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are limited. Genes involved

in DNA repair and cell cycle
control were investigated in
independent microarray
expression datasets totaling
>1000 patients with early-
stage breast cancer. Expres-
sion of RAD54L, TOP2A,
POLQ, RAG1, and SKP2
significantly correlated with
local recurrence, survival, or
both (multivariate analyses,
all P<.01). RAD54L, SKP2,
and PLK2 may be addition-
ally predictive of response to
radiation therapy in vivo.
These could select patients
for treatment escalation and
TOP2A/SKP2 targeted
therapies.
purpose of this study was to investigate standard clinicopathologic markers of local
recurrence in a contemporary series and to establish whether putative target genes
of microRNAs involved in DNA repair and cell cycle control could better predict ra-
diation therapy response in vivo.
Methods and Materials: With institutional ethics board approval, local recurrence was
measured in a contemporary, prospectively collected series of 458 patients treated with
radiation therapy after breast-conserving surgery. Additionally, independent publicly
available mRNA/microRNA microarray expression datasets totaling >1000 early-
stage breast cancer patients, treated with adjuvant radiation therapy, with >10 years
of follow-up, were analyzed. The expression of putative microRNA target bio-
markersdTOP2A, POLQ, RAD54L, SKP2, PLK2, and RAG1dwere correlated with
standard clinicopathologic variables using 2-sided nonparametric tests, and to local/
distant relapse and survival using Kaplan-Meier and Cox regression analysis.
Results: We found a low rate of isolated local recurrence (1.95%) in our modern se-
ries, and that few clinicopathologic variables (such as lymphovascular invasion) were
significantly predictive. In multiple independent datasets (n>1000), however, high
expression of RAD54L, TOP2A, POLQ, and SKP2 significantly correlated with local
recurrence, survival, or both in univariate and multivariate analyses (P<.001). Low
RAG1 expression significantly correlated with local recurrence (multivariate,
PZ.008). Additionally, RAD54L, SKP2, and PLK2 may be predictive, being prog-
nostic in radiation therapyetreated patients but not in untreated matched control indi-
viduals (nZ107; P<.05).
Conclusions: Biomarkers of DNA repair and cell cycle control can identify patients at
high risk of treatment failure in those receiving radiation therapy for early breast can-
cer in independent cohorts. These should be further investigated prospectively, espe-
cially TOP2A and SKP2, for which targeted therapies are available. � 2015
Elsevier Inc. All rights reserved.
Introduction

Radiation therapy after breast-conserving surgery (BCS)
reduces local and distant recurrence, with metaanalysis
showing reduction in the absolute 10-year risk of any
recurrence by 15.7% and the 15-year risk of breast cancer
death by 3.8% (1). However, local recurrence (LR) and
distant failure remain significant clinical problems, incom-
pletely predicted by conventional clinicopathologic markers
such as patient age, grade, and lymphovascular invasion.

Biomarkers that predict recurrence after radiation ther-
apy for breast cancer are limited. Molecular subtype ap-
pears promising (2, 3), but Ki67 expression has shown
contradictory results (4, 5). Scores based on gene expres-
sion profiling have been difficult to validate across multiple
independent datasets (6, 7). Expression patterns of micro-
RNAs (miRNAs, short noncoding RNAs that downregulate
their target genes (8) through posttranscriptional regulation)
can characterize cancer phenotypes (9) and are prognostic
markers (10-12). High expression of miR-21 (13) and miR-
155 (14) have been associated with radioresistance in breast
cancer, with the reverse for miR-302 (15), miR-200c (16),
and miR-31 (17). The addition of putative target genes can
improve the performance of miRNAs as biomarkers with an
integrated miRNAemRNA global profiling approach
identifying signatures independently associated with
prognosis in breast cancer (12, 18). However, those miR-
NAs and miRNA targets were investigated in heteroge-
neous cohorts of patients treated with a mixture of radiation
therapy performed after BCS or mastectomy (patient
groups with clinically different risk profiles) and treated
with and without chemotherapy.

