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Beyond the established roles of vitaminD in bone andmineral homeostasis, we are becoming increasingly aware
of its diverse effects in skeletal muscle. Subjects with severe vitamin D deficiency or mutations of the vitamin D
receptor develop generalized atrophy ofmuscle and bone, suggesting coordinated effects of vitamin D inmuscu-
loskeletal physiology. At a mechanistic level, vitamin D exerts wide-ranging effects in muscle and bone calcium
handling, differentiation and development. Vitamin D alsomodulatesmuscle and bone-derived hormones, facil-
itating cross-talk between these tissues. In this review, we discuss emerging evidence that vitamin D regulates
bone andmuscle in a direct, integrated fashion, positioning the vitamin D pathway as a potential therapeutic tar-
get for musculoskeletal diseases.
This article is part of a Special Issue entitled “Muscle Bone Interactions”.
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Introduction

Bone and muscle serve obvious and critical functions in our
structure, strength and motion. In addition, bone serves as the major
5hydroxyvitaminD; FGF, fibro-
terleukin 6; TGF, transforming
ckoutmouse.
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ton).
reservoir for calcium which is vital for the regulation of blood calcium
levels. This tight regulation of serum calcium is an absolute requirement
for normal neurological function.Muscles are not usually thought of as a
reservoir, but they contain up to 80% of stored carbohydrates in healthy
individuals and may contain a surprising amount of lipid in trained
athletes, and in the obese. Emerging evidence also suggests that skele-
tal muscle may be a storage site of 25(OH)vitamin D (25D), a process
that relies on innate vitamin D signaling components and transport car-
riers within muscle cells [1,2].

Diseases of themusculoskeletal system are becomingmore common
with increasing longevity and adiposity of the population in many
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countries around the world. Loss of muscle mass (sarcopenia) and
decreased bone density (osteopenia or osteoporosis) with subsequent
fractures cause much of the frailty and disability of aging, with enor-
mous societal and economic costs. This has been estimated at $850
billion dollars a year in the USA [3].

During fetal life, post-natally and in adulthood, muscle mass and
bonemass are linked. This link is mediated in part via direct mechanical
interactions, and also via tissue cross-talk between muscle and bone.
Bones weaken with decreased muscle use in people and in animals.
Examples occur in humans with congenital myotonic dystrophy and
with other hereditary muscle disorders. These groups of people are
born with thin long-bones, relating to severely impaired fetal muscle
movements [4,5]. Bone mass and strength are rapidly lost in people
with denervating neurological injuries, e.g. spinal cord lesions, and
in astronauts who spend prolonged periods of time in a gravity-free
environment.

In the opposite direction, bones may also regulate muscle function
via a range of osteokines, such as fibroblast growth factor (FGF)-21
which is produced by osteocytes, and other factors [6]. Osteocytes
are osteoblasts which have become completely surrounded by bone-
matrix. Additionally, common pathways such as growth hormone/
insulin-like growth factor (IGF)-1, sex steroids and Wnt-signaling may
centrally coordinate the bone–muscle unit during development and ad-
aptation to mechanical stimuli [7].

Vitamin D represents another pathway by which muscle and bone
may interact. Individuals with vitamin D deficiency and rickets display
concurrent defects in muscle and bone. Mutations in vitamin D sig-
naling are also associated with generalized underdevelopment of the
musculoskeletal system. These observations suggest an integrated role
of vitamin D in muscle/bone health. Potential mechanisms may relate
to effects of vitamin D in the expression of myokines and osteokines
(i.e. muscle and bone-derived hormones) or regulation of mechano-
stimulatory processes.

This review presents evidence for a holistic role of vitamin D in the
musculoskeletal system beyond its established roles in skeletal health
alone. While evidence for such an integrated role is slowly emerging,
there is hope that the vitamin D pathway may present therapeutic tar-
gets for the treatment of musculoskeletal disease [8].

Development and regulation of bone and muscle

Bone and skeletal muscle both develop during early fetal life from
the somatic mesoderm in close physical association with each other.
This has been the subject of excellent reviews, including [6,9].

