Prospective Comparison of ¹⁸F-Fluoromethylcholine Versus ⁶⁸Ga-PSMA PET/CT in Prostate Cancer Patients Who Have Rising PSA After Curative Treatment and Are Being Considered for Targeted Therapy

Joshua J. Morigi^{1,2}, Phillip D. Stricker^{3,4}, Pim J. van Leeuwen^{3,4}, Reuben Tang^{1,5}, Bao Ho¹, Quoc Nguyen^{3,4}, George Hruby⁶, Gerald Fogarty³, Raj Jagavkar³, Andrew Kneebone⁶, Adam Hickey¹, Stefano Fanti², Lisa Tarlinton¹, and Louise Emmett^{1,5}

¹Department of Diagnostic Imaging, St. Vincent's Public Hospital, Sydney, Australia; ²Nuclear Medicine Operative Unit, Policlinico S. Orsola-Malpighi Hospital, Bologna, Italy; ³St. Vincent's Prostate Cancer Centre, St. Vincent's Clinic, Sydney, Australia; ⁴Australian Prostate Cancer Research Centre, Garvan Institute of Medical Research/Kinghorn Cancer Centre, Sydney, New South Wales, Australia; ⁵University of New South Wales, Sydney, New South Wales, Australia; and ⁶University of Sydney, Sydney, New South Wales, Australia

In prostate cancer with biochemical failure after therapy, current imaging techniques have a low detection rate at the prostatespecific antigen (PSA) levels at which targeted salvage therapy is effective. ¹¹C-choline and ¹⁸F-fluoromethylcholine, though widely used, have poor sensitivity at low PSA levels. ⁶⁸Ga-PSMA (Glu-NH-CO-NH-Lys-(Ahx)-[68Ga-N,N'-bis[2-hydroxy-5-(carboxyethyl) benzyl]ethylenediamine-N,N'-diacetic acid]) has shown promising results in retrospective trials. Our aim was to prospectively compare the detection rates of ⁶⁸Ga-PSMA versus ¹⁸F-fluoromethylcholine PET/CT in men who were initially managed with radical prostatectomy, radiation treatment, or both and were being considered for targeted therapy. Methods: A sample of men with a rising PSA level after treatment, eligible for targeted treatment, was prospectively included. Patients on systemic treatment were excluded. 68Ga-PSMA, ¹⁸F-fluoromethylcholine PET/CT, and diagnostic CT were performed sequentially on all patients between January and April 2015, and the images were assessed by masked, experienced interpreters. The findings and their impact on management were documented, together with the results of histologic follow-up when feasible. Results: In total, 38 patients were enrolled. Of these, 34 (89%) had undergone radical prostatectomy and 4 (11%) had undergone radiation treatment. Twelve (32%) had undergone salvage radiation treatment after primary radical prostatectomy. The mean PSA level was 1.74 ± 2.54 ng/mL. The scan results were positive in 26 patients (68%) and negative with both tracers in 12 patients (32%). Of the 26 positive scans, 14 (54%) were positive with ⁶⁸Ga-PSMA alone, 11 (42%) with both ¹⁸F-fluoromethylcholine and ⁶⁸Ga-PSMA, and only 1 (4%) with ¹⁸F-fluoromethylcholine alone. When PSA was below 0.5 ng/mL, the detection rate was 50% for 68Ga-PSMA versus 12.5% for 18Ffluoromethylcholine. When PSA was 0.5-2.0 ng/mL, the detection rate was 69% for ⁶⁸Ga-PSMA versus 31% for ¹⁸F-fluoromethylcholine, and when PSA was above 2.0, the detection rate was 86% for ⁶⁸Ga-PSMA versus 57% for ¹⁸F-fluoromethylcholine. On lesion-based analysis, ⁶⁸Ga-PSMA detected more lesions than ¹⁸F-fluoromethylcholine (59 vs. 29, P < 0.001). The tumor-to-background ratio in positive

E-mail: joshuajames.morigi@studio.unibo.it

scans was higher for ⁶⁸Ga-PSMA than for ¹⁸F-fluoromethylcholine (28.6 for ⁶⁸Ga-PSMA vs. 9.4 for ¹⁸F-fluoromethylcholine, P < 0.001). There was a 63% (24/38 patients) management impact, with 54% (13/24 patients) being due to ⁶⁸Ga-PSMA imaging alone. Histologic follow-up was available for 9 of 38 patients (24%), and 9 of 9 ⁶⁸Ga-PSMA–positive lesions were consistent with prostate cancer (⁶⁸Ga-PSMA–positive lesions were consistent with prostate cancer (⁶⁸Ga-PSMA was true-positive). The lesion positive on ¹⁸F-fluoromethylcholine imaging and negative on ⁶⁸Ga-PSMA imaging was shown at biopsy to be a false-positive ¹⁸F-fluoromethylcholine finding (⁶⁸Ga-PSMA was true-negative). **Conclusion:** In patients with biochemical failure and a low PSA level, ⁶⁸Ga-PSMA demonstrated a significantly higher detection rate than ¹⁸F-fluoromethylcholine and a high overall impact on management.