Previous work carried out by our group had identified
miR-139-5p conferring radiosensitivity, and miR-1274a
radioresistance, along with key target genes, in breast
cancer cells in vitro (19). Several of their putative target
genes have roles in response to DNA damage: RAD54-like
(Saccharomyces cerevisiae) (RAD54L), DNA polymerase
theta (POLQ), DNA topoisomerase 2-a (TOP2A), recom-
bination activating gene 1 (RAG1), polo-like kinase 2
(PLK2), and cell cycle control: S-phase kinase-associated
protein 2 (SKP2). We therefore hypothesized that these
genes would be candidate biomarkers of local and distant
recurrence after radiation therapy in vivo. To maximize
clinical utility, we focused on the group of patients who
would be assessed as being at relatively low risk by con-
ventional clinicopathologic markers and treated with
adjuvant radiation therapy but not chemotherapy. Early
identification of patients within this group with radio-
resistant tumors would enable escalation of treatment.

In this study, we examined the performance of routine
clinicopathologic variables in a series of 458 patients
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treated according to modern guidelines. We then built a
cohort of >1000 patients with early breast cancer from 3
independent series who were treated with adjuvant radia-
tion therapy (with hormonal therapy as indicated) but no
chemotherapy. We interrogated the prognostic utility of
putative target genes for local and distant relapse (by uni-
variate and multivariate analysis) and their correlation with
clinicopathologic variables. We then investigated the pre-
dictive value of these biomarkers in a series of patients
from a randomized controlled trial of adjuvant radiation
therapy after BCS (6).

Methods and Materials

Patient details: Sydney Series

Patients with early primary breast cancer treated between
1995 and 2013 were prospectively recruited from Royal
Prince Alfred Hospital, Sydney Australia. The subset of
these patients treated with BCS followed by radiation
therapy was analyzed for isolated LR in the ipsilateral
breast (same pathology as primary). The patient charac-
teristics are shown in Table 1.

Public database search and patient details for
published series

We searched publicly available datasets of patients with
early primary breast cancer for whom microarray data
(mRNA with or without miRNA), clinicopathologic vari-
ables, and at least 10 years of follow-up were available,
selecting the subsets of patients who had BCS followed by
adjuvant radiation therapy (with hormonal therapy as
indicated) but no chemotherapy (Fig. 1). Large subsets of 3
retrospective series, referred to here as Oxford (10, 12),
Metabric (20, 21), and NKI (22, 23), were suitable for in-
clusion (Tables E1A-C; available at www.redjournal.org).

Two case-control series were also analyzed (Tables E1D
and E; available at www.redjournal.org). NKIþ (7) con-
sisted of patients from the NKI series with the addition of
an independent validation series (119 of 343 experienced
LR). The other, here Lund (6), comprised patients, mostly
from a randomized clinical trial (24), who experienced
local relapse with and without adjuvant radiation therapy
after BCS, with case-matched control individuals.
Normalized gene expression profiling as publicly deposited
was used for analysis. The details of RNA extraction,
expression profiling, data extraction, and quality control
may be found in Supplementary Methods and Table E2
(available at www.redjournal.org).

Ethics

Written informed consent from each study participant and
approval (in accordance with the Helsinki Declaration
of 1975, revised 2000) was obtained from the local
Institutional Research Ethics Board for the Sydney series
and as cited in the individual references for other series.
Access to Metabric data was granted through the Data
Access Committee of the European Genome-Phenome
Archive, and other datasets (NKI, NKIþ, and Lund) were
downloaded anonymized from the GEO repository (http://
www.ncbi.nlm.nih.gov/gds).

Statistical analysis

All statistical analyses were performed with IBM SPSS
Statistics version 22. The results were analyzed according
to ReMARK recommendations for studies on tumor
markers (25). Clinicopathologic correlations were per-
formed with Student t test, analysis of variance, or
Spearman rank-order correlation. Endpoints were defined
by the STEEP criteria (26) for Institution X and as pub-
lished for the other datasets. Follow-up was capped once
<10 patients were at risk. For univariate Kaplan-Meier
analysis, median expression of gene was binary cutoff;
differences between subgroups were compared with the
log-rank test. For univariate and multivariate Cox regres-
sion analysis, gene expression (continuous variable) was
ranked and normalized between 0 and 1. P<.05 was
considered statistically significant, and all tests were 2-
sided. Further details of the analysis are given in
Supplementary Methods (available at www.redjournal.org).

Results

Isolated LR was rare (nZ9, 1.95%) in the prospectively
collected series of 458 patients treated with radiation
therapy, hormone therapy, and chemotherapy as indicated
by contemporary guidelines (Table 1) (Fig. E1; available at
www.redjournal.org), similar to other contemporary series
(27, 28). With the proviso of very small numbers and short
follow-up times, few clinicopathologic variables (such as
lymphovascular invasion) previously associated with risk
were significantly different between those with and without
LR. Thus, novel biomarkers were required to identify these
relatively uncommon patients with biologically high-risk
disease despite lower-risk pathologic variables.

