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The Wilms’ tumor suppressor WT1 is a key regulator of
podocyte function that is mutated in Denys–Drash and
Frasier syndromes. Here we have used an integrative
approach employing ChIP, exon array, and genetic analyses
in mice to address general and isoform-specific functions of
WT1 in podocyte differentiation. Analysis of ChIP-Seq data
showed that almost half of the podocyte-specific genes are
direct targets of WT1. Bioinformatic analysis further identified
coactivator FOXC1-binding sites in proximity to WT1-bound
regions, thus supporting coordinated action of these
transcription factors in regulating podocyte-specific genes.
Transcriptional profiling of mice lacking the WT1 alternative
splice isoform (+KTS) had a more restrictive set of genes
whose expression depends on these alternatively spliced
isoforms. One of these genes encodes the membrane-
associated guanylate kinase MAGI2, a protein that localizes to
the base of the slit diaphragm. Using functional analysis in
mice, we further show that MAGI2α is essential for proper
localization of nephrin and the assembly of the slit
diaphragm complex. Finally, a dramatic reduction of MAGI2
was found in an LPS mouse model of glomerular injury and in
genetic cases of human disease. Thus, our study highlights
the central role of WT1 in podocyte differentiation, identifies
that WT1 has a central role in podocyte differentiation, and
identifies MAGI2α as the crucial isoform in slit diaphragm
assembly, suggesting a causative role of this gene in the
etiology of glomerular disorders.
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Glomerular podocytes are highly specialized cells with unique
cellular extensions (foot processes) that interact via integrin
with the basement membrane. Actual filtration takes place at
the slit diaphragm, a multiprotein complex that connects
adjacent podocytes via pairing of nephrin molecules that are
anchored in the cell membrane of two opposing foot
processes. Nephrin interacts with a multitude of proteins
including podocin, NCk, and CD2AP.1 Moreover, mass
spectrometry has identified a set of additional interaction
partners including IQGAP, MAGI2, and CASK that are
believed to connect the slit diaphragm to the actin
cytoskeleton.2 IQGAP has also been shown to be required
for podocyte migration.3

The Wilms’ tumor suppressor WT1 encodes a zinc-finger
protein that serves key functions in kidney development.4

WT1 encodes up to 36 protein variants that are produced by
a combination of alternative splicing, alternative translation
start sites, and RNA editing. Of particular importance appears
to be alternative splicing within the zinc-finger region that
results in the inclusion (WT1(+KTS)) or omission (WT1
(−KTS)) of the three amino acids KTS. Molecular and
cellular data indicate distinct functions for these isoforms:
although WT1(−KTS) variants are considered as transcrip-
tional regulators, WT1(+KTS) isoforms have a stronger
affinity to RNA and have been suggested to be involved in
splicing.5,6 A confirmation or refutation of this hypothesis
in vivo is, however, missing.

WT1 function is crucial in podocyte maintenance, and
mutations in this gene have been found in patients suffering
from glomerular diseases including Denys–Drash syndrome7

and Frasier syndrome.8,9 Both of these syndromes are
characterized by the development of glomerular sclerosis,
but the molecular mutations found in WT1 are distinct:
whereas Denys–Drash patients usually carry missense or
nonsense mutations within the zinc-finger region that lead
to a protein that can no longer bind to DNA,10 mutations
in Frasier patients disrupt the alternative splice donor site
in intron 9, thus interfering with WT1(+KTS) isoform
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production.8,9 As Frasier mutations are heterozygous, the
syndrome appears to be caused by an imbalance of +KTS and
−KTS isoforms.

Our laboratory has previously generated mouse lines that
specifically interfere with the production of WT1(+KTS)
or WT1(−KTS) isoforms.11 Heterozygous mutations that
interrupt WT1(+KTS) production (Wt1(+KTS)+/− ) develop
glomerular sclerosis and thus represent a mouse model for the
Frasier syndrome. Homozygous mutations (Wt1(+KTS)−/−)
show a more severe phenotype and fail to form foot
processes.11 Mice homozygous for the Wt1(−KTS) mutation
are even more severely affected, and differentiated glomerular
structures were rarely visible. The molecular events under-
lying the phenotypes in Wt1(+KTS) and Wt1(−KTS)
mutants remain, however, elusive.