Bone forms sequentially, initially by the condensation of mesenchy-
mal precursors at future skeletal sites and then by differentiation into
chondrocytes to form a cartilage anlage (i.e. endochondral bone) or
directly into osteoblasts (i.e. intramembranous bone). This early process
relies on positional and mechanical cues [6]. Once formed, bone
undergoes continual remodelling throughout life in response to me-
chanical loads and in order to repair microdamage and adapt to chang-
ing mechanical requirements. This relies on the coordinated action of
bone cells: bone resorption by osteoclasts, then subsequent bonematrix
formation andmineralization by osteoblasts. Osteocytes are sensitive to
mechanical forces and may initiate adaptation through regulation of
both bone resorption and formation.

During embryogenesis, myogenic differentiation occurs adjacent
and concurrent to skeletal development. Myogenesis is specified by
the master regulator Pax3 in fetal and neonatal life and by Pax7 in
later life. In the trunk and limbs, mesodermal precursor cells under
the control of Pax3 become committed to myogenic lineage and differ-
entiate and fuse to form multinucleated syncytia under the control of
external signals such as MyoD and Myf5 [10]. These syncytia grow
with fusion of additional myoblasts and ultimately, nascent myotubes
develop into mature, multinucleated muscle fibers. Not all myoblasts
fuse. A subset of myogenic precursors instead form a reservoir of
Myf5/MyoD-expressing cells that remain on the periphery of myofibers
as a source of new muscle cells during postnatal growth and regenera-
tion [11]. These are known as satellite cells [12–15].

The linked developmental origins of muscle and bone suggest
the possibility that common signaling pathways or networks may regu-
late their mass. To support this, mice with genetic defects in muscle de-
velopment (MyoD knockout) display profound impairments in bone
development andmineralization [16]. Signals responsible for coordinat-
ed muscle/bone development include FGFs, transforming growth fac-
tors (TGFs), IGF-1 and other morphogens [17].

Muscle and bone mass are both increased by anabolic exercise and
are both decreased by disuse. The changes in mass with exercise or
with disuse are mediated by some of the same factors. As well as the di-
rect mechanical interactions between muscle and bone, there is further
evidence that muscles may indirectly regulate bone repair following
fracture. Covering fractures with muscle flaps, even with immobiliza-
tion is well recognized to improve healing of traumatic factures [18,
19]. Conversely, injury to overlyingmuscle impairs fracture healing [20].

The vitamin D receptor (VDR) makes an early appearance during
musculoskeletal development. In the fetal rat, it is found at day 13 of
gestation [21] within the condensing mesenchyme of the vertebral
column. By day 17, the VDR resides within osteoblasts and proliferating
chondrocytes. Despite the early embryologic presence of the VDR,
defects in vitamin D signaling do not lead to clinical features of rickets
until after birth [22]. The skeletal phenotype is most manifest after
weaning, coincidingwith development of hypocalcemia andhyperpara-
thyroidism in VDR knockout (VDRKO) mice. Abnormal growth plate
development, impaired bone mineralization and muscle fiber atrophy
are seen at day 35 [22,23]. However, subtle changes are noted in pre-
weaned VDRKO mice. These include growth plate enlargement [22]
and smaller muscle fibers at day 15 [23]. These effects occur prior to
the onset of abnormal calcium and phosphate levels, suggesting a direct
albeit subtle role for VDR in musculoskeletal growth.

Vitamin D

Vitamin D synthesis and signaling are the subject of many reviews
[24]. Briefly, vitamin D may be synthesized in the body by conversion
of 7-dehydrocholesterol in the skin upon ultraviolet (UV) light expo-
sure, or obtained from the diet, where it is mainly in fatty fish or in
supplemented foods. Because humans can synthesize vitamin D, it is ac-
tually not a classic vitamin, but has retained the name for historical
reasons.

VitaminD is then hydroxylated in the liver into 25-hydroxyvitaminD
(25D). This is the main form of circulating vitamin D and it is measured
to assess adequacy of overall vitamin D status. However, the major
active hormone is 1,25-dihydroxyvitaminD (1,25D). This binds to the vi-
tamin D receptor (VDR), a member of the nuclear steroid hormone re-
ceptor superfamily. VDR usually heterodimerizes with the retinoid X
receptor (RXR) although it can homodimerize with a second VDR. The
receptor dimer, when ligand activated, classically translocates to the nu-
cleus, binds to vitamin D response elements (VDRE) in theDNA and reg-
ulates transcription [25].