We assembled a cohort of >1000 patients with early
breast cancer from 3 independent retrospective series of
early primary breast cancer, with long-term follow-up,
expression microarrays, treated without chemotherapy:
Oxford, Metabric, and NKI. We also interrogated 2 case-
control series: NKIþ(enlarged version of NKI selected for
LR) and Lund (patients from an adjuvant radiation therapy
randomized controlled trial). These series are summarized
in Figure 1, and further details are given in the Methods
section and in Table E1 (available at www.redjournal.org).

We first considered the univariate association of TOP2A,
POLQ, RAD54L, SKP2, PLK2, and RAG1 with local and
distant recurrence, because radiation therapy translates into
a survival benefit. Local recurrence-free survival (LRFS)
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Table 1 Isolated local recurrence after breast-conserving surgery for early breast cancer is poorly predicted by conventional clini-
copathologic markers in patients with “modern” treatment

Clinicopathologic
characteristic

Local recurrence No local recurrence

nZ9 nZ449

Median Range Median Range

Age at diagnosis (y) 56 39-84 54 27-86
Size of primary tumor (mm) 20 3-30 20 3-120
Follow-up time (y) 7.7 3.1-11.5 4.1 0.1-17.1

Number % Number %

Grade
Low 1 11.1 79 17.2
Intermediate 2 22.2 192 41.7
High 6 66.7 187 40.7
Unknown 0 0 2 0.4

LVI
Positive 2 22.2 103 22.4
Negative 7 77.8 321 69.8
Unknown 0 0 25 5.4

Nodal status
Negative 5 55.6 242 52.6
Positive 4 44.4 174 37.8
Unknown 0 0 33 7.2

Subtype (by IHC)
Hormone receptor positive 4 44.4 330 71.7
HER2 positive 2 22.2 67 14.6
Triple negative 3 33.3 49 10.7
Unknown 0 0 14 3.0

Stage
IA 3 33.3 149 32.4
IIA 3 33.3 144 31.3
IIB 2 22.2 79 17.2
IIIA 0 0 34 7.4
IIIC 1 11.1 8 1.7

Characteristic
Unstageable 0 0 35 7.6

Chemotherapy
Yes 7 87.5 311 22.5
No 2 25.0 137 77.5

Hormone therapy
Yes 5 62.5 349 76.0
No 4 50.0 100 21.8

Metastasis
Yes 2 25.0 37 8.1
No 7 87.5 412 89.8

Death
All cause 1 11.1 29 6.3
Alive at last review 8 88.9 420 91.5

Abbreviations: IHC Z immunohistochemistry; LVI Z lymphovascular invasion.

Unable to analyze patients treated without chemotherapy (nZ138) as only 2 loca recurrences in this subgroup.
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was available for the Oxford and NKIþ series, and
recurrence-free survival (RFS) was available for the Oxford
series, distant recurrence-free survival (DRFS) for Oxford
and NKI, disease-specific survival (DSS) for Oxford and
Metabric, and overall survival (OS) for all 3 series.

High expression of RAD54L and TOP2A (putative miR-
139-5p targets) were associated with an increased risk of LR
inNKIþ (Fig. 2). Thiswas not significant in theOxford series,
perhaps because of fewer events. In Metabric, Oxford, and
NKI, high expression of RAD54L, TOP2A, and POLQ was
associated with poorer RFS, DRFS, DSS, and OS (Fig. 2A-C)
(with trends for RAD54L, Oxford, OS, and TOP2A, NKI,
DRFS). The 3 series were also combined together (Total),
and all biomarkers were significantly associated with OS.



• Retrospective series of 1169 pts
  with early primary BrCa from UK
  and Canada

‘Metabric’ ‘Oxford’ ‘Lund’

‘NKI’ ‘NKI +’

• Retrospective series of 134
  consecutive pts with early
  primary BrCa from UK

• Case-control series of 107 pts
  with T1N0 BrCa
• All treated with BCT +/- RTx
• 2/3 of pts from RCT of RTx vs no
  RTx for LN-ve early breast cancer
• No CTx (n = 104) subgroup used
  for analysis of outcome

• Low hormone therapy use
  (<10%)

• All treated with BCT followed
  by adjuvant RTx
• No CTx (n = 102) subgroup used
  for analysis of outcome (LR,
  RFS, DRFS, DSS, OS)

• Retrospective series of 125 
  consecutive pts with early
  primary BrCa from NKI

