel the system back towards normal with
the caveat that timing (e.g., age of deafness onset and duration
of deafness), environment and innate abilities will influence
the outcome. This review reports on work conducted in my
laboratory that addresses brain alterations as a result of chang-
es in auditory nerve activity and documents synapse plasticity
when spike activity is restored.

In order to study the relationship between brain morphol-
ogy and auditory nerve activity, a structure needs to be select-
ed that has functional significance and is readily identifiable.
The endbulb of Held of auditory nerve fibers meets the criteria
by virtue of its large size, characteristic axosomatic architec-
ture and evolutionary conservation (Ryugo and Fekete 1982;
Ryugo and Parks 2003). Endbulbs are revealed by using
intracellular dyes; they arise from the ascending branch of a
single type I auditory nerve fiber and terminate by clasping the
soma of a bushy cell in the anteroventral cochlear nucleus
(Fig. 1). Each endbulb is formed by the simultaneous emer-
gence of several thick gnarled branches that divide repeatedly
to form a network of en passant and terminal swellings; the
resulting arborization spreads over much of the surface of the
associated cell body. Indeed, the endbulb forms up to 2000
release sites (Ryugo et al. 1996). The numerous synapses
imply that depolarization of the endbulb causes the synchro-
nous release of many synaptic vesicles. Presynaptic activity

Fig. 1 Light micrograph of an endbulb of Held in the anteroventral
cochlear nucleus of an adult cat; the endbulb is stained brown by horse-
radish peroxidase (HRP) and diaminobenzidine (DAB) histochemistry.
Note the complex branching and the varicosities on the tertiary branches.
The endbulb encircles the cell body of the spherical bushy cell, stained
light purple and gives rise to hundreds of synapses (modified from Ryugo
and Fekete 1982)
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would therefore produce a prominent and dependable post-
synaptic response because of the flood of neurotransmitters.
The reliable linkage of neural activity to acoustic events
subserves the ability of mammals to detect interaural timing
differences on the order of 10s of microseconds (Joris and Yin
1998; Drapal and Marsalek 2011).

The importance of this large auditory nerve terminal is
underscored by its presence in every terrestrial vertebrate
examined. They have been observed in turtles, lizards, birds

and mammals including rodents, carnivores and primates
(Fig. 2). Consequently, they are inferred to have an important
role in auditory processing and, thus, the survival of the
organism.

The endbulb does not start off as a highly arborized struc-
ture. In newborn cats, the immature endbulb resembles a
growth cone, described as a club-shaped swelling with nu-
merous filopodia and fine adventitious processes (Held 1893;
Brawer and Morest 1975; Lorente de Nó 1981; Ryugo and

Fig. 2 Comparative view of endbulbs from terrestrial vertebrates, span-
ning amphibia to humans (Browner and Marbey 1988; Szpir et al. 1990;
Jhaveri and Morest 1982; Carr and Boudreau 1991; Sento and Ryugo
1989; Limb and Ryugo 2000; Tsuji and Liberman 1997; Ryugo and Parks
2003; Adams 1986). These endbulbs have been stained by a variety of
techniques and illustrate their large size and complex structure. The

morphology implies faithful signal transmission to the postsynaptic neu-
ron in which neural activity will be tightly linked to acoustic events.
Accurate timing of spikes confers evolutionary advantages in the form of
sound localization acuity and auditory discrimination (modified from
Ryugo and Parks 2003)
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Fekete 1982). Over the next several days, the swelling de-
velops fenestrations and fissures; irregular leaflets form be-
tween the fissures and the adolescent endbulb starts to resem-
ble a floral calyx. By the third week, the endbulb can be
described as a highly branched arborization. The structure is
characterized by 3–5 main branches that divide repeatedly to
form successively finer branches (Fig. 3). A period of devel-
opmental refinement occurs over the next 30 days during
which irregular varicosities become elaborated and strung
together by fine filaments to create a delicate reticulum into
which nestles the postsynaptic cell body (Ryugo and Fekete
1982; Limb and Ryugo 2000).

Because of the relatively prolonged period over which the
endbulb develops, the opportunity arises to investigate the
way that neural activity affects the maturational process. The
importance of neural activity for the normal development and
function of synapses has received strong experimental support
(e.g., Shatz and Stryker 1978; Goodman and Shatz 1993;
Kandler 2004). Manipulations that deprive sensory systems
of input produce striking atrophic effects (Powell and Erulkar
1962; Van der Loos and Woolsey 1973; LeVay et al. 1980;
Benson et al. 1984; Born and Rubel 1985; Saada et al. 1996;
Ryugo et al. 1997; Zhang et al. 2001), whereas selective
activation can produce somatic enlargement (Wiesel and
Hubel 1963; Moore 1985), terminal swelling (Heuser and
Reese 1973; Boyne et al. 1975; Burwen and Satir 1977),
dendritic spine alterations (Fifková and Van Harreveld 1977;
Fifková and Morales 1992) and modifications in receptive
field properties (Diamond and Weinberger 1986; Weinberger
1995; Suga 2011; Adab et al. 2014). These kinds of activity-
related changes in the central nervous system argue that neu-
ron structure and function can be influenced by the type and
level of input activity.

Early studies sought to manipulate the hearing of normal
subjects. In these cases, cochleae were ablated, auditory
nerves were sectioned, or sound transduction blocked by
pharmacologic agents (Rubel and Parks 1988). Alternative
models of auditory deafferentation considered naturally oc-
curring forms of hereditary deafness such as that observed in
congenitally deaf white cats, Dalmatian dogs, blue-eyed white
alpacas, waltzing guinea pigs and various strains (over 50) of
mice carrying deafness genes. The congenitally deaf animal
offered a challenging model of auditory deafferentation be-
cause it contained a broader spectrum of variables that affect-
ed brain structure and function, similar to the case in humans
(Eisen and Ryugo 2007).