Key Words: ¹⁸F-fluoromethylcholine; ⁶⁸Ga-PSMA; molecular imaging; PET/CT; prostate cancer; prostate-specific membrane antigen

J Nucl Med 2015; 56:1185–1190 DOI: 10.2967/jnumed.115.160382

Despite advances in surgical technique and radiotherapeutic delivery, initial curative therapy will fail in a significant proportion of men with prostate cancer (1). In those men with biochemical failure after initial therapy, the currently available imaging techniques (2,3) have a low detection rate at the levels of prostate-specific antigen (PSA) at which targeted salvage therapy has optimal effect. With regard to PET/CT, whereas ¹⁸F-fluoromethylcholine (4) and ¹¹C-choline (5) remain the best validated tracers for detection of recurrent prostate cancer (6,7), they have significant limitations that preclude their effectiveness in patients with a low PSA level (8). Recent retrospective data on the novel PET tracer ⁶⁸Ga-PSMA (Glu-NH-CO-NH-Lys-(Ahx)-[⁶⁸Ga-N,N'-bis[2-hydroxy-5-(carboxyethyl) benzyl]ethylenediamine-N,N'-diacetic acid]) have demonstrated promising sensitivity and specificity for the detection of prostate cancer in the setting of biochemical recurrence (9) and suggest that this agent is likely to be more sensitive than ¹⁸F-fluoromethylcholine or ¹¹C-choline for the assessment of systemic spread (10,11). This promising tracer relies on overexpression of prostate-specific

Received May 4, 2015; revision accepted Jun. 17, 2015.

For correspondence or reprints contact: Joshua J. Morigi.

Published online Jun. 25, 2015.

COPYRIGHT $\ensuremath{\mathbb{C}}$ 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

membrane antigen (a transmembrane folate hydrolase) on the surface of prostate cancer cells. This overexpression has been demonstrated both locally and in metastatic lesions within bone, lymph nodes, and soft tissue (12, 13).

The aim of this study was to prospectively compare the detection rates and management impact of ⁶⁸Ga-PSMA PET/CT and ¹⁸F-fluoromethylcholine PET/CT in patients with prostate cancer and a low but detectable PSA relapse after curative therapy.

MATERIALS AND METHODS

Study Design and Data Collection

Thirty-eight prostate cancer patients with a rising PSA level after radical prostatectomy, radiotherapy (external beam or other), or both, who were not yet on systemic therapy and were actively being considered for further targeted therapy, were enrolled in the trial. No target had been identified for treatment through clinical examination or imaging. Patients on hormonal or systemic treatment were excluded. Data on age, previous therapy, time since therapy, initial pathologic findings (including T stage and Gleason score), PSA doubling time, PSA at the time of scanning, and prior imaging results were collected at enrollment. The trial was approved by the Institutional Human Research and Ethics Committee, and informed consent was obtained from all participants.

Scan Acquisition

Both the ¹⁸F-fluoromethylcholine and the ⁶⁸Ga-PSMA were produced onsite with good-laboratory-practice–compliant procedures using an automated radiopharmacy cassette (Trasis S.A.). Radiopharmacy quality control was undertaken using a high-pressure liquid chromatography method.

¹⁸F-fluoromethylcholine PET/CT and then ⁶⁸Ga-PSMA PET/CT plus diagnostic contrast-enhanced abdominopelvic CT were performed within 30 d. The diagnostic CT scan was embedded within the attenuation-correction CT scan for the clinically indicated ¹⁸F-fluoromethylcholine scan but was separately reconstructed by standard CT methods and separately interpreted for the purposes of the study.

The routine clinical protocol was followed (for ¹⁸F-fluoromethylcholine, a 3.5 MBq/kg dose and a 10-min dynamic pelvic acquisition plus a 20-min static whole-body acquisition; for ⁶⁸Ga-PSMA, a 2.0 MBq/kg dose and whole-body scanning 45 min after injection). Whole-body images were acquired from the vertex to the knees.