• Case-control series of pts with
  and without local recurrence
  (n=343)
• 148 from NKI series
• 195 pts from Institut Curie, Paris
• No CTx (n = 209) subgroup used
  for analysis of outcome (LR)

• Low hormone therapy use
  (<5%)

• All treated with BCT followed by
  adjuvant RTx
• No CTx (n = 78) subgroup used
  for analysis of outcome (RFS,
  DRFS, OS)
• Low hormone therapy use
  (<10%)

RETROSPECTIVE SERIES CASE-CONTROL SERIES

• All RTx-treated pts included in
  analysis as surgery details not
  publicly available
• No CTx (n = 835) subgroup used
  for analysis of outcome (DSS, 
  OS)

Fig. 1. Details of patient series used in analysis. Subsets were selected from 3 retrospective series and 2 case-control series
of patients with early breast cancer. Patients selected had at least 10 years of follow-up, adjuvant radiation therapy (with or
without hormonal therapy), but no chemotherapy. There was overlap between the NKI and NKIþ series. Abbreviations:
þ/� Z with or or without; BCT Z breast conserving surgery; BrCa Z breast cancer; CTx Z chemotherapy;
DRFS Z distant recurrence-free survival; DSS Z disease-specific survival; LN-ve Z lymph node negative; LR Z local
recurrence; OS Z overall survival; pts Z patients; RFS Z recurrence-free survival; RTx Z radiation therapy; UK Z United
Kingdom.

Gee et al. International Journal of Radiation Oncology � Biology � Physics1108
We next investigated the relationship of SKP2, RAG1,
and PLK2 with local and distant recurrence. SKP2 was not
associated with LR, but high levels were strongly associ-
ated with outcome in both Metabric and NKI series, and
with OS in the Total series (Fig. 3A). Lower expression of
RAG1 was associated with increased risk of LR in the
Oxford series (Fig. 3B) but had no association with other
outcomes. PLK2 was more complex. Although it was
prognostic in NKI (Fig. 3C), it was prognostic only in the
subset of the Oxford series that was estrogen receptor
positive (ERþve, Fig. 3D), and in the Luminal A (ERþve)
subset of Metabric series (log-rank c2 4.987, PZ.026).
Owing to insufficient numbers, we did not stratify the series
by subtype (>60% were Luminal A and B, as might be
expected from a low-risk cohort).

To investigate whether these biomarkers were also pre-
dictive of response to radiation therapy, we turned to a case-
control series, Lund, with patients selected from a
randomized controlled trial of adjuvant radiation therapy
after BCS. Patients with LR had been matched to those
without LR on clinicopathologic variables including age,
tumor size, and grade. Fewer than 10% of these patients
were treated with hormonal therapy despite the majority
being ER þve. A probeset for RAG1 was not present on
this array.

Elevated levels of TOP2A were associated with
LR (Fig. 4A and B) and DSS (Fig. E2; available at
www.redjournal.org) whether or not patients received
adjuvant radiation therapy. Interestingly, however, elevated
levels of RAD54L and SKP2 were significantly associated
with LR in the radiation therapyetreated group (Fig. 4C-F)
but not in the group without radiation therapy. Similarly,
RAD54L and PLK2 were prognostic for DSS only in the
radiation therapyetreated group (Figs. E2C-F, available at
www.redjournal.org). Notably, although PLK2 was not
statistically significantly associated with LR alone, all pa-
tients who died of disease had LR first. A test for interaction
between RAD54L, SKP2, or PLK2 and radiation therapy
was not significant. Taken together, this suggested these
biomarkers were predictive of response to radiation therapy.

Many of these genes were associated with clinicopath-
ologic variables that have an impact on outcome. Lower

http://www.redjournal.org
http://www.redjournal.org
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levels of RAD54L, TOP2A, and POLQ were significantly
associated in all 3 series with lower grade, presence of ER
expression, and Luminal A subtype, and with age, nodal
status, and stage but less consistently across the series
(Fig. E3 and Table E3A; available at www.redjournal.org).
Lower levels of SKP2 were also significantly associated
with markers of improved prognosis, whereas lower levels
of PLK2 were significantly associated with markers of
adverse prognosis (Fig. E4 and Table E3B; available at
www.redjournal.org). RAG1 had few significant associa-
tions (Table E3B; available at www.redjournal.org).