Here we have analyzed the podocyte-specific function of
WT1 using a range of tools and show that WT1 is directly
regulating a large proportion of podocyte-specific genes.
Using microarray analysis on WT1(+KTS) mutant glomeruli,
we further show that this isoform is required for the
expression of a subset of podocyte-specific genes. Finally,
we performed functional analysis of one of these genes,
Magi2, and show that it is an essential component of the slit
diaphragm complex that is required for nephrin localization
and foot process formation.

RESULTS
Wt1 is a central transcriptional regulator of podocyte-specific
genes
To evaluate the degree of glomerular development in mice
lacking alternatively spliced isoforms of WT1,11 we performed
immunofluorescent analysis on E18.5 kidney sections. As
previously reported, nephrin (NPHS1) was absent from Wt1
(−KTS) kidneys (Supplementary Figure S1 online),12 and
also podocyte-specific proteins such as podocin (NPHS2) and
the actin-associated protein Synaptopodin (SYNPO) were
lacking or severely reduced, thus confirming an absolute
requirement of this isoform for podocyte differentiation
(Supplementary Figure S1 online). In contrast, immuno-
fluorescence analysis of Wt1(+KTS) knockout animals
showed the presence of all three markers. Careful examina-
tion of high-power views revealed a somewhat less complex
staining, consistent with a less developed glomerular tuft. In
addition, nephrin staining was punctuated in Wt1(+KTS)−/
−podocytes, a pattern that was in stark contrast to the
continuous line of staining along the basement membrane in
control sections (Supplementary Figure S1 online).

We have previously performed chromatin immunoprecipi-
tation-sequencing (ChIP-Seq) analysis on E17.5 kidneys
to identify genome-wide targets for WT1.13 To identify
glomerular-specific genes potentially regulated by WT1, we
examined the overlap between the ChIP-associated genes
(irreproducible discovery rate (IDR) o0.1) with gene lists
that represent the Top200 genes specifically expressed in
glomerular cell types.14 Although gene lists of endothelial
(Tie2-sorted) and juxta-glomerular cells (Ren1-sorted)

showed no significant overlap, 91 genes out of 192 podocyte-
specific genes (MafB-sorted) were associated with WT1-
bound regions (IDR ⩽0.1) (Figure 1a and Supplementary
Data S1 online). This strong association persisted even when
using the more stringent cutoff of IDR ⩽ 0.01 (64/192 genes;
Figure 1b and Supplementary Data S1 online). Interestingly,
WT1 seems to regulate several members of the integrin
(Itga3, Itgav, Itgb5, Itgb8) and myosin gene families (Myo1d,
Myo1e, Myo6) that are important for the interaction with
the basement membrane and intracellular movement,
respectively. In addition, the crucial genes, MafB,15 Nphs1,16

and Nphs2,17 showed strong WT1-associated peaks
(Figure 1c).

MEME (Multiple EM for Motif Elicitation) analysis
performed on the 91 sequences bound by WT1 (IDR
⩽ 0.01; within 2.5 kb of a podocyte-specific gene) identified
a motif highly similar to the previously characterized
WT1-binding sequence,13 indicating that podocytes use
canonical WT1 binding (Figure 1d). Motif enrichment
analysis18 revealed the presence of FOX (for example, FOXC1;
P= 4.85e− 12) transcription factor–binding motifs, suggest-
ing concerted action of these proteins in the regulation of
podocyte-specific genes (Figure 1e and Supplementary Figure
S2 online). In addition, binding sites for helix-loop-helix
transcription factors were found to be enriched (for example,
NHLH1; P= 2.71e− 10).

Microarray analysis reveals a set of deregulated genes in Wt1
(+KTS) mutant mice
Frasier syndrome is caused by a reduction of Wt1(+KTS)
isoforms, but the molecular events leading to this glomerular
disease are unknown. To identify potential targets for these
isoforms, we performed microarray analysis on isolated
glomeruli from E18.5 wild-type and Wt1(+KTS) knockout
animals. Because WT1(+KTS) has been suggested to have a
role in RNA splicing, we opted for exon arrays that are
designed to detect alternatively spliced isoforms (Figure 2a
and Supplementary Figure S3A online). As expected, overall
Wt1 expression was unchanged, implying increased expres-
sion of WT1(−KTS) variants in these animals (Supple-
mentary Figure S3B online). Analysis of the microarray data
on the exon level (Supplementary Data S2, worksheet 1,
online) followed by quantitative real-time PCR assays (data
not shown) did not identify significant differences in exon
usage in mutant mice, and we therefore subsequently focused
on changes in overall gene expression levels (Supplementary
Data S2, worksheet 3, online).