�Fig. 3 Development of endbulbs of Held in cats. Endbulbs were
originally described in Golgi-stained material as large spoon-shaped
endings arising from the auditory nerve (Held 1893). We show,
however, that the original description was based on immature endbulbs
and that endbulbs pass through a sequence of postnatal developmental
stages culminating in a highly branched, arborized structure (modified
from Ryugo and Fekete 1982)
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The congenitally deaf white cat mimics the Scheibe
deformity in humans and features early onset, progres-
sive cochleo-saccular degeneration and severe sensori-
neural hearing impairment (Scheibe 1895; Bosher and
Hallpike 1965; Deol 1970; Suga and Hattler 1970;
Beighton et al. 1991). The Dominant White locus (W)
in the domestic cat demonstrates pleiotropic effects that
are transmitted in an autosomal dominant pattern with
complete penetrance for the absence of coat pigmentation
and incomplete penetrance for deafness and iris
hypopigmentation. Linkage analysis of a pedigree segre-
gating White identified KIT as the feline W locus.
Segregation and sequence analysis of the KIT gene in
two pedigrees (P1 and P2) revealed a retrotransposition
and evolution of a feline endogenous retrovirus (FERV1)
as being responsible for two distinct phenotypes of the W
locus, Dominant White and White Spotting (David et al.
2014). Deafness is attributable to inner ear pathology
ranging from variable hair cell loss to complete collapse
of the organ of Corti with evidence of spiral ganglion
cell loss (Rawitz 1896; Bosher and Hallpike 1965;
Bergsma and Brown 1971; Mair 1973; Pujol et al.
1977; Rebillard et al. 1981; Chen et al. 2010). Our
interest was in the structural changes in neurons of the
central auditory pathway as a result of the deafness
(West and Harrison 1973; Schwartz and Higa 1982;
Larsen and Kirchhoff 1992; Saada et al. 1996).

Cats with hearing loss

Auditory nerve recordings We examined the structure of the
organ of Corti and the activity of the auditory nerve in order to
relate their influence on the morphology of primary ending
morphology in the cochlear nucleus. Single unit recordings
were made in normal hearing cats, in cats with elevated
thresholds and in totally deaf cats. Because unit activity is
not driven by sound in deaf cats, we used intracellular record-
ing techniques for this project. An abrupt negative shift in the
DC potential to around −30 mV indicated contact with an
auditory nerve fiber. Once the pipette penetrated an axon, the
DC potential gradually moved towards 0 mV, typically within
3–5 min and sometimes sooner. During this period, however,
we were able to collect 10 s of spontaneous activity (SR) and
run an automated tuning curve program. Three types of audi-
tory nerves were encountered: those with fibers having a
normal distribution of frequency sensitivity and thresholds
being collected from hearing cats; those with fibers having
elevated (40–95 dB) thresholds that were collected from cats
with hearing loss; and those with fibers that were completely
unresponsive to sound arose from cats that were profoundly
deaf.

Endbulb morphology Endbulb structure is correlated to the
fiber’s hearing status (Fig. 4). Auditory nerve fibers from
normal hearing cats exhibit a complex terminal arborization

Fig. 4 Reconstructions of
endbulbs stained by HRP reveal
that hearing status influences the
development of endbulb
structure. The complexity of
branching as assessed by fractal
analysis is demonstrably affected
by hearing loss. The greater the
loss, the greater the structural
atrophy (modified from Ryugo
et al. 1998)
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marked by several thick branches (2–3 μm in diameter) stem-
ming from a single trunk. Numerous irregular varicosities
varying in size and shape (1–5 μm in diameter) occur along
these branches, strung together by fine processes. This elabo-
rate network of interconnected terminal swellings (fractal
index 1.430±0.048; silhouette area 390.3±177 μm2) expands
to contact much of the soma of the spherical bushy cell
(Ryugo et al. 1997, 1998).

In contrast, the endbulbs from cats with hearing loss were
decidedly atrophic. Those from cats with elevated thresholds
exhibited fewer branches and fewer varicose swellings. The
resulting endbulbs were less complex (fractal index 1.318±
0.066; silhouette area 193.81±49.3 μm2). Endbulbs from
congenitally deaf cats were the most severely attenuated.
They had the least complex branching structure (fractal index
1.288±0.056) and the smallest average silhouette area (171.8
±61 μm2). Average endbulb complexity was significantly
different between the separate cohorts of cats by fractal

dimension values (P<0.05, analysis of variance). This effect
of hearing loss on endbulb morphology is similar to that
observed in mice (Limb and Ryugo 2000).

Endbulb synapses The synapses of normal auditory nerve
terminals are characterized by an accumulation of clear round
synaptic vesicles in close proximity to a slightly curved but
prominent membrane thickening that arches into the presyn-
aptic terminal (Fig. 5). Parallel to the presynaptic membrane
thickening is a pronounced postsynaptic membrane thicken-
ing, which emphasizes the asymmetric nature of the thickened
membrane segments. The associated vesicles are relatively
uniform in shape and size (approximately 50 nm in diameter)
and cluster in variable numbers around the dome-shaped
membrane thickening. The extracellular space between these
membranes, called the synaptic cleft, is slightly widened and
filled by a dense flocculent material. The dome-shaped syn-
apses of auditory nerve fibers are characteristic of many

Fig. 5 Electron micrographs of endbulbs (pale yellow) from cats with
normal hearing and those with hearing loss. Note the flattening and
lengthening of synapses (pink stars) in cats with hearing loss. Channels
between pre- and postsynaptic membranes (arrows) are common in

hearing animals but rare or absent in animals with hearing loss (EB
endbulb, SBC spherical bushy cell; from Ryugo et al. 1998 and O’Neil
et al. 2010)
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mammals (Lenn and Reese 1966; Gulley et al. 1978; Cant and
Morest 1979; Ryugo and Fekete 1982; Gomez-Nieto and
Rubio 2011).