We therefore performed multivariate analysis using the
genes significant on univariate analysis as continuous
ranked variables. The LR multivariate model additionally
contained patient age, tumor grade, and molecular subtype
(29) (associated with LR on univariate analysis). The sur-
vival multivariate model also included ER status, stage,
grade, menopausal status, and age (and the individual series
itself as a variable if relevant). In the Oxford series, RAG1
remained significantly associated with LR (Fig. 5A);
however, none of the biomarkers were independently
associated with LR in NKIþ. By contrast, elevated
expression of RAD54L, TOP2A, POLQ, and SKP2 were
independently associated with adverse OS in the combined
series (Total: Fig. 5B), DSS in Metabric (Fig. 5C),
and DRFS in the Oxford series (Fig. E5; available at
www.redjournal.org).
Discussion

Previously, our group performed miRNA microarray
profiling on the primary tumors of patients enrolled into a
randomized radiation therapy clinical trial (30): 10 who
experienced local relapse after BCS and radiation therapy
and 10 matched patients who did not. Several differentially

http://www.redjournal.org
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expressed miRNAs were identified, of which miR-139-5p
and miR-1274a were confirmed functionally in vitro, and
miR-139-5p in vivo (19, 31). Putative targets of these
miRNAs were predicted using algorithms such as Targets-
can and Pictar, and correlations were examined between
miRNA and target genes in vivo. Genes with functions
important in response to DNA damage (32-34) and cell
cycle control (35, 36) several of which have inhibitors
either in use or in late-stage development (37-39), were
selected for investigation as potential radiation therapy
biomarkers (further details in Supplementary Methods;
available at www.redjournal.org). (37-39).

To our knowledge, this is the first study investigating
putative miRNA target genes as biomarkers of radiation
therapy response without including patients treated with
chemotherapy. High levels of RAD54L, TOP2A, POLQ,
and SKP2 were robustly associated with increased risk of
local and distant recurrence across >1000 radiation ther-
apyetreated patients, and RAD54L, SKP2, and PLK2 were
also predictive of radio responsiveness. Our hypothesis-
driven approach of short-listing targets of radiation ther-
apyeassociated miRNAs was reproducible across multiple
series, despite the heterogeneity of patients and treatments
between cohorts, highlighting these biomarkers’ clinical
utility.

These genes were shortlisted because current biological
understanding suggests possible roles in intrinsic tumor
radiosensitivity. RAD54L is a Swi2/Snf2-related translo-
case with a role in homologous recombination through its
association with RAD51 (34, 40, 41). It has been associated
with prognosis in several non-breast cancers (42, 43) but
not with radiation therapy sensitivity previously in vivo.
POLQ can induce radioresistance in vitro (44), and
although its overexpression has been shown to confer a

http://www.redjournal.org
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Fig. 4. RAD54L and SKP2 are predictive of local recurrence after radiation therapy and breast conserving therapy (BCT).
Kaplan-Meier survival curves for local recurrence-free survival in 107 patients from the Lund case-control series of patients
treated with or without adjuvant radiation therapy after BCT. TOP2A is associated with prognosis in both groups (A, B) but
RAD54L (C, D) and SKP2 (E, F) are associated only in the radiation therapyetreated group. Series stratified by median
expression of each biomarker, log-rank c2 and P values indicated. Hazard ratio and 95% confidence interval for each panel:
A: 0.438, 0.1959 to 0.964; B, 0.22, 0.09 to 0.73; C, 1.1, 0.48 to 2.5; D, 0.23; 0.091 to 0.75; E, 0.98, 0.42 to 2.26; F, 0.28, 0.11
to 0.93.

Volume 93 � Number 5 � 2015 Breast cancer radioresistance biomarkers 1111



0.001

RAD54L

Bi
om

ar
ke

r 
an

d 
se

ri
es

Bi
om

ar
ke

r 
- 

To
ta

l
Bi

om
ar

ke
r 

- 
M

et
ab

ri
c

Ox
fo

rd
NK

I 
+

0.116

P valueA

B

C

0.171

0.506

0.347

0.298

0.960

0.431

0.008

0.003

P value

<0.001

<0.001

<0.001

0.344

0.826

<0.001

P value

<0.001

<0.001

<0.001

0.272

0.539

TOP2A

POLQ

RAG1

POLQ

RAG1

RAD54L

TOP2A

RAD54L

TOP2A

POLQ

SKP2

PLK2

RAG1

RAD54L

TOP2A

POLQ

SKP2

PLK2

RAG1

0.01 0.1 1

Local recurrence (HR and 95% C.I.)