PET/CT was performed using an Ingenuity time-of-flight PET/64-slice CT scanner (Philips). For ⁶⁸Ga-PSMA, unenhanced CT was performed 45 min after tracer injection using the following CT parameters: 2-mm slice thickness, 2-mm increment, soft-tissue reconstruction kernel, 120 keV and 50 mAs, 0.828 pitch, 600-mm field of view, and 512 matrix. Immediately after CT scanning, a whole-body PET scan was acquired for 2 min per bed position. For ¹⁸F-fluoromethylcholine PET/CT scans, low-dose and modulated diagnostic CT with intravenous contrast material was performed. The initial low-dose CT scan was acquired immediately before injection of ¹⁸F-fluoromethylcholine using the following parameters: 2-mm slice thickness, 2-mm increment, soft-tissue reconstruction kernel, 120 keV and 50 mAs, 0.828 pitch, 600-mm field of view, and 512 matrix. ¹⁸F-fluoromethylcholine was injected simultaneously with the PET acquisition of 1 bed position for 10 min, acquired in list mode to obtain dynamic reconstruction. Immediately afterward, modulated diagnostic whole-body CT with intravenous contrast material (vertex to midthigh) was performed with the following parameters: 2-mm slice thickness, 2-mm increment, soft-tissue reconstruction kernel, 120 keV and 50-350 mAs, 0.828 pitch, 600-mm field of view, and 512 matrix. The whole-body PET scan was then acquired for 2 min per bed position. For both ⁶⁸Ga-PSMA and ¹⁸F-fluoromethylcholine scans, the emission data were corrected for randoms, scatter, and decay using the body-dynamic.xml and body.xml reconstruction protocols (Philips). All images were viewed and reported using Fusion Viewer (Philips).

Image Interpretation

The PET images were interpreted by 2 experienced nuclear medicine physicians who did not know the clinical or imaging results. Data for both the ¹⁸F-fluoromethylcholine and the ⁶⁸Ga-PSMA scans were analyzed visually and semiquantitatively. Visual analysis included a 4-point certainty scoring scale, as well as site and size of lesions. Semiquantitative analysis was performed using an automated maximum standardized uptake value for both ¹⁸F-fluoromethylcholine and ⁶⁸Ga-PSMA. No direct comparison was attempted. Instead, tumor-to-background ratios (TBRs) were determined for each lesion on both the ⁶⁸Ga-PSMA and the ¹⁸F-fluoromethylcholine images. TBR was established by placing a 2-dimensional region of interest in the pelvis and measuring the maximum standardized uptake value of background fat within the area. This value was then used as the denominator for the maximum standardized uptake value of the lesion, resulting in TBR. The diagnostic CT results were interpreted separately by an experienced radiologist who did not know the PET results or clinical information.

Follow-up and Patient Management

Treating physicians were asked to report on the management plan prior to and subsequent to each PET scan. Changes in management after the ¹⁸F-fluoromethylcholine and ⁶⁸Ga-PSMA results became known were classified as none, minor (change in delivery or site of selected treatment), or major (change in selected treatment). Detailed questions were posed on the type of management undertaken on the basis of the imaging results and whether ⁶⁸Ga-PSMA had an added impact over ¹⁸F-fluoromethylcholine on management. All clinical data, along with any added value of imaging, were considered by treating physicians in defining further treatment. Histopathologic follow-up results were gathered when available.

Statistical Analysis

McNemar testing was used to analyze scan positivity at different PSA levels (0–0.5, 0.5–2.0, and 2.0–12.0 ng/mL). Pearson correlation and stepwise regression analysis were used to identify the determinants of scan positivity. PSA at the time of scanning, PSA doubling time, Gleason score, age, initial treatment, and years from treatment were included in the analysis. Wilcoxon signed-rank testing was used for lesion-based analysis and management-impact analysis. Two-tailed, paired *t* testing assuming unequal variance was used to analyze and compare TBR ratios between scans. PSA doubling time was calculated only for patients with a PSA level above 0.2 according to standard formulas, based on at least 2 PSA values separated by at least 3 mo within 1 y after recurrence and no adjuvant radiation or hormonal therapy before recurrence. Statistical analysis was performed with SPSS, version 21 (IBM).

RESULTS

The characteristics of the 38 patients are presented in Table 1. The primary treatment was radical prostatectomy in 34 patients (89%) and radiotherapy in 4 patients (11%). Twelve patients (32%) had undergone salvage radiotherapy after radical prostatectomy. The mean PSA level was 1.72 ng/mL (range, 0.04–12 ng/mL), and 30 patients (79%) had a PSA level of 2.0 ng/mL or less at the time of imaging. The mean PSA doubling time was 15.6 mo (range, 2.6–111.2 mo) and was calculated in 31 patients (insufficient data or low absolute PSA levels in the other 7 patients).