We performed gene enrichment analysis using ranked
gene lists and the GOrilla toolset (http://cbl-gorilla.cs.
technion.ac.il/).19 Genes induced in Wt1(+KTS) mutant
glomeruli showed a significant enrichment of chemokine
activity (388-fold; P= 3.3e−08), when analyzed for FUNC-
TION, and immune response (fourfold; P= 7.7e− 10) and
neuron projection guidance (fourfold; P= 2.3e− 6), when
analyzed for PROCESS (Supplementary Data S3 online). The
same analysis performed for genes with reduced expression
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Figure 1 |WT1 regulates a large proportion of podocyte-specific genes. (a) Venn diagram showing overlap between genes with
WT1-bound peaks (blue) and genes specific for podocytes (Pod; yellow), endothelial cells (End; green), and juxtaglomerular apparatus
(JGA; red). Cell type–specific gene lists (Top200 genes) were obtained from the GUDMAP database (www.gudmap.org). (b) Alphabetic gene list
showing the 64 podocyte-specific genes with WT1-bound peaks (irreproducible discovery rate (IDR) o0.01). (c) Peak visualization for three
representative genes with important function in podocyte development. Tracks were generated by overlaying two independent WT1 chromatin
immunoprecipitation-sequencing (ChIP-Seq) data sets (WT1-ChIP-Seq data are represented in red and blue, regions with overlap are depicted in
black). Log-transformed peaks Mafb (IDR = 6.29e−05), Nphs1 (IDR = 5.23e− 07), and Nphs2 (IDR = 0.0037) are given in green above the tracks.
The inserts show in detail the presence of WT1-binding consensus sequences (FIMO) with significant q-value score. (d) Motif discovery in the 91
WT1-bound regions on podocyte-specific genes (GUDMAP; Mafb200 genes list) revealed a motif almost identical to the previously published
WT1-binding site.13 (e) Bioinformatic analysis (AME algorithm, version 4.10.0) identified enrichment for consensus sequences of FOXC1
(P-value = 4.85e− 12) and helix-loop-helix TFs (NHLH1; P-value = 2.71e− 10). IgG, immunoglobulin G; TF, transcription factor.
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revealed only minor enrichment (response to toxic substances
fourfold; P= 1.7e− 6).

Statistical analysis (false discovery rate o5e− 2) identified
80 (38) probe sets with 41.5-fold (42-fold) reduction

in gene expression and 96 (35) probe sets with 41.5-fold
(42-fold) increase in gene expression. Comparison with cell
type–specific gene lists (GUDMAP) showed a marked enrich-
ment of podocyte-specific genes in the downregulated
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genes and 40% of genes with 41.5-fold change figured
in the Top200 podocyte-specific gene list (Figure 2b and
Supplementary Data S2 online). Further analysis of genes with
more than twofold decrease using the GUDMAP database
confirmed the presence of podocyte-specific genes (Figure 2d
and Supplementary Figure S4 online). No such enrichment
was found for genes showing 41.5-fold increased expression
(Figure 2c).

In all, 12 out of the 38 genes downregulated (42-fold)
showed WT1-bound peaks in proximity to their respective
transcription start site (Supplementary Figure S4 online, right
column), including the known podocyte-specific gene Nphs2
(Figure 1c). In contrast, only 3 genes (Itga11, Nipal2, and
Krt19) with induced expression (42-fold) showed peaks in
their proximity, suggesting that the main function of WT1
(+KTS) in podocytes is to induce rather than to repress gene
expression.