Extracellular dilations were frequently observed between
the pre- and postsynaptic membranes that formed narrow
channels near synapses (Fig. 5a, b). Finger-like glial processes
were often seen within the space, prompting the thought that
such cisternae could aid in the dispersal of excess neurotrans-
mitters. Puncta adeherentia and mitochondrial adherens com-
plexes also characterized these auditory terminals. Several
layers of thin astrocytic sheets ensheathed the terminals.
Away from the axosomatic synapses, synapses could be found
on nearby dendrites (Lenn and Reese 1966; Gulley et al. 1978;
Cant andMorest 1979; Ryugo and Sento 1991; Rowland et al.
2000).

Endbulb synapses with hearing loss and deafness In the
congenitally deaf adult cat, endbulb synapses retain many
of the features found in the normal hearing cat. Prominent
contacts are found on the somata of spherical bushy cells
associated with large round synaptic vesicles (Ryugo et al.
1997, 1998; O’Neil et al. 2010). Distinctly abnormal
features of endbulbs in deaf cats include the appearance
of enlarged and flattened postsynaptic densities (PSDs), a
lack of intercellular cisternae and increased clustering of
synaptic vesicles in the immediate vicinity of the PSDs
(Fig. 5d). A notable increase also occurs in synaptic
vesicle density (63.0±41.8 vesicles per μm2) when com-
pared to that of endbulbs from normal hearing cats (45.0±
12.4, P<0.01, Kruskal-Wallis tests).

Some white cats from families with a history of congenital
deafness were impaired but not profoundly deaf. These ani-
mals exhibited a loss of hair cell receptors in the basal 20 % of
the organ of Corti, were unresponsive to frequencies between

10 and 40 kHz but had an average of 60 dB elevated single
unit thresholds for tones below 10 kHz. SR rates varied
considerably but were independent of best frequency thresh-
olds (Ryugo et al. 1997). The synapses of cats with elevated
thresholds were different from those of either the normal or
profoundly deaf cats. The density of presynaptic vesicles was
consistently elevated (mean 92.9±25.2 vesicles/μm2). The
PSDs exhibited asymmetric membrane densities and many
were clearly dome-shaped but they were sometimes longer
and not as curved (Fig. 5c). A reduction was observed in the
intermembraneous cisternae.

Individual synapses were reconstructed in three dimen-
sions by collecting high-magnification serial electron micro-
graphs through the PSD digitizing and drawing the outline of
the presynaptic terminal and the PSD and then stacking and
aligning the images by using computer graphics. When the
stack of images was rotated by 90° and viewed en face, the
area of postsynaptic membrane contacting the presynaptic
terminal and the PSDs was revealed and individual PSDs
could be measured (Fig. 6). In this way, the difference in
PSD size was quantified by comparing the mean values from
normal hearing cats, cats with hearing loss and profoundly
deaf cats. The PSDs of endbulbs from normal hearing cats
were generally round-to-oval in shape and small in size (0.06
±0.04 μm2). Those PSDs from cats with hearing loss were
more oval in shape and slightly larger (0.1±0.08 μm2) but not
statistically so (P=0.10). In contrast, those PSDs in profound-
ly deaf cats were much larger (0.34±0.37 μm2) and strikingly
irregular in shape. Because the PSDs of congenitally deaf cats
often extended beyond the scope of our tissue section series,
our measurements underestimated their actual size. These
differences in PSD size between our cohorts reflected patho-
logic conditions of hearing loss, which were related to the
amount of neural activity.

Fig. 6 Images of reconstructed
endbulb synapses from serial
electron micrographs that were
aligned, stacked and then rotated.
The view shows the area of
postsynaptic membrane that lies
adjacent to the endbulb (yellow)
and the areas with horizontal lines
(marking an individual section)
represent the postsynaptic density
(PSD, red). Synapses from cats
with hearing loss are on average
slightly larger than those of
normal hearing cats but the
difference is not statistically
significant. The PSDs from
congenitally deaf cats, however,
are significantly larger (Ryugo
et al. 1998)
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Cats with normal hearing

The auditory nerve is an excellent model with which to study
activity-related features of synaptic structure. The myelinated
fibers convey acoustic information into the brain and individ-
ual fibers can be described by two fundamental properties:
frequency selectivity and spontaneous discharge rate.
Frequency selectivity is represented by that pure tone frequen-
cy to which the fiber is most sensitive, known as the best or
characteristic frequency (CF). CF reflects the longitudinal
position along the cochlea at which the peripheral process
terminates (Liberman 1982). Spontaneous discharge rate
(SR) is defined as the spike activity (in spikes/s) occurring in
the absence of experimentally controlled acoustic stimulation
(Kiang et al. 1965; Liberman 1978). SR can range from near
zero to greater than 100 spikes/s and across the audible fre-
quency range, a bimodal distribution of SR occurs in the
population of auditory nerve fibers (Kiang et al. 1965; Evans
and Palmer 1980; Schmiedt et al. 1996). We defined one
group as having low SRs (≤ 18 spikes/s) and the other as
having high SRs (> 18 spikes/s). The low SR fibers have
relatively high thresholds for evoked activity and the high
SR fibers have relatively low thresholds. Thus, in silence or
noise, the low SR fibers presumably exhibit lower levels of
spike activity in comparison with that of high SR fibers.
Moreover, because high and low SR fibers are present for
fibers of all CFs, they could subserve different functions in
sound processing.We reasoned that the two fiber groups could
be compared in order to study the relationship between neural
activity and synaptic morphology.