Overall, 26 patients (68%) had positive scan results. Of these 26, 14 (54%) were positive with 68 Ga-PSMA alone, 11 (42%) with

 TABLE 1

 Patient Characteristics and Preimaging Data

Characteristic	Data	
Age (y)		
Mean	68	
Range	54–81	
PSA at time of scan (ng/dL)		
Mean ± SD	1.72 ± 2.54	
Range	0.04–12.0	
PSA doubling time (mo)		
Mean ± SD	15.6 ± 22.1	
Range	2.6–111.2	
Initial treatment (n)		
Radical prostatectomy	34/38 (89%)	
Radiotherapy*	4/38 (11%)	
Surgery + salvage radiotherapy	12/38 (32%)	
PSA at diagnosis (ng/dL)		
Mean ± SD	9.7 ± 4.9	
Range	2.8–20.2	
Years since diagnosis		
Mean	7	
Range	1–18	
Gleason score (n)		
6–7	23/38 (61%)	
8–9	15/38 (39%)	
Risk group [†] (<i>n</i>)		
Intermediate	11/38 (24%)	
High	27/38 (76%)	

*External-beam radiation therapy or brachytherapy.

[†]According to European Association of Urology guidelines.

both ¹⁸F-fluoromethylcholine and ⁶⁸Ga-PSMA, and only 1 (4%) with ¹⁸F-fluoromethylcholine alone (subsequently confirmed as false-positive on biopsy). Overall, 12 of the 38 scans (32%) were negative with both tracers.

The most significant predictor of a positive PET result for both ¹⁸F-fluoromethylcholine and ⁶⁸Ga-PSMA was PSA at the time of imaging (P < 0.001). In men with a PSA level below 0.5 ng/mL, 50% of scans were positive with ⁶⁸Ga-PSMA versus 12.5% with ¹⁸F-fluoromethylcholine (P = 0.03). When PSA was 0.5–2.0 ng/mL, 71% were ⁶⁸Ga-PSMA–positive and 36% were ¹⁸F-fluoromethylcholine–positive (P = 0.02). When PSA was above 2.0 ng/mL, 88% were ⁶⁸Ga-PSMA–positive and 63% were ¹⁸F-fluoromethylcholine–positive

(Table 2). Additionally, ⁶⁸Ga-PSMA identified a higher number of lesions in every PSA cohort than did ¹⁸F-fluoromethylcholine (Fig. 1). Overall, ⁶⁸Ga-PSMA detected more lesions than ¹⁸F-fluoromethylcholine (59 vs. 29, P < 0.001). More lesions (Fig. 2) were identified locoregionally, in lymph nodes and bone, with ⁶⁸Ga-PSMA. Local lesions occurred both in radiotherapy patients (Fig. 3) and in radical prostatectomy patients. Uptake in residual radiotreated prostate tissue was detected on a single ¹⁸F-fluoromethylcholine scan and on three ⁶⁸Ga-PSMA scans. For radical prostatectomy patients, seminal vesicle uptake was detected in 3 scans on solely ⁶⁸Ga-PSMA (¹⁸F-fluoromethylcholine–negative, ⁶⁸Ga-PSMA– positive). Finally, in a radical prostatectomy patient, the prostate bed was positive with ⁶⁸Ga-PSMA but negative with ¹⁸F-fluoromethylcholine. Qualitative evaluation of the PET scan and the 2-mm-thick enhanced-CT slices was used to differentiate between activity within the urine and activity within the pelvis. With lesion-based analysis, only PSA at the time of scanning correlated significantly with total number of lesions on ⁶⁸Ga-PSMA (P < 0.001) or ¹⁸F-fluoromethylcholine (P = 0.002). There was no significant correlation between PSA doubling time or Gleason score and the detection rate of either ¹⁸F-fluoromethylcholine or ⁶⁸Ga-PSMA. On diagnostic enhanced CT, no lesions were considered definitely positive.

After imaging, there was a major or moderate impact on management in 24 cases (63%) (Fig. 4), 54% (13/24) of which were attributable to the findings on ⁶⁸Ga-PSMA imaging alone (Fig. 5). In the 11 of 24 patients (46%) for whom both ¹⁸F-fluoromethylcholine and ⁶⁸Ga-PSMA had an impact, the ⁶⁸Ga-PSMA results caused an additional change in management for 4 (36%). In no case was management changed on the basis of the results of ¹⁸F-fluoromethylcholine alone. In summary, ⁶⁸Ga-PSMA imaging accounted (either alone or in concordance with ¹⁸F-fluoromethylcholine) for the entire impact on management in our patient cohort (24/38 for ⁶⁸Ga-PSMA vs. 11/38 for ¹⁸F-fluoromethylcholine, P < 0.001). ⁶⁸Ga-PSMA TBR was higher than ¹⁸F-fluoromethylcholine TBR in scans with positive findings (Fig. 6). The mean TBR was 9.4 for ¹⁸F-fluoromethylcholine but 28.6 for ⁶⁸Ga-PSMA (P < 0.001). Mean uptake in fat was similar between the two types of scan (maximum standardized uptake values of 0.3 for ¹⁸F-fluoromethylcholine and 0.26 for ⁶⁸Ga-PSMA).

