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ABSTRACT
Protein phosphorylation regulates a wide variety of cellular processes. Thus, we hypothesize that single-nucleotide polymorphisms
(SNPs) that may modulate protein phosphorylation could affect osteoporosis risk. Based on a previous conventional genome-wide
association (GWA) study, we conducted a three-stage meta-analysis targeting phosphorylation-related SNPs (phosSNPs) for femoral
neck (FN)-bone mineral density (BMD), total hip (HIP)-BMD, and lumbar spine (LS)-BMD phenotypes. In stage 1, 9593 phosSNPs were
meta-analyzed in 11,140 individuals of various ancestries. Genome-wide significance (GWS) and suggestive significance were defined
by a¼ 5.21� 10–6 (0.05/9593) and 1.00� 10–4, respectively. In stage 2, nine stage 1–discovered phosSNPs (based on a¼ 1.00� 10–4)
were in silico meta-analyzed in Dutch, Korean, and Australian cohorts. In stage 3, four phosSNPs that replicated in stage 2 (based on
a¼ 5.56� 10–3, 0.05/9) were de novo genotyped in two independent cohorts. IDUA rs3755955 and rs6831280, andWNT16 rs2707466
were associated with BMD phenotypes in each respective stage, and in three stages combined, achieving GWS for both
FN-BMD (p¼ 8.36� 10–10, p¼ 5.26� 10–10, and p ¼ 3.01� 10–10, respectively) and HIP-BMD (p¼ 3.26� 10–6, p¼ 1.97� 10–6, and
p¼ 1.63� 10–12, respectively). Although in vitro studies demonstrated no differences in expressions of wild-type andmutant forms of
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IDUA and WNT16B proteins, in silico analyses predicts that WNT16 rs2707466 directly abolishes a phosphorylation site, which could
cause a deleterious effect onWNT16 protein, and that IDUA phosSNPs rs3755955 and rs6831280 could exert indirect effects on nearby
phosphorylation sites. Further studieswill be required todetermine thedetailed andspecificmolecular effects of theseBMD-associated
non-synonymous variants. © 2015 American Society for Bone and Mineral Research.
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Introduction

Osteoporosis, a complex disease characterized by reduced
bone mass, results in microarchitectural deterioration of

bone tissue, and increased bone fragility and susceptibility to
fracture.(1) It has been estimated that the prevalence of
osteoporosis in the United States will increase to >14 million
people in 2020,(2) and by 2025 it is projected that there will be
>3 million fractures/year in the United States, costing $25.3
billion annually.(3) A diagnosis of osteoporosis for both males
and females is attained when bone mineral density (BMD) is
2.5 SD or more below the young adult mean.(4) BMD, a highly
heritable polygenic trait, is the best predictor for skeletal
fragility.(5)

Protein phosphorylation represents the most widespread
posttranslational modification (PTM) that plays a critical role in
essential cellular processes; eg, metabolism, cell signaling,
differentiation, and membrane transportation.(6) Large-scale
phosphoproteomics studies suggest that more than one-half of
all eukaryotic proteins are phosphorylated.(7) The most common
phosphorylation sites in eukaryotes are serine (S), threonine (T),
and tyrosine (Y) residues,(8) which are catalyzed by S/T-specific,
Y-specific, and dual-specificity protein kinases.(9) Single-nucleo-
tide polymorphisms (SNPs) constitute almost 90% of genetic
variations in the human genome.(10) Non-synonymous SNPs
(nsSNPs), defined as SNPs resulting in amino acid changes that
include either missense or nonsense mutations,(11) represent
60% of known disease-causing mutations.(12) Of the nsSNPs,
those that create/alter/abolish phosphorylation sites, called
phosphorylation-related SNPs (phosSNPs), have been recog-
nized as functional variants for a spectrum of human diseases;
eg, lung cancer (CSF1R rs10079250),(13) prostate cancer (TP53
rs1042522),(13,14) long QT syndrome (KCNH2 rs1805123),(15,16)

systemic lupus erythematosus (VEGR2 rs2305948),(17) and
tuberculosis (TLR2 rs5743708).(18,19) Each phosphorylation site
consists of an acceptor residue surrounded by an evolutionarily
conserved motif consisting of seven to 12 amino acid residues
on either flanking region. Based on the hypothesis that a
sequence motif surrounding an acceptor residue represents a
main determinant of protein kinase specificity, phosphorylation
sites can be predicted in silico, and nsSNPs affecting such sites
can be identified. From 91,797 nsSNPs from the National Center
for Biotechnology Information (NCBI)’s dbSNP Build 130, by
applying the Group-based Phosphorylation Scoring (GPS) 2.0
program (a kinase-specific phosphorylation site predictor),(20)