WT1 directly binds to the Magi2α promoter
Several of the genes that showed reduced expression in Wt1
(+KTS) knockout mice are interesting candidates for genes
involved in glomerular damage. For some of these, knockout
animals have been generated (Figure 2d), and although a
detailed analysis on kidneys has not been performed in all
cases, survival of mutants suggests that these genes do not
have a predominant role in foot process formation. We
concentrated on Magi2 20 for multiple reasons. First, MAGI2

has been shown to be expressed in glomerular podocytes.2,21

Second, it can interact with nephrin at a molecular level.2

Third, MAGI2 has been shown to be involved in neuronal
spine formation,22 a process that involves cytoskeletal
rearrangements.

MAGI2 exists in several isoforms that are produced by the
use of alternative translation start sites.23 Examination of
ChIP-Seq data revealed two peaks in the promoter region of
Magi2α (IDR o0.1), but not Magi2β or Magi2γ promoters
(Figure 3a). Closer inspection of peak sequences using FIMO
(Find Individual Motif Occurrences) predicted several WT1-
binding sites. To confirm direct binding of WT1 to this
region, we carried out ChIP-PCR experiments using inde-
pendent ChIP samples and two different antibodies. WT1-
precipitated material was fourfold and ninefold enriched over
immunoglobulin G control samples for regions I and II,
respectively. No such enrichment was found with primers
mapping 38 kb downstream of the promoter start site
(Figure 3b). Finally, transfection studies in U2OS cells with
reporter constructs containing sites I and II demonstrated
specific action of WT1 on the Magi2α promoter
(Supplementary Figure S5 online). However, in this cell
system, WT1 repressed, rather than activated, the promoter,
suggesting the absence of podocyte-specific coactivators (such
as FOXC1) or the presence of corepressors in these cells. A
cell type–dependent suppression or activation of promoters
by WT1 has been reported previously in other systems.24
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Figure 3 |Chromatin immunoprecipitation-sequencing (ChIP-Seq) and ChIP-PCR reveal direct binding of WT1 to the Magi2α promoter.
(a) Visualization of ChIP-Seq data reveals binding of WT1 to the Magi2α promoter (irreproducible discovery rates (IDRs) = 0.043; 0.036). Tracks
were generated from two independent WT1-ChIP-Seq data sets. WT1-binding regions as predicted by FIMO, as well as evolutionary conservation
in placental animals, are shown below the track. (b) Quantitative real-time PCR (QPCR) validation of WT1-binding regions. ChIP was performed
on isolated glomeruli from adult mice using two independent antibodies against WT1 (C19, C8). QPCR analysis with specific primers shows
enrichment for the two peaks within the promoter, but not a region mapping 38 kb downstream of the Magi2α start site. TFBS, transcription
factor-binding sites.
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Magi2α is the crucial isoform in podocyte differentiation
Two recent studies using distinct knockout alleles have shown
Magi2 to be required for podocyte function, but with
somewhat different results. Although mice truncated after
exon 5 showed a complete absence of the slit diaphragm,25

deletion of exon 4 resulted in progressive glomerular
disease.26 To clarify this discrepancy and to test which
isoform of Magi2 may be essential for podocyte differentia-
tion, we analyzed kidneys from a third Magi2 knockout
model22 that lacks exon 1 (Magi2α), but should maintain the
expression of Magi2β and Magi2γ isoforms. Quantitative real-
time PCR analysis on RNA isolated from E18.5 and P0
kidneys using primers designed to detect all three isoforms of
Magi2 showed a complete absence of Magi2 transcripts,
confirming that Magi2α is the predominant isoform
produced in glomerular podocytes (Supplementary Figure
S6 online).

Macroscopic inspection of kidneys from Magi2α knockout
mice revealed no difference in renal size, but bladders of
mutant neonates were empty, suggesting lack of urine
production. Histological analysis showed an overall normal
glomerular architecture (Supplementary Figure S7A online).
Scanning electron microscopy of knockout kidneys revealed
the presence of primary and secondary processes, but the
absence of the sophisticated interdigitation of foot process
seen in wild-type podocytes (Figure 4a, I and IV). Instead,
mutant podocytes displayed poorly organized extension
reminiscent of filipodia. Endothelial cells appeared normal,
showing the typical fenestration (Supplementary Figure S8
online). Transmission electron microscopy confirmed defects
in cytoskeletal organization in Magi2α knockout podocytes,
and slit diaphragms were missing (Figure 4a, II and V, and
Supplementary Figure S8 online). Thus, deletion of Magi2α
results in a phenotype comparable to that reported by Ihara
et al.,25 suggesting that the less severe phenotype in Balbas
et al.26 is a hypomorph (see discussion).