Endbulb morphology Intracellular recordings were made in
the auditory nerves of normal hearing cats. Our strategywas to
inject dye into 1–3 low SR fibers in the left nerve whose CFs
differed by at least an octave, and into 1–3 high SR fibers in
the right nerve of similar CFs. This technique minimized
individual variations. Moreover, the recovered labeled fibers
yielded endbulbs whose morphology could be correlated with
their activity levels (Fig. 7): low activity was associated with
complex arborizations (as defined by fractal analysis), where-
as high activity fibers were associated with simpler arboriza-
tions (cat, Sento and Ryugo 1989; guinea pig, Tsuji and
Liberman 1997). These results provide convincing data that
activity influences endbulb structure but the significance of
the differences remains to be determined.

Endbulb synapses Electron microscopic analyses of the syn-
apses from these endbulbs also revealed distinct structural
differences (Fig. 8). Synapses from high SR fibers exhibited
the characteristic dome-shaped PSDs with clear round synap-
tic vesicles clustered along the presynaptic membrane. In
contrast, synapses from low SR fibers exhibitedmore irregular
PSDs. Some PSDs were dome-shaped and small, whereas

many were flattened or wavy and longer. The curvature of
the PSD was quantified: on average, that of PSDs of high SR
fibers was significantly greater than that for low SR fibers
(P<0.003, Mann–Whitney U test; Ryugo et al. 1996).
Intermembraneous cisternae were typically near the synaptic
release sites.

The synaptic active zone is represented by a subcellular
membrane density that appears as a thickening of electron-
dense material attached to the postsynaptic membrane. The
PSD is a scaffold of modular proteins that contain the recep-
tors for neurotransmitters and is associated with Ca++/calmod-
ulin-dependent protein kinases (Seitanidou et al. 1988;
Flucher and Daniels 1989; Kennedy 1989; Nusser et al.
1994; Cho et al. 2009). The differential expression of these
proteins at excitatory and inhibitory synapses must underlie
the differences in the ultrastructural appearance for the two
types of synapses. Likewise, these kinds of variations will be
reflected in the structural changes observed in synapses un-
dergoing remodeling, such as in cases of atrophy of disuse,
compensatory hypertrophy, or plasticity of habituation, sensi-
tization and learning (Markus and Petit 1989). The postsyn-
aptic membrane also houses molecules involved in signal
transduction including other G-protein-coupled receptors
(e.g., metabotropic receptors), voltage- and ligand-gated ion
channels, transporters and pumps. The presynaptic membrane
is involved in the vesicular release of transmitters for synaptic
transmission and also contains substrates for inactivating syn-
aptic transmission such as re-uptake receptors and trans-
porters. The number and spatial distribution of these mole-
cules are presumed to determine synaptic mechanisms and
modes of intercellular communication.

Synaptic vesicles Synaptic vesicles were analyzed on micro-
graphs at a magnification of ×138,000. The mean diameter of
synaptic vesicles for endbulbs of high SR fibers was greater
when the profile contained a synapse (48±8 nm, n=764) than
not (46±7 nm, n=380). Likewise, the mean diameter for
vesicles of low SR fibers was greater (48±9 nm, n=939)
when the ending profile contained a synapse than not (44±
7 nm, n=164). No difference was seen in vesicle size when
comparing high versus low SR endbulbs. These observations
are consistent with the idea that synaptic vesicles more distant
from the active zone and representing the reserve vesicle pool
are not yet completely filled with transmitters.

The number of synaptic vesicles per ending profile and per
square micrometer within 0.5 μm of the PSD was determined.
We calculated an average of 67.2±16.9 vesicles/μm2 for high
SR endings and 62.2±24.4 vesicles/μm2 for low SR endings.
On average, more synaptic vesicles are found in high SR
endbulbs than in low SR endbulbs (P<0.05).

Synapse size and number We reconstructed endbulb profiles
through serial ultrathin sections by using methods, as
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previously described, in order to calculate synapse size. The
en face area of each synapse was measured, the entire PSD
being contained within the section series, i.e., there was a start
and finish (Fig. 9). A total of 74 synapses were reconstructed
from the endbulbs of high SR fibers and these were, on
average, 0.089±0.02 μm2. In contrast, 65 synapses were
reconstructed from the endbulbs of low SR fibers and they
were significantly larger (0.179±0.02 μm2, P<0.01). These
differences were reliable across many cats and terminals.

The number of axosomatic synapses per endbulb was
calculated in the following way. First, we counted the number
of synapses per unit apposition area through serial section

reconstructions of portions of each endbulb (Fig. 9). The
resulting values were relatively constant and revealed that
synapse density was uniform over the entire endbulb. We
multiplied this density value for each endbulb by its corre-
sponding silhouette area because we estimated that the silhou-
ette area approximated the endbulb contact surface with the
postsynaptic cell body. This method revealed that the high SR
endbulbs had an average of 1720±395 synapses, whereas the
low SR endbulbs had an average of 407±139 synapses. The
data indicated that high SR endbulbs have roughly four times
the number of axosomatic synapses contacting spherical
bushy cells as do low SR endbulbs.