Ren and colleagues(21) identified 64,035 phosSNPs residing in
17,614 humanproteins, whichwere categorized into five distinct
types based on the different effects they exert on phosphoryla-
tion sites: types I, II, III, IV, and V.
Among at least 60 loci identified by >40 previous genome-

wide association (GWA) studies and meta-analyses of these
studies for osteoporosis, theWNT16 locus has been found to be
an important genetic determinant of osteoporosis risk.(22) The
humanWNT16 gene spans�16 kb from initiation to termination

codons, encoding two protein isoforms: WNT16A (40.5 kD)
and WNT16B (40.7 kD).(23) As depicted in Supporting Fig. 1,
these two WNT16 isoforms have different first exons (ie, 1a and
1b, respectively), independently controlled by two alternative
promoters P1 and P2, respectively.(24) Expression of theWNT16A
isoform has been shown to be restricted to the pancreas in
humans, whereas WNT16B is expressed in multiple organs.(24)

Compared to WNT16A, the role of WNT16B as a key regulator of
osteoclastogenesis has been more extensively characterized.(25)

Meta-analyses of GWA studies have significant potentials for
detecting subtle genetic effects.(26) However, because conven-
tional GWA studies often include a large number of variants
of unknown functional effects, the significance threshold
attained by Bonferroni correction becomes overly conservative,
producing a high rate of type II error (ie, b). PhosSNPs are more
likely disruptive to protein function than other protein-coding
missense mutations.(27) However, such potentially causal
missense mutations could be missed by conventional GWA
approaches because of very strict control for type I error (ie, a).
Power to detect disease-causing variants can thus be increased
by focusing exclusively on SNPswith higher prior probabilities of
functional effects, either as in a whole-exome sequencing(28)

approach targeting solely exonic SNPs, or as we apply here,
targeting exclusively potentially functional phosSNPs. However,
such a functional candidate genomic region approach(29) could
be susceptible to a higher rate of false-positive results.(30)

Therefore, to guard against an inflated a, we employed a three-
stage approach, such that those phosSNPs attaining genome-
wide significance (GWS) in stage 1 (ie, GWA discovery) are
required to be replicated in independent cohorts of stages 2 and
3, respectively, based on their corresponding Bonferroni-
corrected a thresholds.

Materials and Methods

A detailed description of study participants, phenotype
measurement and modeling, DNA genotyping, quality control
(QC), genotype imputation, association tests, meta-analysis
methods, and regional association plots of the three-stage
GWA meta-analysis is given in the Supporting Materials and
Methods. At stage 1, seven GWA cohorts were included, and a
suggestive significance threshold ofa¼ 1.00� 10–4 was applied
for phosSNP selection. At stage 2 (in silico replication), three
GWA cohorts were included, and at stage 3 (de novo genotyping
replication), two independent cohorts were included, and at
each stage a Bonferroni-corrected significance threshold was
applied.

PhosSNPs in potential phosphorylation sites

The phosSNP-centric GWA meta-analysis focuses exclusively on
9593 phosSNPs in stage 1 of the conventional GWA meta-
analysis.(31) Details about phosSNP selection are given in the
Supporting Materials and Methods.
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In silico bioinformatics analyses

Computational predictions of phosphorylation sites affected
by phosSNPs

Phosphorylation sites that could be affected by the three
significant phosSNPs—IDUA rs3755955 (R105Q) and rs6831280
(A361T), and WNT16 rs2707466 (WNT16B T263I)—were pre-
dicted by two commonly used online software programs:
NetPhos2.0(32) and NetPhosK1.0.(33) Details about these pro-
grams are given in the Supporting Materials and Methods.

Computational predictions of functional impacts of phosSNPs

Functional effects of the three significant phosSNPs—IDUA
rs3755955 (R105Q) and rs6831280 (A361T), and WNT16
rs2707466 (WNT16B T263I)—were computed using four online
software tools: (1) Mutation Assessor(34); (2) BLOSUM62(35);
(3) PMut(36); and (4) PANTHER.(37) Details about these tools are
given in the Supporting Materials and Methods.