Histopathologic confirmation was possible for 9 (24%) of the 38 patients with positive findings on ⁶⁸Ga-PSMA or ¹⁸F-fluoromethylcholine imaging. All 9 of the ⁶⁸Ga-PSMA– positive lesions that underwent biopsy were confirmed to be true-positive. Of the 2 lesions that were ¹⁸F-fluoromethylcholine–positive, one was true-positive. The other was false-positive with ¹⁸F-fluoromethylcholine (and on MR imaging) and true-negative with ⁶⁸Ga-PSMA.

DISCUSSION

Our key finding was that in patients with rising PSA after curative treatment, ⁶⁸Ga-PSMA has a higher detection rate than

TABLE 2				
Detection Rates of ¹⁸ F-Fluoromethylcholine and ⁶⁸ Ga-PSMA				

PSA level (ng/mL)	¹⁸ F-fluoromethylcholine	⁶⁸ Ga-PSMA	Р
<0.5	12.5% (2/16)	50% (8/16)	0.03
0.5–2.0	36% (5/14)	71% (10/14)	0.02
>2.0	63% (5/8)	88% (7/8)	0.18
Total	32% (12/38)	66% (25/38)	<0.001

Downloaded from jnm.snmjournals.org by Sistema Bibliotecario d'Ateneo - Universit? degli Studi di Bologna on August 4, 2015. For personal use only.

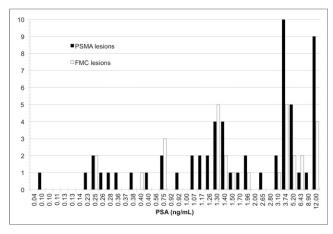


FIGURE 1. Total number of lesions detected for each patient with ¹⁸F-fluoromethylcholine (FMC) and ⁶⁸Ga-PSMA, ranked by ascending PSA value.

¹⁸F-fluoromethylcholine regardless of PSA level. This finding was most evident in patients with low PSA levels (<0.5 ng/mL), with 50% of such patients having positive ⁶⁸Ga-PSMA results. The high sensitivity at low PSA levels has important implications for the management of patients in whom PSA is rising after therapy with curative intent (radical prostatectomy or radiation) (14). There is a paucity of published literature on ⁶⁸Ga-PSMA in humans. Although 3 retrospective studies (9,11,15) demonstrated promising results, to our knowledge no prospective studies have been published. The diagnostic value of ¹¹C-choline and ¹⁸F-fluoromethylcholine is well documented (6,16), and the use of these agents in the setting of biochemical relapse is increasing (17). However, both tracers lack sensitivity at low PSA levels (8), and neither is yet standardized (18). Our results reinforce the limited sensitivity of ¹⁸F-fluoromethylcholine at low PSA levels and suggest that ⁶⁸Ga-PSMA may more effectively detect recurrent disease at low PSA levels. The value of treating recurrent prostate cancer at low PSA levels has recently been outlined in European guidelines (14) and is associated with a reduced incidence of biochemical failure (19).

Currently, men with low PSA levels who experience biochemical relapse after radical prostatectomy often undergo salvage radiotherapy to the prostatic bed even when there are no

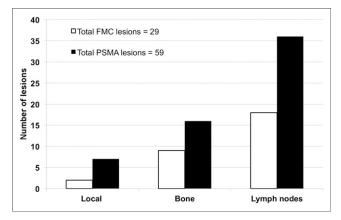
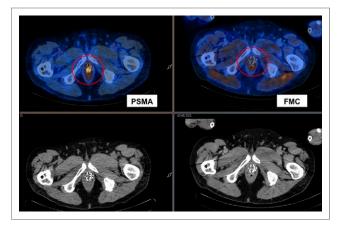



FIGURE 2. Total number of ¹⁸F-fluoromethylcholine (FMC) and ⁶⁸Ga-PSMA-positive lesions per anatomic site, including prostate bed or seminal vesicles (local), bone, or lymph nodes.

FIGURE 3. A 70-y-old man with Gleason 7 prostate cancer treated with radiation therapy who presented with rising PSA level (8.9) and PSA doubling time of 9.5 mo. ¹⁸F-fluoromethylcholine (FMC) scan was negative, whereas ⁶⁸Ga-PSMA scan demonstrated intense uptake in prostate (maximum standardized uptake value, 4.5). Subsequent biopsy confirmed local recurrence.

significant imaging findings. Hence, it is no surprise that, per the nomogram of Stephenson et al. (20), only about half these men are currently cured. Furthermore, in a few men salvage radiation treatment may be harmful. Therefore, the high detection rate of ⁶⁸Ga-PSMA at low PSA levels—demonstrated in this trial—may benefit management in patients with an early rise in PSA level after initial treatment. On the basis of our findings, disease outside the prostate bed is identified on ⁶⁸Ga-PSMA alone in up to 75% (6/8) of ⁶⁸Ga-PSMA–positive patients who would be eligible for salvage radiotherapy of the prostate bed (those patients with a PSA level of <1.0 ng/mL). The current clinical paradigm of either ¹⁸F-fluoromethylcholine–guided or unguided salvage radiotherapy of the prostate bed would have failed in these patients.