Fig. 7 Images of reconstructed
endbulbs from intracellular
recording and dye injection
experiments illustrate the
structural differences between
endbulbs of “active” (left) and
“inactive” (right) auditory nerve
fibers. Pairs of endbulbs from
separate auditory nerves of the
same cat are roughly matched in
frequency sensitivity but have
striking differences in thresholds
and general activity. Note the way
that the structure of high
threshold, low activity endbulbs is
more complex in their branching
pattern compared to those of low
threshold and high activity (Sento
and Ryugo 1989; Ryugo and
Sento 1991; Ryugo et al. 1996)
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The smaller and more numerous active zones for endbulbs
of high SR fibers represent a striking contrast to those of low
SR fibers. This difference raises questions about the role of
activity in this arrangement. What purpose is served by ar-
ranging active zones into smaller but more numerous

modules? We speculate that the arrangement will bring more
non-active zone membranes into closer proximity to the PSDs
and reduce the average distance from the PSD to the surround-
ing non-PDS area. The membrane containing PSDs is
surrounded by a non-synaptic membrane that contains other

Fig. 8 Electron micrograph of endbulbs labeled after intracellular re-
cording and HRP injections. Parts of the labeled endbulbs are dark
because of the presence of HRP-DAB reaction product. Synapses (red
arrows) are characterized by a thickened curved postsynaptic membrane

associated with an accumulation of synaptic vesicles on the presynaptic
side. The postsynaptic membranes of the synapses of high SR fibers (a, b)
are clearly dome-shaped and punctate, whereas those of low SR fibers (c,
d) are longer and variably curved

Fig. 9 Images of reconstructed endbulb synapses from serial electron
micrographs from cats of various hearing status. The postsynaptic mem-
brane has been rotated so that we are looking down on the PSDs beneath
the presynaptic endbulb. The contact area is in yellow; the PSDs are red.
Note that the most active fibers have the smallest PSDs. Normal low SR
fibers and cats with hearing loss exhibit PSDs that are similar in size and

shape. The congenitally deaf cats have PSDs that are distinctly
hypertrophied. No difference is seen in PSD size between 6-month-old
and 6-year-old cats. Bottom row Normal hearing cats have PSDs that are
dome-shaped, whereas cats with hearing loss have flattened PSDs. Some
synapses are normal in appearance regardless of the degree of hearing loss
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ion channels, receptors and/or pumps. For example, me-
tabotropic glutamate receptors (cerebellar cortex, Baude
et al. 1993; Nusser et al. 1994) and Na+ channels
(neuromuscular junction, Flucher and Daniels 1989) are
concentrated in the membrane immediately adjacent to
PSDs. The increased interface between active and non-
active membranes facilitates receptor and ion channel
turnover because pertinent molecules simply migrate in
and out. Molecules in the middle of the PSD have shorter
distances to migrate. A pattern of multiple small active
zones might also be more advantageous than a single
large active zone for optimizing diffusion kinetics of ions,
metabolites and/or transmitter molecules from PSD to
non-PSD regions. Small PSD size would also concentrate
receptor distribution and help synchronize receptor acti-
vation; it could also expedite transmitter inactivation by
minimizing the time/distance that the transmitter molecule
is exposed to receptor binding (Taflia and Holcman 2007).
These ideas have an intuitive quality but remain to be
verified.

Action potentials occurring in fibers that generally exhibit
low rates of activity might require specialized transmission
mechanisms to assure information transfer because each spike
assumes greater relative importance. As a result, the synapses
of low SR fibers associate with larger PSDs that house corre-
spondingly larger numbers of transmitter receptors. Such an
arrangement optimizes transmitter binding with each synaptic
event. The relationship is exaggerated by the hypertrophied
PSDs found in congenitally deaf cats and mice (Ryugo et al.
1997, 1998; Lee et al. 2003). For low SR fibers, structural
features associated with synaptic efficiency that assure high
spike rates might not be an issue because their maximal
discharge rate is lowest among the other auditory nerve fibers
(Liberman 1978). An upregulation of AMPA (α-amino-3-
hydroxy-5-methylisoxazole-4-proprionic acid) receptors ob-
served with postsynaptic to auditory nerve synapses also
occurs following conductive hearing loss (Whiting et al.
2009; Wang et al. 2011). These observations are consistent
with the notion that the synapse is a dynamic structure whose
form and composition are influenced by neural activity.

On the presynaptic side, this pattern of multiple small
synapses allows sites for vesicle attachment and recycling to
reside in closer proximity to each other and to synaptic
vesicles but without overcrowding. This arrangement
serves to keep transporters and/or re-uptake receptors near
the transmitter release sites, thereby providing greater syn-
aptic efficiency. Rapid removal of excess transmitters in the
cleft also reduces desensitization of receptors at the synapse
(Trussell and Fischbach 1989). Both pre- and postsynaptic
specializations must orchestrate their own unique, yet com-
plementary, spatial assemblage in response to neural activ-
ity or chemical signals when forming synapses. In the
anteroventral cochlear nucleus, signals as yet unidentified

would be exchanged in both directions between membrane
patches of endbulbs and spherical bushy cells in order to
accomplish this task. The necessary interactive construction
of pre- and postsynaptic components of the active zone is
evident not only in the case of adjacent excitatory and
inhibitory synapses that differ substantially in their form
(Uchizono 1965) but also for activity-related structural
features.