There are hundreds of well-characterized targets for activated VDR
in the genome. Recent use of RNA-sequencing combined with chroma-
tin immunoprecipitation (ChIP) has given new power to examine genes
regulated by vitamin D in non-classic target tissues such as liver [26]
and bone cells [27] although this technology has not yet been applied
to muscle.

Vitamin D in bone

Vitamin D has long-recognized actions in both bone and muscle
[28–30]. The classical consequence of vitamin D deficiency is a defect
of bone mineralization, causing rickets in children and osteomalacia in
adults. However, vitamin D has been linked more to active calcium



Fig. 1. Potential vitamin D mediated mechanisms of bone–muscle cross-talk.
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absorption from the intestine than to locally stimulatemineralization of
the newly formed bonematrix, the osteoid. The active vitaminDmetab-
olite, 1,25D binds to VDR in intestinal cells and stimulates formation of
calbindin which binds calcium and influences the calcium channels. It is
generally assumed that bone mineralization is mostly a passive process
when sufficient calcium and phosphate are available. Besides active cal-
cium absorption, passive diffusion through the intestinal wall also is
possible, depending on the calcium gradient.

The study of knockout mice has largely confirmed this concept.
Mice with genetic deletion of VDR may display reversal of rickets/
osteomalacia when supplied with a diet very high in calcium and lac-
tose; “rescue diet”. Similarly, rickets can be healed in childrenwith a ge-
netic defect in the VDR; vitamin D dependent rickets type 2. However,
VDRKO mice have atrophic muscle fibers and changes in osteoblast
number, mineral apposition rate and bone volume despite rescue diet,
resulting in lower longitudinal growth and a smaller skeleton [23,31].

In recent years, our understanding of vitaminD signaling in bonehas
expanded to include direct vitamin D signaling in bone cells. Mouse
models have enabled the delineation of direct effects of vitamin D. In
mice, overexpression of VDR restricted to mature osteoblasts increases
bone formation, reduces bone resorption and inhibits bone loss related
to vitamin D deficiency [32,33]. Recent data suggests that these mice
respondmore actively tomechanical loading by increasing bone forma-
tion and mineralization [34], a finding consistent with greater cortical
bone mass and size in mice with elevated osteoblastic VDR levels,
under normal or vitamin D-deficient conditions [32,33]. The muscle
phenotype of these mice has not been reported.

The direct effects of vitamin D in bone may be differentiation stage
specific. VDR signaling in immature osteoblasts may have the opposite
effect, stimulating bone resorption and reducing bone mass, as demon-
strated in a knockout model using the collagen 1-promoter [35]. More-
over, vitamin D treatment of early committed osteoblastic cells is
inhibitory, reducing cell activity and number [36]. In contrast, vitamin
D levels have been reported to be inversely related to serum sclerostin
levels. Sclerostin is a marker of osteocyte mechano-sensing, and an
active suppressor of WNT-mediated mechanical stimulation of bone
formation by terminally differentiated osteocytes [37]. These stage-
specific effects may relate in part to vitamin D's regulation of WNT sig-
naling in the osteoblastic lineage [36]. The osteoblast-specific VDR-null
mouse suggests that VDR plays a more systemic role in inhibiting min-
eralization in order to maintain serum calcium levels [38]. The direct
role of VDR in osteocytes appears to be regulation of their development
by effects on osteoprotegerin and maintaining calcium levels during
deficiency [39]. Therefore, local effects of vitamin D in bone may com-
plement systemic vitamin D effects andmay be anabolic or catabolic de-
pending on the calcemic status and stage of bone cell differentiation.

Vitamin D in muscle and potential effects on bone mass

The link between the effects of vitamin D signaling in muscle/bone
has long been appreciated. There are many potential factors which
may play a role in mediating this interaction, some of which are shown
in Fig. 1.

Indeed, one of the major components of vitamin-D deficiency-
related increases in fracture rates is due to muscle weakness and falls.
The greatest effects are evident in those with lowest vitamin D levels
[40,41]. In addition, vitamin D status is associated with physical perfor-
mance in epidemiological studies. Vitamin D deficiency can predict a
decline in physical performance after 3 years [42,43]. According to the
study of Need et al. [44], the calcium absorption starts to decrease
and the alkaline phosphatase as a sign of deficient mineralization starts
to rise when serum 25D is below 20 nmol/l. Physical performance
decreases when serum 25D falls below 50 nmol/l, but the decrease ac-
celerates when 25D is below 30 nmol/l [42].