Expression analysis confirmed the persistence of podocyte-
specific genes such as WT1, Nphs1, Nphs2, Podx, Synpo, and
CD2AP (Supplementary Figure S7B and C online). Interest-
ingly, although protein expression levels of nephrin remained
unchanged, as judged by western blot analysis (Figure 4c),
detection by immunohistological methods was severely
hampered (Figure 4d). Prolonged exposure time revealed a
weak speckled nephrin signal, suggesting altered cellular
localization of this protein (Figure 4e, most right panels).
Immunogold labeling further confirmed the marked reduc-
tion of nephrin signal in Magi2α mutant podocytes. In rare
occasions, when a signal was detected, it localized intracellu-
larly (Figure 4a, III and VI). We conclude that MAGI2 is
required for proper localization of nephrin within foot
processes and thus the assembly of the slit diaphragm.

Loss of MAGI2 expression correlates with glomerular diseases
in mice and humans
To test whether Magi2 expression was disrupted in other
circumstances in which podocyte foot process effacement is

observed, we treated mice with lipopolysaccharide (LPS) that
results in transient proteinuria and disruption of foot
processes.27 RNA analysis on isolated glomeruli revealed an
initial sevenfold reduction of Magi2 expression that coincided
with podocyte injury (Figure 5a). Magi2 expression returned
to normal levels upon recovery of kidney function.

To investigate whether a similar link can be found in
human disease, we made use of the data available in the
Nephromine database, a resource of microarray expression
data from microdissected renal biopsies. Strikingly, MAGI2
featured in the top genes deregulated in glomerular disease in
all microarray sets analyzed, with a 3.2-fold (P= 0.005)
change in focal segmental glomerulosclerosis and as much as
6.2-fold change (P= 6.13e− 7) in diabetic nephropathy
(Figure 5 and Supplementary Figure S9 online). We further
compared MAGI2 transcript levels in disease databases with
the expression of other genes that are known to be required
for podocyte function and/or are associated with podocyte
disease. Of the selected genes, MAGI2 was the most highly
downregulated gene in focal segmental glomerulosclerosis
(Hodgin, − 3.28-fold, P= 0.005), IgA nephropathy (Reich,
− 1.54-fold, P= 2.29e− 7; Ju, − 1.47-fold, P= 6.05e− 5), and
Lupus (Berthier, − 2.07-fold, P= 1.56E− 8; Ju, − 1.73-fold,
P= 4.9E− 6), and the second most highly downregulated
gene in diabetic nephropathy (Woroniecka, − 6.2= fold,
P= 6.13E− 7) (Supplementary Figure S9 online).

Finally, we analyzed a panel of biopsies from patients
suffering from glomerular diseases for potential changes in
MAGI2 expression (Figure 5f–i). Despite the persistence of
the podocyte-specific marker synaptopodin, MAGI2 signal
was markedly reduced in several samples including cases of
membranoproliferative glomerulonephritis and genetic cases
of focal segmental glomerulosclerosis (Cox2 and Nphs2
mutations).

DISCUSSION
Podocytes are highly specialized cells that express a unique
combination of proteins required to build the intricate
structure of the slit diaphragm. Differentiation requires a
network of transcription factors, and WT1 clearly holds a key
role in this process. Indeed, several podocyte-specific WT1
targets have been reported previously, including Nphs1,12,28

Neph3,29 Sulf1,30,31 and Scel.31 The analysis presented here
demonstrates that WT1 regulates a much broader set of genes,
and almost 50% of the top 200 podocyte-specific genes—as
defined in the GUDMAP gene expression atlas14—were
bound by WT1 (IDR ⩽ 0.1). Given this central role, it is
not surprising that upregulation of miR-193a, a repressor of
WT, causes focal segmental glomerulosclerosis in human
patients.32

Although WT1(−KTS) knockout mice demonstrate an
essential role for WT1 in regulating podocyte genes, it clearly
requires cofactors. Studies in zebrafish have recently suggested
interaction with FOXC1 and RBPJ in driving podocyte
differentiation.33 The bioinformatic analysis presented here
confirms the presence of FOX transcription factor–binding
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sites in a large proportion of WT1-bound regions, thus
supporting the model of a coordinated action of these two
transcription factors.