The superior sensitivity of ⁶⁸Ga-PSMA compared with ¹⁸F-fluoromethylcholine was previously demonstrated in a single retrospective study (*11*), but there were important differences between that study population and ours. Most patients in our study had a PSA level below 2.0 ng/mL, whereas the previous study had a mean PSA level of 11.1 ng/mL and therefore was less able to demonstrate an added benefit for ⁶⁸Ga-PSMA over ¹⁸F-fluoromethylcholine at low PSA levels. However, despite the difference in patient cohorts, both studies demonstrated a statistically higher total number of lesions

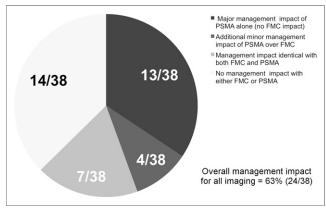
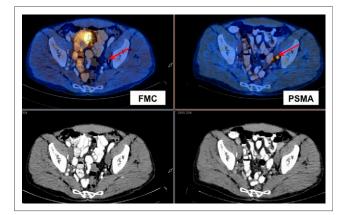
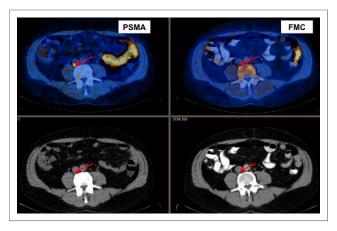


FIGURE 4. Impact on management. FMC = ¹⁸F-fluoromethylcholine.


detected with ⁶⁸Ga-PSMA than with ¹⁸F-fluoromethylcholine in all positive patients.

Our study found that when ⁶⁸Ga-PSMA was performed at low absolute PSA levels, the impact on management was exceptionally high. There are several reasons for this. First, when tumor recurred in the prostate bed, potentially curative and directed salvage radiation was delivered. Second, when oligometastatic disease was present, targeted treatments such as stereotactic body radiotherapy or lymph node dissection were used. Finally, when metastatic disease was found with ⁶⁸Ga-PSMA (or less likely, with ¹⁸F-fluoromethylcholine), systemic treatment was begun and the patient was spared from undergoing salvage radiation to the prostatic fossa.


This study demonstrated a significantly higher TBR with ⁶⁸Ga-PSMA than with ¹⁸F-fluoromethylcholine. Lesions detected with ⁶⁸Ga-PSMA were more than twice the intensity of those detected with ¹⁸F-fluoromethylcholine, compared with background tissue. The significantly higher TBR with ⁶⁸Ga-PSMA allows easier identification of even very small lesions.

The major limitation of this trial was that not all positive findings were confirmed histopathologically. Confirmation was impaired by the small volume of individual lesions and the high number of biopsy-inaccessible lymph node and bone recurrences. In patients whose biopsy was successful, we could confirm all ⁶⁸Ga-PSMA findings as true-positive. At biopsy, one ¹⁸F-fluoromethylcholine–positive (and MR imaging–positive) lymph node that had been negative on ⁶⁸Ga-PSMA was found. The aim of this trial was not to determine diagnostic accuracy but to assess the detection rate of the 2 tracers at low PSA levels. Many of these patients with disease identified on PET/CT will be undergoing targeted therapy as part of their routine clinical care. We intend to continue long-term follow-up of this cohort to document response to therapy and confirm diagnostic accuracy.

Histopathologic confirmation was obtained in only 24% of patients. However, it is remarkable that 100% of the ⁶⁸Ga-PSMA– positive lesions that underwent biopsy were true-positive and that the single lesion positive with ¹⁸F-fluoromethylcholine and negative with ⁶⁸Ga-PSMA was of a reactive nature. Although this study confirmed a high detection rate for ⁶⁸Ga-PSMA at low PSA levels,

FIGURE 5. A 62-y-old man with Gleason 7 prostate cancer treated with radical prostatectomy and salvage radiation who presented with rising PSA level (0.4) and PSA doubling time of 8 mo. ¹⁸F-fluoromethyl-choline (FMC) PET/CT findings were negative, whereas ⁶⁸Ga-PSMA PET/CT scan demonstrated single positive left obturator lymph node (maximum standardized uptake value, 3.7). Subsequent biopsy confirmed prostate cancer recurrence.