Overall survival (HR and 95% C.I.)

Disease-specific survival (HR and 95% C.I.)

10

0.1 1 10

0.1 1 10

100

Fig. 5. RAD54L, TOP2A, POLQ, SKP2, and RAG1 are
significantly associated with outcome on multivariate
analysis. Forest plots of hazard ratios (HR, symbols) and
95% confidence intervals (C.I., bars) for multivariate
analysis of outcome. (A) Local recurrence-free survival in
NKIþ and Oxford series. (B) Overall survival in the 3 se-
ries combined together. (C) Disease-specific survival in the
Metabric series. The expression of each biomarker was
entered in a Cox proportional hazards model, along with
clinicopathologic variables as indicated in text. P values on
right-hand side of graph.
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poor prognosis in breast cancer patients (45), our study
confirmed this in a larger cohort of patients without
chemotherapy. TOP2A is a well-described marker of
proliferation (46) but has not previously been shown to be a
marker of prognosis in connection with radiation therapy.
SKP2 is a protooncogene required for the ubiquitin-
mediated degradation of the CDK inhibitor p27 (47) and
its overexpression is associated with radiation resistance
in vitro and in vivo in esophageal cancer (48), likely
through its role in G1-S checkpoint regulation.

RAG1 and PLK2 were more complex. Although RAG1
was a very strong marker of LR in the Oxford series, this
was not the case in the NKIþ series. In both series, the
majority of tumors were ER positive, but whereas most
received hormonal therapy in the Oxford series, the reverse
was true in the NKIþ. Second, the overall range of
expression of RAG1 was lower in the NKIþ than in the
Oxford series (Fig. E6; available online at www.redjournal
.org). Interestingly, although the original authors developed
a gene classifier for LR in this series, they found that only
age remained significant on multivariate analysis (49).
PLK2 appeared to have a stronger association with prog-
nosis in ER-positive tumors, and its role in cell cycle
control and apoptosis (36) should be further explored in this
subtype.

The Lund series, which is unique to our knowledge
because radiation therapy after BCS is now standard of
care, suggests that RAD54L, SKP2, and PLK2 may be
predictive, as well as prognostic, biomarkers. There are
several provisos, however: the series is small, and radiation
therapy itself was not statistically significantly associated
with reduced LR (hazard ratio 0.58, PZ.1, confidence in-
terval 0.3-1.1). Few patients were treated with hormonal
therapy, which decreases any confounding effect but is not
modern practice. Thus, although these results are hypoth-
esis generating, further prospective work is required,
especially focusing on patients who derive significant
absolute benefit from radiation therapy.

Because of the long follow-up times required, in the
time period (1984 to 1997) during which these patients
were treated, human epidermal growth factor receptor 2
(HER2) status was not measured in the NKI, Lund, or a
subset of the Oxford series (34%). No patients were
treated with trastuzumab. HER2 overexpression is known
to cause radioresistance, and trastuzumab is a radio-
sensitizer in breast cancer cells (50). However, this is
unlikely to have a significant impact on our results: HER2-
positive (immunohistochemistry) cases were a minority of
the Metabric (5.3%), Oxford (14%), and NKIþ (11%)
series, and HER2 molecular subtype was a minority of the
cases in all series (2% to 13%), most likely because those
patients who had HER2-positive tumors had other high-
risk features that caused them to be excluded from our
study. Furthermore, with the limitation of the small
numbers, HER2 did not have a significant interaction with
the biomarkers (univariate or multivariate modeling; data
not shown).

Given that overexpression of RAD54L, TOP2A, POLQ,
and SKP2 is associated with adverse prognosis, specific
inhibitors could be investigated as radiosensitizers. Eto-
poside and doxorubicin are inhibitors of TOP2A that are

http://www.redjournal.org
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currently used for breast cancer treatment (albeit sequen-
tially). Recently a SKP2 inhibitor was shown to be a
growth inhibitor in xenograft models, although the rela-
tionship with radiation was not examined (38). POLQ
inhibitors are being developed. Thus, these biomarkers
could select patients for whom traditional clinicopatho-
logic markers do not suggest a high risk of relapse, but the
addition of targeted radiosensitizers would make radiation
more effective.

In summary, we found that expression of RAD54L,
TOP2A, POLQ, SKP2, and RAG1 were associated with
risk of local failure, distant failure, or both, in large inde-
pendent cohorts of patients with early breast cancer. These
biomarkers should be investigated prospectively, particu-
larly for the selection of specific inhibitors.
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