Although WT1(−KTS) isoforms are well-established
transcriptional regulators, the role of WT1(+KTS) is less
clear. Previous studies have shown that it can bind to RNA
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and copurify with splicing factors, thus suggesting a potential
role in alternative splicing. Our exon array analyses with RNA
isolated from WT1(+KTS) knockout mice could not confirm

such a role. Although at present we cannot rule out technical
reasons for the failure to detect differentially spliced genes,
our data would rather support the regulation at the
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transcriptional level. Indeed, a high proportion of genes
downregulated in Wt1(+KTS) mutant animals also have
proximal WT1-binding sites. Although WT1(+KTS) by itself
does not bind well to DNA, regulation through interacting
cofactors has been demonstrated in other systems. For
example, WT1(+KTS) appears to interact with GATA4 to
direct the expression of the sex determining gene Sry.34

Deletion ofWt1(+KTS) also resulted in increased expression
of a set of genes. However, as only a very small proportion of
these genes are associated with WT1 peaks, a direct suppression
by WT1 seems unlikely. Instead, we believe the induction of
these genes to be a secondary event caused by abnormal foot
process formation and the associated cellular stress. Consistent
with this hypothesis, GOrilla analysis revealed enrichment of
the categories immune response/chemokine activity and axon
guidance/neuron projection. The program of foot process
formation requires marked changes in cytoskeletal organization
that overlap with that required for neuronal projections.14 We
speculate that the increased expression of these genes is caused
by a persistent attempt of podocytes to form the required
projections. In contrast, genes that fall into the category
‘chemokine activity’ and more generally ‘immune response’
may be induced in response to glomerular damage caused by
abnormal podocyte differentiation.

The kidney phenotype of Magi2 knockout mice has been
recently reported, with the two models showing defects of
distinct severity. Although deletion of exon 4 resulted in
progressive loss of glomerular function,26 truncation of Magi2
after exon 5 (mutation cassette inserted within exon 6) led to
a complete absence of the slit diaphragm.25 Our own study
clarifies and extends these observations. First, the very similar
phenotype of our mice to that seen by Ihara et al.25 confirms
the essential role of MAGI2 in slit diaphragm assembly and
suggests that the allele by Balbas et al.26 represents a
hypomorph. In this respect, it is interesting to note that
exon skipping of exon 4 (the exon mutated in Balbas et al.26)
would not result in truncation of the protein, but the deletion
of 71 amino acids and we can speculate that such a protein
would retain some functionality. Second, the knockout allele
examined in this study leaves MAGI2β and MAGI2γ intact,
and we can conclude that MAGI2α is the predominant and
essential isoform in glomerular podocytes. Third, we report
that although nephrin expression persists at the RNA level,
immunodetection with antibodies was severely affected.
Regulation of nephrin protein translation by MAGI2, as
hypothesized by Ihara et al.,25 can be ruled out, as nephrin
protein levels on a denaturing western blot were unchanged.
We therefore propose that MAGI2 is required for the assembly
of the slit diaphragm and/or unfolding of the nephrin protein
that renders the epitope accessible for antibody binding. Of
note, Dai et al.35 reported a similar redistribution of nephrin in
podocytes lacking the integrin-linked kinase ILK, and this
might suggest common molecular mechanisms in these two
mutants. Alternatively, MAGI2 function may have a more
general role in Rho-dependent actin rearrangement, a function
it seems to hold within neuronal cells.22

Although Magi2 clearly has an essential function in slit
diaphragm assembly, expression in WT1(+KTS) mutant
animals was only 2.3-fold reduced. As heterozygous Magi2α
mutants do not show a clear kidney phenotype, it is unlikely
that the reduction of Magi2 is solely responsible for the
Frasier phenotype. Future analysis will therefore have to
concentrate on some of the other genes deregulated in the
Frasier mutant. However, the marked changes of MAGI2
expression observed in Nephromine analysis and the con-
firmation of severe loss of MAGI2 protein in some cases of
glomerular disease may suggest that mutations in this gene
may be causative in some human patients. Of note, MAGI2
has also been identified as a gene in close proximity to single-
nucleotide polymorphisms associated with compromised
renal function assessed by estimated glomerular filtration
rate,36 thus further supporting a potential involvement of this
gene in glomerular disease in humans.