FIGURE 6. A 70-y-old man with Gleason 7 prostate cancer treated with radical prostatectomy who presented with rising PSA (12.0) and PSA doubling time of 5.8 mo. Both ¹⁸F-fluoromethylcholine (FMC) PET/CT and ⁶⁸Ga-PSMA PET/CT were positive for nodal disease (4 lesions positive on ¹⁸F-fluoromethylcholine imaging and 9 on ⁶⁸Ga-PSMA). However, TBR was higher for ⁶⁸Ga-PSMA than for ¹⁸F-fluoromethylcholine (25.0 vs. 7.0 in this image of positive paracaval lymph node). Biopsy confirmed nodal recurrence of prostate cancer.

further prospective trials addressing sensitivity and specificity are urgently needed.

A further limitation of this trial was the small number of men enrolled. Nevertheless, it is impressive that with such a small cohort there was a statistically significant difference in detection rates between ⁶⁸Ga-PSMA and ¹⁸F-fluoromethylcholine on both a patient basis and a lesion basis. However, large, adequately powered prospective trials are needed to better evaluate ⁶⁸Ga-PSMA.

Though previously reported in publications on ¹¹C-choline (8,21) and more recently ⁶⁸Ga-PSMA (22), a statistically significant correlation between PSA doubling time, Gleason score, and ¹⁸F-fluoromethylcholine or ⁶⁸Ga-PSMA positivity was not found in our study. This discrepancy is probably related to the low mean PSA values of this patient cohort (<2.0 ng/mL) and the small number of men enrolled. Calculation of the PSA doubling time was possible for only 31 patients, therefore limiting statistical analysis of this variable.

The development of ⁶⁸Ga-PSMA is at an early stage. Currently, there are several different ⁶⁸Ga-PSMA ligands in clinical use and under research (23), making extrapolation of these data across all clinical sites problematic. Further product development, comparative trials, and harmonization of tracer use are urgently needed.

CONCLUSION

In patients who have a low, rising PSA level and are being evaluated for therapy with curative intent, ⁶⁸Ga-PSMA PET/CT demonstrated a significantly higher detection rate for recurrent disease than ¹⁸F-fluoromethylcholine and had an impact on management in many patients. Although these findings need to be confirmed in larger trials, this prospective trial suggests that ⁶⁸Ga-PSMA PET/CT will be an effective imaging tool for early detection of prostate cancer recurrence.

DISCLOSURE

The costs of publication of this article were defrayed in part by the payment of page charges. Therefore, and solely to indicate this

fact, this article is hereby marked "advertisement" in accordance with 18 USC section 1734. Funding was provided by St. Vincent's Prostate Cancer Centre and the Australian Department of Health and Ageing through the Australian Prostate Cancer Research Centre— New South Wales (APCRC-NSW). No other potential conflict of interest relevant to this article was reported.

REFERENCES

- Schwarz R, Graefen M, Krüll A. Therapy of treatment failure after curative treatment of prostate cancer. *EAU-EBU Update Series* 4. 2006;4:228–240.
- Ménard C, Iupati D, Publicover J, et al. MR-guided prostate biopsy for planning of focal salvage after radiation therapy. *Radiology*. 2015;274:181–191.
- Cochet A, Kanoun S, Humbert O, et al. Multimodality MRI and PET for restaging prostate cancer after biochemical failure of the treatment [in French]. *Cancer Radiother.* 2014;18:509–516.
- Bauman G, Belhocine T, Kovacs M, Ward A, Beheshti M, Rachinsky I. ¹⁸Ffluorocholine for prostate cancer imaging: a systematic review of the literature. *Prostate Cancer Prostatic Dis.* 2012;15:45–55.
- Fuccio C, Rubello D, Castellucci P, Marzola MC, Fanti S. Choline PET/CT for prostate cancer: main clinical applications. *Eur J Radiol.* 2011;80:e50–e56.
- Beheshti M, Haim S, Zakavi R, et al. Impact of ¹⁸F-choline PET/CT in prostate cancer patients with biochemical recurrence: influence of androgen deprivation therapy and correlation with PSA kinetics. J Nucl Med. 2013;54:833–840.
- Castellucci P, Fanti S. Prostate cancer: identifying sites of recurrence with choline-PET-CT imaging. *Nat Rev Urol.* 2015;12:134–135.
- Mamede M, Ceci F, Castellucci P, et al. The role of ¹¹C-choline PET imaging in the early detection of recurrence in surgically treated prostate cancer patients with very low PSA level <0.5 ng/mL. *Clin Nucl Med.* 2013;38:e342–e345.
- Afshar-Oromieh A, Avtzi E, Giesel FL, et al. The diagnostic value of PET/CT imaging with the ⁶⁸Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. *Eur J Nucl Med Mol Imaging*, 2015;42:197–209.
- Afshar-Oromieh A, Haberkorn U, Eder M, Eisenhut M, Zechmann CM. [⁶⁸Ga] gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with ¹⁸F-FECH. *Eur J Nucl Med Mol Imaging*. 2012;39:1085– 1086.
- Afshar-Oromieh A, Zechmann CM, Malcher A, et al. Comparison of PET imaging with a ⁶⁸Ga-labelled PSMA ligand and ¹⁸F-choline-based PET/CT for the

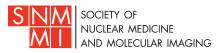
diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2014;41: 11–20.