The synapse is the crucial point of communication between
neurons and so should exhibit features that optimize their
function. In addition to the punctate size of auditory synapses,
the curvature of the membrane at the release site is a promi-
nent feature. In the vernacular, synapses have the form of
“smiling”, “flat”, or “frowning”, the presynaptic element be-
ing placed above the postsynaptic structure (Markus and Petit
1989). Auditory nerve synapses are characteristically
“frowning” as the dome-shaped PSD pushes into the presyn-
aptic terminal (Lenn and Reese 1966; Cant and Morest 1979).
Central auditory neurons exhibit several specialized charac-
teristics that are crucial to hearing function: they have high
rates of activity even in the absence of sound stimulation
(Bhattacharjee and Kaczmarek 2005; Harrison and Negandhi
2012). They convey information with high fidelity in order to
maintain the precise temporal relationships to acoustic events
required for localizing sound on the horizontal plane (Grothe
2000; Couchman et al. 2010). They change their shape during
postnatal maturation (Ryugo et al. 2006) and in response to
high rates of synaptic excitation in adulthood (Rees et al.
1985).

Synaptic curvature should be considered a principal feature
and should prompt speculation about its significance.
Fundamentally, the proper functioning of auditory synapses
requires the faithful transmission of information. This transfer
needs efficiency and precision. In a simplistic way, one could
consider two critical links to this process: one on the presyn-
aptic side and one on the postsynaptic side. Presynaptically,
there is the demand for rapid membrane fusion of the synaptic
vesicles to the site of release. Membrane fusion events require
molecules that tether and dock membranes and bring them
together. SNAREs and synaptotagamins must disturb the lipid
bilayers of the presynaptic membrane for the initial tethering
of the synaptic vesicles. This stage involves the formation of
hydrophobic defects in the cytoplasmic membrane leaflet for
insertion of the tethering “linker” proteins. This process could
be promoted by “frowning” curvature stress that facilitates the
insertion of the fusion protein into the plasma membrane
(McMahon et al. 2010). Efficient synaptic vesicle fusion
contributes to high rates of synaptic transmission.

The postsynaptic membrane is also curved (dome shaped)
with the “cap” facing the presynaptic release site. This ar-
rangement optimizes the packing of transmitter receptors into
the PSD. AMPA receptors have a relatively narrow transmem-
brane domain and an expanded amino-terminal and ligand-
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binding domain that extends into the synaptic cleft (Wollmuth
and Traynelis 2009). The three-dimensional structure of the
AMPA receptors has the transmembrane domain of the recep-
tor embedded in the PSD. The dome-shaped curvature of the
PSD boosts receptor density by separating the wider ends
from each other for closer packing and high receptor density
will favor ligand binding and thus, synaptic transmission.

Atrophy versus plasticity

Synaptic structure has been shown to be related to levels of
spike discharges by analyzing the normal situation and com-
paring it with circumstances in which activity is reduced either
naturally or experimentally (West and Harrison 1973; Trune
1982a, 1982b; Ryugo et al. 1997, 1998; Rubel et al. 2004).
Abnormal auditory nerve synapses in the cochlear nucleus of
deaf animals might simply reflect the “atrophy” of disuse.
True plasticity implies that neuronal change is bidirectional
and reflects increases and decreases in activity. Consequently,
we sought to determine whether electrical stimulation of the
auditory nerve of congenitally deaf cats via cochlear implants
would restore synapses to their normal morphology.

Three- and six-month-old congenitally deaf cats received
unilateral cochlear implants and were stimulated for 7 h a day,
5 days a week, for a period of 10–19 weeks by using human
speech processors (courtesy of Advanced Bionics). All im-
planted cats exhibited startle responses to loud and sudden
sounds. Moreover, they all learned to approach their food dish
in response to the adjutant’s bugle call. The stimulus was
paired with a special food treat once or twice a day at random
times; other bugle calls were played throughout the day and
were not reinforced. An atonal version of the adjutant’s call
was occasionally played and the cats did not respond to this
monotonic stimulus. This observation confirmed that some
features of stimulus frequency were being processed that dis-
tinguished the tonal from the atonal melody for both early and
late implanted cats. It does not indicate that the late implanted
cats perceived the bugle call in a similar way as the early
implanted cats. The signals were different and obviously, the
late implanted cats were able to detect something about the
difference in order to select the correct stimulus. This also
demonstrates the power of experience and training.

Endbulb synapses were examined by using serial section
electronmicroscopy from cohorts of cats with normal hearing,
congenital deafness, or congenital deafness with a cochlear
implant. Synapse restoration was evident in endbulb synapses
on the stimulated side of cats implanted at 3 months of age
(Fig. 10). In these cats, PSDs exhibited an obvious return of
the small dome-shaped PSDs (Ryugo et al. 2005).
Quantitative morphometric analyses further revealed that
mean PSD curvature, mitochondrial volume fraction and syn-
aptic vesicle density returned to values typical of hearing cats
(O’Neil et al. 2010). These results demonstrated that

electrical stimulation with a cochlear implant restored the
synaptic structure of auditory nerve synapses. The generality
of this phenomenon was demonstrated by observing similar
results in ototoxically deafened cats (Ryugo et al. 2010). The
interpretation that activity restored synapse structure can be
made because pathologic synapses are present at 3 months of
age in untreated congenitally deaf cats (Baker et al. 2010); the
introduction of activity therefore does not preserve normal
structure but reverses pathologic structure.