A meta-analysis of randomized clinical trials has confirmed that
vitamin D supplementation can decrease the incidence of falls [45],
although this remains controversial. However, the appreciation of
muscle-bone cross-talk continues to increase, and evidence is emerging
of a role for vitaminD in this axis [46]. Co-regulation of bone andmuscle
by vitamin D is evident in co-existence of osteoporosis and sarcopenia
in the elderly, vitamin D deficient population [40,47–49].

Interestingly, the notion of direct humoral interactions between
bone and muscle has also been supported by studies such as those of
myostatin, a powerful inhibitor of muscle growth (reviewed in [50]),
which also has powerful effects upon bone mass and fracture healing,
independent of the changes inmuscle strength [51,52]. Vitamin D treat-
ment decreases myostatin in cultured muscle cells, suggesting a poten-
tial relationship between these pathways in vivo.

Vitamin D-related signals have also been implicated in muscle bone
interactions [53]. Osteoglycin, produced by muscle cells under the con-
trol of vitamin D, regulates osteoblastic activity [53].
Vitamin D in muscle

We reviewed the roles of vitamin D in muscle in 2013 and 2014 [40,
41] and others have published excellent reviews on this area [28,54].
Whether vitamin D receptor is expressed in muscle has been a contro-
versial question, made more difficult by the low level of expression of
VDR in myocytes after neonatal life. However, by RNA, Western immu-
noblot and by immunohistochemistry, VDR is present at low levels in
cultured C2C12myotubes [55] and normalmurinemuscle [56]. VDR ex-
pression is typically much higher in cell lines and isolated myocytes
than in primary muscle. VDR expression is also significantly higher in
neonatal muscle and declines with age at this site. This further supports
developmental roles of VDR in muscle.

It has been long-recognized that vitamin D deficiency is associated
with muscle weakness, particularly proximal muscle weakness, and
that this resolves with correction of deficiency. There are non-specific
electromyographic (EMG) features which resolve with correction of
deficiency (reviewed in [40]). In biopsy studies, most of which are
non-randomized, people with deficiency have preferential loss of type
2 muscle fibers which improves with supplementation [57,58]. In
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children with rickets and adults with osteomalacia, muscle weakness
can be extreme [40]. In the people with vitamin D pathway mutations,
weakness is also a clinical feature prior to treatment. However,
in these cases, and in severe vitamin D deficiency, the situation is
frequently confounded by other factors such as hypocalcemia or
hypophosphatemia [59].

In addition, in people, it is challenging to control for sunlight anddiet
exposure; ‘healthier’ individuals may have better diets and undertake
more outdoor activities, and have correspondingly better muscle and
bone function. For this reason, it is useful to turn to animalmodels to ex-
amine the question of bone–muscle interactions and vitamin D.

Mice with mutations in vitamin D receptor are weak and can have
low bone mass and less longitudinal growth. However, these findings
are confounded by the altered calcium and phosphate status of the
mice. Studies of VDR-null mice where phosphate and calcium are ag-
gressively replaced with a ‘rescue diet’ may result in near-normal
bone phenotype [60,61]. However, there can be more subtle residual
effects, suggesting persistent and local effects of VDR ablation in bone,
including in heterozygous VDR-null mice [61]. Epidemiological studies
show associations between vitamin D deficiency and poor physical
performance, assessed by a walking test, 5 chair stands, and a balance
test [42].
Potential muscle to bone vitamin D cross-talk

Even with use of rescue diet, there is decrease in the size of muscle
fibers in mice lacking VDR [23]. This suggests that the effect on muscle
is more likely to be a VDR effect rather than a calcium or phosphate ef-
fect. On ‘rescue diet’ the bonemass changes in VDRnullmice are smaller
than those changes seen in muscle mass and strength measures. This
suggests that there may be a muscle-related or hormonal factor that is
stimulating bone mass in VDR-null muscle.

Myostatin is a hormone secreted frommuscle. Its role is to inhibit in-
creasedmuscle mass, hence its name. It is a member of the TGFβ super-
family which acts on activin receptors and SMADs. Vitamin D inhibits
myostatin production from muscle cells, for example C2C12 cells [62],
and vitamin D treatment doubles myotube size in these cells [55]. De-
creased myostatin is associated with greater bone mass [63] (Fig. 1).