MATERIALS AND METHODS
Animals
All animal work was conducted according to national and
international guidelines and has been approved by the local ethics
committee (NCE/2011-19). WT1 splice–specific11 and Magi2α
mutant mice22 were maintained on a mixed genetic background
(C57Bl6 crossed with B6D2F1) and genotyped using genomic DNA
extracted from biopsies (Supplementary Table S1 online).

Bioinformatic analysis
Genes associated with WT1-bound peaks (IDR o0.1)13 were com-
pared with cell type–specific gene lists obtained from the GUDMAP
website (www.gudmap.org)14,37 using the Venny online tool (http://
bioinfogp.cnb.csic.es/tools/venny/). For peak visualization (Figure 2c),
the UCSC (University of California, Santa Cruz) genome browser was
used in combination with the track hub http://129.94.136.7/tracks/
WT1_NCOMMS_13_12838B/hub.txt. Motif discovery was performed
using the MEME suite and compared with databases using TOMTOM
and AME. Scripts are available on request.

Array analyses
Glomeruli from E18.5 Wt1(+KTS)−/− and wild-type control embryos
were isolated as previously described.38 RNA was extracted using
Trizol, processed and hybridized on the Mouse Exon V1 Array
(Affymetrix, High Wycombe, UK). Arrays were quantile-normalized
and low-level transcripts (o50) were removed. Analysis on
alternative splicing events was performed using the two-way analysis
of variance approach of the Partek Genomic Suite version 6.4
(Partek, St Louis, MO). Differential expression of summarized gene
level expression was calculated using the f-test statistic, followed by
false discovery rate multiple testing correction. List comparisons
(Figures 2 and 3) with cell type–specific gene lists14,37,39 were
prepared using the Venny online tool (http://bioinfogp.cnb.csic.es/
tools/venny/). All array data are available on Gene Expression
Omnibus browser, GEO access number: GSE67313 (http://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67313).

Human studies
Kidney biopsy specimens from patients with glomerulopathies were
obtained from anonymized kidney biopsy materials kindly provided
by participants of the PodoNet Registry (PMID: 25635037).
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LPS analysis
The 4–6-week-old 129 female Swiss mice were treated with LPS
essentially as previously described,27 except that the dosage was 10 μg
LPS per g body weight (1 mg/ml LPS in phosphate-buffered saline).
Control animals were injected with 10 μl phosphate-buffered saline
per g body weight. At the designated time, glomeruli were isolated
according to Takemoto et al.40 and RNA was extracted with Trizol.

ChIP and quantitative real-time PCR quantifications
Kidneys were dissected from E18.5 mouse embryos and diced in ice-
cold Hanks’ buffered saline solution. ChIP was performed essentially
as previously described,13 and quantitative real-time PCR was carried
out using Light Cycler TaqMan Master Kit (Roche Diagnostic,
Meylan, France) and normalized on input material (specific primers
and probes listed in the Supplementary Table S2 online).

Magi2 promoter study
The promoter region ranging from −1800 to − 1 of the upstream
region of murine Magi2 was amplified by PCR. Two different lengths
of the promoter, including, respectively, two binding sites (1.8 kb) or
only one (0.4 kb), were cloned into a pGL2 luciferase reporter
plasmid. U2OS cells were cotransfected (X-tremeGENE HP DNA
Transfection Reagent; Roche) with the above reporter plasmids, a
CMV-βGal vector for standardization, and an pcDNA3 expression
vector encoding either WT1(−KTS), WT1(+KTS), or the empty
vector. After 48 h, cells were lysed and the luciferase activity was
assessed using the Luciferase assay kit (Promega) and normalized to
β-galactosidase activity (Promega assay, Lyon, France).

For detailed protocols on proteins/RNA extraction and analysis,
electron microscopy, and immuno/hystological analysis, please refer
to Supplementary Materials and Methods online.41,42 Details of the
antibodies used are listed in Supplementary Table S3 online.
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