- Ross JS, Sheehan CE, Fisher HA, et al. Correlation of primary tumor prostatespecific membrane antigen expression with disease recurrence in prostate cancer. *Clin Cancer Res.* 2003;9:6357–6362.
- Rajasekaran AK. Is prostate-specific membrane antigen a multifunctional protein? Am J Physiol Cell Physiol. 2005;288:C975–C981.
- Heidenreich A, Bastian PJ, Bellmunt J, et al. EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. *Eur Urol.* 2014;65:467–479.
- Eiber M, Maurer T, Souvatzoglou M, et al. Evaluation of hybrid ⁶⁸Ga-PSMAligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med. 2015;56:668–674.
- Ceci F, Herrmann K, Castellucci P, et al. Impact of ¹¹C-choline PET/CT on clinical decision making in recurrent prostate cancer: results from a retrospective two-centre trial. *Eur J Nucl Med Mol Imaging*, 2014;41:2222–2231.
- Picchio M, Briganti A, Fanti S, Heidenreich A, Krause BJ, Messa C. The role of choline positron emission tomography/computed tomography in the management of patients with prostate-specific antigen progression after radical treatment of prostate cancer. *Eur Urol.* 2011;59:51–60.
- Mottet N, Bellmunt J, Bolla M, et al. Reply to Stefano Fanti, Bernd Krause, Wolfgang Weber, et al's letter to the editor re: Nicolas Mottet, Joaquim Bellmunt, Michel Bolla, et al. EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer [reply]. *Eur Urol.* 2011;60:e39–e41.
- Swanson GP, Hussey MA, Tangen CM, et al. Predominant treatment failure in postprostatectomy patients is local: analysis of patterns of treatment failure in SWOG 8794. J Clin Oncol. 2007;25:2225–2229.
- Stephenson AJ, Scardino PT, Kattan MW, et al. Predicting the outcome of salvage radiation therapy for recurrent prostate cancer after radical prostatectomy. J Clin Oncol. 2007;25:2035–2041.
- Giovacchini G, Picchio M, Scattoni V, et al. PSA doubling time for prediction of [¹¹C]choline PET/CT findings in prostate cancer patients with biochemical failure after radical prostatectomy. *Eur J Nucl Med Mol Imaging*. 2010;37:1106–1116.
- Ceci F, Uprimny C, Nilica B, et al. ⁶⁸Ga-PSMA PET/CT for restaging recurrent prostate cancer: which factors are associated with PET/CT detection rate? *Eur J Nucl Med Mol Imaging*. May 15, 201 [Epub ahead of print].
- Haberkorn U, Afshar-Oromieh A, Giesel F, et al. PSMA ligands for diagnosis and therapy of prostate cancer [abstract]. Ann Oncol. 2015;26(suppl 2):ii33.

JNM The Journal of NUCLEAR MEDICINE

Prospective Comparison of ¹⁸F-Fluoromethylcholine Versus ⁶⁸Ga-PSMA PET/CT in Prostate Cancer Patients Who Have Rising PSA After Curative Treatment and Are Being Considered for Targeted Therapy

Joshua J. Morigi, Phillip D. Stricker, Pim J. van Leeuwen, Reuben Tang, Bao Ho, Quoc Nguyen, George Hruby, Gerald Fogarty, Raj Jagavkar, Andrew Kneebone, Adam Hickey, Stefano Fanti, Lisa Tarlinton and Louise Emmett


J Nucl Med. 2015;56:1185-1190. Published online: June 25, 2015. Doi: 10.2967/jnumed.115.160382

This article and updated information are available at: http://jnm.snmjournals.org/content/56/8/1185

Information about reproducing figures, tables, or other portions of this article can be found online at: http://jnm.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNM can be found at: http://jnm.snmjournals.org/site/subscriptions/online.xhtml

The Journal of Nuclear Medicine is published monthly. SNMMI | Society of Nuclear Medicine and Molecular Imaging 1850 Samuel Morse Drive, Reston, VA 20190. (Print ISSN: 0161-5505, Online ISSN: 2159-662X)