Serial section reconstructions of the PSDs were performed
to determine if electrical stimulation of the auditory nerve
returned the hypertrophied PSDs to their normal size and
distribution (Fig. 11). In normal hearing and young implanted
deaf cats, PSDs were small and uniformly dispersed over the
surface of the postsynaptic target. Approximately 20 % of the
endbulb synapses of untreated deaf and hard-of-hearing cats
also expressed a normal morphology. These same cats exhib-
ited hypertrophied PSDs without any type of systematic cur-
vature. We infer that the acoustic startle responses and learned
approach to the food bowl following specific sound stimuli in
the late implanted cats were mediated by the remaining nor-
mal synapses when appropriately stimulated. We further spec-
ulate that learning to approach a food reward is such a natural
part of a cat’s behavioral repertoire that minimal neural ele-
ments were required for its performance.

Concluding comments

The results presented in this review have been collected over
many years and several conclusions can be made. First, con-
genital deafness causes a pathologic hypertrophy and flatten-
ing of auditory nerve synapses in the cochlear nucleus.
Moreover, synaptic vesicle density in the vicinity of the PSD
increases and intermembraneous channels that form “chan-
nels” between the apposed neural membranes are lost.
Second, early electrical stimulation with a cochlear implant
has a dramatic effect on these synapses in congenitally deaf
cats. Activation of auditory nerve fibers by a cochlear implant
at 3 months of age restores many key features of synaptic
morphology, whereas activation at 6 months of age has mod-
est effects. These data are consistent with the concept of a
“critical” or sensitive period for plasticity in auditory and
visual cortex (Cynader and Mitchell 1980; Kral et al. 2002).
In addition, moderate restorative effects have been observed
for auditory synapses in the ipsilateral medial superior olive
(Tirko and Ryugo 2012) and contralateral cochlear nucleus
(O’Neil et al. 2010) revealing activity-dependent plasticity
that occurs in the central auditory system, which is mediated
by both direct and indirect pathways. Because our cats re-
ceived only 2–3 months of stimulation, further progression of
behavioral and brain restoration might occur if they had more
experience with the cochlear implant.
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A third conclusion about hearing loss merits further dis-
cussion. Hearing loss is not simply the need for amplification
and a return to sensation levels, because its consequences are
not fully remedied by hearing aids and cochlear implants.
Hearing loss results in (1) difficulty in understanding speech
in noisy backgrounds, particularly when the noise is other
speech sounds; (2) distortions in loudness perception; and
(3) the frequent emergence of phantom sounds (tinnitus) in
the form of buzzing, ringing, or hissing. These sequelae are
undoubtedly created by alterations in the central nervous
system. Evidence for such change emerges in terms of
alterations in inhibitory circuits (Asako et al. 2005; Tirko
and Ryugo 2012), a proliferation of excitatory terminals

(Hildebrandt et al. 2011) and increased spontaneous ac-
tivity in the inferior colliculus (Hancock et al. 2010;
Rober tson e t a l . 2012; Manzoor e t a l . 2013) .
Hyperactivity or tinnitus could be caused by diminished
inhibitory terminals that “release” inhibition or the in-
creased presence of excitatory terminals. The altered bal-
ance of excitation and inhibition could also perturb loud-
ness perception and interfere with speech comprehension.
These brain alterations represent a major challenge to the
improvement of listening devices that aid hearing.

Activity and PSDs in spherical bushy cells In auditory
nerve fibers of congenitally deaf cats and mice, the lack of

Fig. 10 Electron micrographs of
auditory nerve synapses in the
cochlear nucleus of the cat
illustrating activity-associated
plasticity. a Synapses (pink stars)
in endbulbs (pale yellow) of
normal hearing cats are
characterized by their dome-
shaped PSDs opposing an
accumulation of synaptic vesicles
in the presynaptic cytoplasm. b In
congenitally deaf cats, synapses
are hypertrophied and lose their
characteristic curvature (red
arrowheads). c Synapses (pink
stars) in congenitally deaf cats are
restored to the size and shape of
normal hearing cats after
electrical stimulation of their
auditory nerves by way of
cochlear implants
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spontaneous and sound-evoked activity was associated with
an increase in PSD size (Ryugo et al. 1998; Lee et al. 2003). In
cats with elevated thresholds (60–75 dB hearing loss), a
situation in which neural activity is reduced, an increase
occurred in the size of PSDs. Rats housed in a quiet room
experienced normal spontaneous activity but minimal evoked
activity and showed an increased PSD size (Rees et al. 1985).
These findings suggest that PSD size in mammalian endbulbs
is inversely proportional to the amount of spike activity in the
parent fiber.

Synaptic strength and plasticity have been studied in
other central synapses such as CA1 in the rat hippocam-
pus in which the size of PSDs has been shown to increase
in response to pharmacological blockade of spike activity
(e.g., Murthy et al. 2001; Qin et al. 2001; Yasui et al.
2005). Quiescent synapses exhibit larger PSDs and in-
creased numbers of synaptic vesicles and are accompanied
by increases in synaptic strength. Consistent with this
correlation, an increase in synaptic strength is seen in
the anteroventral cochlear nucleus of the congenitally deaf
mouse when compared to that of normal hearing mice
(Oleskevich and Walmsley 2002; Oleskevich et al.
2004). This increase in synaptic strength might be related
to an increase in the transmitter receptors that become
distributed in the hypertrophied PSDs.