Vitamin D may regulate responses to muscle injury and regenera-
tion. Serum 25D levels drop directly following muscle injury, which
may partly be due to the fall in vitamin D binding protein after trauma
[64]. Baseline levels correlate directly with muscle recovery [65]. Stud-
ies in rodents demonstrate substantial increases in the expression of
Vdr and Cyp27B1 following injury [66–68]. This has been found both
in models of chemical injury [66,68], and a freeze–crushmodel of phys-
ical injury [67]. Increased VDR is directly localized to regeneratingmus-
cle fibers [66]. Vitamin D supplementation also reduces muscle injury
due to high-intensity exercise in rats and humans [69,70]. At a cellular
level, it increases VEGF and FGF1; both factors involved in tissue regen-
eration and neovascularization. Thiswas seen in C2C12myoblasts treat-
ed with 1,25D, and VEGF and FGF1 are potential pathways by which
vitamin Dmay modulate muscle regeneration [71]. An important ques-
tion is whether vitamin D also affects muscle fibrosis following injury.
This is suggested by recently described effects of VDR in hepatic stellate
cells and liver injury via pathways relevant to muscle (TGF-B/SMAD)
[72], but is yet to be addressed in this tissue.

Vitamin D is known to stimulate local vascular endothelial growth
factor (VEGF) and IGF-1 (Fig. 1) production in muscle. Both factors are
well known to have potential beneficial effects in bone. How large a
contribution muscle vitamin D action makes to circulating levels of ei-
ther hormone is not clear.

Another potential muscle factor which is regulated by vitamin D is
IL-6 (interleukin-6). It is produced following exercise or contraction. It
stimulates bone resorption, andmay alter bone strength. It is decreased
by vitamin D [73].
Potential bone to muscle vitamin D cross-talk

The osteocyte cell line MLO-Y4 expresses muscle anabolic factors
IGF-1, MGF and VEGF after mechanical loading [74]. Osteocalcin
which is produced by osteoblasts has recently come to a new light for
its role in regulating beta-cell function [75]. Its classic use is as a marker
of bone formation. It is regulated by vitamin D and its gene contains
a vitamin D response element (VDRE) indicating direct regulation by vi-
tamin D [2]. It has potential effects in muscle, in which it alters mito-
chondrial function, insulin sensitivity [75], and possibly strength in
women.

Sclerostin is secreted by mature osteocytes during completion of
osteon formation. It inhibits bone formation. Mutations in the SOST
gene, coding for sclerostin, cause sclerosteosis with undetectable or
low sclerostin levels, increased bone formation, very high bone mass
and neurological impairments due to entrapment of nerves [37].
Sclerostin antibodies have a potential for exciting use in the treatment
of osteoporosis. Sclerostin secretion by osteocytes increases in response
to bedrest and decreases with muscle loading [76]. Serum levels in-
crease in people treated with vitamin D [77]. FGF23 is another vitamin
D responsive hormone produced by bone which may have positive ef-
fects on cardiac and smooth muscle [78]. The effects on skeletal muscle
are the subject of current investigation.

Conclusions

In addition to established roles in calcium and phosphate homeosta-
sis, vitamin D plays a vital role in musculoskeletal health. People with
severe vitamin D deficiency display the combination of reduced bone
mineral density and muscle wasting. Mechanistic studies demonstrate
a range of rapid and genomic effects of vitamin D on cell differentiation,
bone mineralization and muscle fiber size [53,55,79,80]. Vitamin D
may also exert effects in bone and muscle injury. Following injury,
these tissues display heightened sensitivity to vitamin D with local up-
regulation of Cyp27b1, VDR and associated reductions in serum 25D
levels [66,81,82]. We are also becoming increasingly aware of the inter-
connected biology ofmuscle and bone. The search for unifying factors to
explain this connection has clear implications to future therapies [8]. Vi-
tamin D appears to be one of these factors integrating bone andmuscle.
To support this, vitamin D exerts effects in a range of bone and muscle-
derived hormones, including osteocalcin, sclerostin, IL-6 andmyostatin,
and may thereby modulate bone–muscle cross-talk.

Taken together, these studies confirm the intimate relation between
bone and muscle and add to vitamin D's increasing repertoire of extra-
skeletal effects. Future studies are needed to unravel mechanisms in-
volved in vitamin D's tissue-modulatory, pleiotropic effects and explore
the therapeutic potential of targeting this pathway in musculoskeletal
disease.
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