Trans-syna`tic effects on spherical bushy cells Spike activity
and neural transmission in spiral ganglion cells and their fibers
appear essential for the normal development of neurons of the
cochlear nucleus (Rubel and Fritzsch 2002;West and Harrison
1973). Given that neuronal atrophy is a major consequence of
sensory deprivation, we can reasonably predict that a recovery
of neuronal activity should reverse the atrophy. Some studies
involving ototoxic deafening of normal hearing cats have
reported small but positive effects of electrical stimulation
on cell size in the cochlear nucleus (Lustig et al. 1994;
Leake et al. 1999; Stakhovskaya et al. 2008), whereas others
using similar methods have shown no effects (Hultcrantz et al.
1991; Ni et al. 1993; Coco et al. 2007). Our data demonstrate
that electrical stimulation of auditory nerve fibers via cochlear
implants has no effect on the size of the spherical bushy cell
neurons in this model of hereditary deafness. The differences
in results from these research groups are not easily explained.

Critical period The observation that we can restore synaptic
structure in congenitally deaf cats via electrical stimulation in
kittens but not in young adult cats is consistent with observa-
tions with humans. It has long been known that young chil-
dren receive significantly better benefits from cochlear im-
plants when compared to those who receive implants as
adolescents or adults (Waltzman et al. 1993; Tyler and

Fig. 11 Reconstructed endbulb synapses from serial electron micro-
graphs of cats illustrate the influence of activity on synapse size and
distribution. PSDs in normal hearing adult cats, when viewed as they
reside in the postsynaptic membrane, are relatively small (< 0.5 μm in
diameter) with smooth borders and round-to-oval in shape (first panel).
Low activity fibers have larger PSDs comparedwith those of high activity
fibers. In contrast, PSDs of congenitally deaf cats are generally
hypertrophied with highly irregular shapes (second panel). Electrical
stimulation via cochlear implantation re-introduces neural activity to the

auditory nerve and restores PSDs to their normal size and shape when
introduced to young kittens (fourth panel). Even when activity is intro-
duced late (third panel), PSDs are reduced in size. Although not
completely normal, the change suggests that neural activity, no matter
when introduced, influences PSD size. Because cats were stimulated for a
relatively short time (2–3 months), perhaps longer stimulation and train-
ing would also restore PSD morphology. The conclusion is that PSDs
(indicators of synapses) are plastic and highly responsive to activity
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Summerfield 1996). The results from the human studies imply
that deafness, when uncorrected, causes a fundamental change
in the central auditory system such that, at some point, infor-
mation from cochlear implants cannot be utilized. This phe-
nomenon is consistent with the idea of a “critical period” in
which some biological function is most severely affected
during development. Critical periods have been shown in
behavioral imprinting (Lorenz 1935), cortical barrel plasticity
(Van der Loos and Woolsey 1973; Rice 1985), ocular domi-
nance columns (LeVay et al. 1981; Raviola andWiesel 1985),
birdsong acquisition (Konishi 1985) and auditory cortex func-
tion (Klinke et al. 2001; Kral et al. 2002; Zhou et al. 2008). At
least for the auditory system, we demonstrated a physical
substrate that is found at the earliest stages of sound process-
ing and that appears to be a prime candidate for determining,
at least in part, the outcome of cochlear implants in humans.

Implications for cochlear implantation Several abnormalities
have been demonstrated in the auditory system following
deafness including reduced numbers of spiral ganglion neu-
rons (Mair 1973; Leake and Hradek 1988; Heid et al. 1998;
Ryugo et al. 1998), abnormal synaptic structure (Ryugo et al.
1997; Redd et al. 2000, 2002; Lee et al. 2003), physiological
alterations of auditory nerve responses in the cochlear nucleus
(Oleskevich and Walmsley 2002; Wang and Manis 2005) and
ectopic projections in the ascending pathways (Nordeen et al.
1983; Moore and Kitzes 1985; Franklin et al. 2006). These
changes undoubtedly affect synaptic transmission in which
degraded responses in the inferior colliculus (Vollmer et al.
1999, 2005; Vale and Sanes 2002) and auditory cortex (Kral
et al. 2006) have been observed. Nevertheless, the positive
behavioral response of early and late implanted cats to their
“dinner bell” is encouraging because it demonstrates “audito-
ry learning” under pathologic conditions and leaves open the
potential for late implanted children to gain benefit from
cochlear implants.

Endbulbs have been implicated in mediating the precise
temporal processing of sound (Molnar and Pfeiffer 1968)
and are known to transmit from auditory nerve to postsyn-
aptic cell with a high degree of fidelity (Babalian et al.
2003). The detection and identification of some sounds are
not nearly as demanding as the processing of temporal
cues needed for sound localization, pattern recognition,
or speech comprehension. The introduction of synaptic
jitter, delay, or failure by congenital deafness at the
endbulb synapse could compromise such processing. The
contribution of electrical activity to synaptic ultrastructure
demonstrates that a cochlear implant can reverse some
morphologic abnormalities in the auditory pathway when
stimulation is started early. Moreover, effects are observed
bilaterally at the earliest stage in the auditory pathway,
demonstrating that 2–3 months of stimulation has a wide-
spread trophic effect. We propose that systematic training

by using interaural time disparities will improve sound
localization among bilateral implant users.

Finally, we demonstrated that cats with only six electrodes
are capable of recognizing and distinguishing one bugle call
from many after several months of training. Moreover, fre-
quency discrimination is involved because the atonal version
of the call is also recognized as an unrewarded signal. Perhaps
even more impressive is the observation that the late im-
planted cats, with structurally pathologic synapses, are also
able to distinguish a rewarded signal from unrewarded ones.
This latter feat, which is possibly mediated by a minority of
normal synapses, nevertheless demonstrates that functionally
significant behaviors can be achieved with training under less-
than-ideal conditions. The take-away message is that the full
potential of cochlear implants could be even greater with
strategic training that exercises frequency and timing
discrimination.
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