Computational prediction of protein secondary and
tertiary structures

Protein secondary and tertiary structures were predicted by
Protein Homology/analogy Recognition Engine Version 2.0
(Phyre2).(38,39) The Phyre2 server predicts a protein’s secondary
structure based on the amino acid sequence. In brief, this
program converts a protein sequence into a hidden Markov

model (HMM) based on sequence homologs retrieved from
experimentally determined known protein structures using PSI-
Blast.(40) The HMM of the query sequence is then scanned
against a nonredundant library of HMMs of proteins with
experimentally determined structures. The 3D model of the
query sequence is then constructed on the basis of alignments
between the HMM of the query sequence and the HMMs of
known structures. Phyre2 program can generate highly accurate
models at low sequence identities (eg, 15% to 25%).(39)

In vitro protein expression studies

To assess whether mutant (MUT) alleles of respective phosSNPs,
ie, IDUA rs3755955, rs6831280, and WNT16 rs2707466, could
affect protein expression levels in vitro, we designed and
constructed plasmid pcDNA3.1-Myc/His vectors harboring
either wild-type (WT) or MUT allele of each phosSNP and
transfected each of them into Chinese hamster ovary (CHO) cells.
Details about cloning and transfection and Western blot
analyses are given in the Supporting Materials and Methods.

Results

Cohort characteristics at three stages were presented in
Supporting Table 1. A detailed comparison of study designs
of current study with those of two previous conventional GWA
meta-analysis studies(31,41) is shown in Fig. 1. In stage 1, the
current study restricted association tests to exclusively

Fig. 1. Diagrammatic representations of study designs of three-stage GWAmeta-analysis of current study (top panel), Zhang and colleagues(31) (middle
panel), and Estrada and colleagues(41) (bottom panel).
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phosSNPs (�10 K), as opposed to the entire set of genotyped
and imputed SNPs (�5800 K) of a previous conventional
study.(31) As a result, different SNP sets were selected from stage
1 for stage 2 in silico replication (nine phosSNPs for current
study, and none overlapped with 33 SNPs of previous
conventional study(31)). In stage 2, different SNP selection
criteria were employed between the current study and the
previous conventional study.(31) Four stage 2–selected
phosSNPs (ie, IDUA rs3755955 and rs6831280, WNT16
rs2707466, and ESPL1 rs56358776) of the current study were
entirely different from those three stage 2–selected SNPs of the
previous conventional study(31) (ie, SMOC1 rs227425, CLDN14
rs170183, and intergenic SNP rs6827815).

Stage 1 (GWA discovery)

Table 1 presents a comparison of 33 SNPs selected in stage 1 of
the previous conventional study,(31) with those nine phosSNPs
selected in stage 1 of the current study, which include four
phosSNPs (located in three gene regions) attaining phosSNP-
centric GWS (ie, a¼ 0.05/9593¼ 5.21� 10–6)—IBSP rs1054627
for FN-BMD in a female-specific sample, IDUA rs6831280 and
rs3755955 for FN-BMD in a gender-combined (ie, male and
female) sample, andWNT16 rs2707466 for HIP-BMD in a gender-
combined sample—and another five phosSNPs (located in
four gene regions) attaining only suggestive significance (ie,
a¼ 1.00� 10–4)—SRMS rs310655 for FN-BMD in a gender-
combined sample, DNAH8 rs61748601 for HIP-BMD in a gender-
combined sample, ESPL1 rs56358776 and rs1318648 for LS-BMD
in gender-combined and female-specific samples, respectively,
andGPATCH1 rs2287679 for FN-BMD in a female-specific sample.

Stage 2 (in silico replication)

In stage 2, the above nine stage 1–discovered phosSNPs were
subject to replication in three in silico independent cohorts.
A meta-analysis within stage 2 revealed six phosSNPs
at Bonferroni corrected a¼ 5.56� 10–3 (ie, 0.05/9)—WNT16
rs2707466 for FN-BMD in a gender-combined sample, IBSP
rs1054627 for FN-BMD in a gender-combined sample, ESPL1
rs1318648 and rs56358776 for LS-BMD in a gender-combined
sample, and IDUA rs3755955 and rs6831280 for FN-BMD in a
gender-combined sample. Of these, IBSP encodes a well-known
bone matrix protein that is important for bone mineraliza-
tion(42–44) which, consequently, was not further tested in stage 3.
For ESPL1 phosSNPs rs1318648 and rs56358776, neither reached
GWS (ie, 5.21� 10–6� p< 1.00� 10–4) in stage 1 phosSNP-
centric GWA meta-analysis. ESPL1 rs1318648 is a previously
known nsSNP suggestively associatedwith FN-BMD and LS-BMD
phenotypes,(41) whereas ESPL1 rs56358776 is a novel nsSNP that
was not reported in either of two previous conventional
studies,(41,45) which is in high linkage disequilibrium (LD) with
ESPL1 rs1318648 (r2¼ 0.798 in 1000 Genomes [1KG] Pilot 1 CEU
Population by applying the SNP Annotation and Proxy search
[SNAP] tool(46) of the Broad Institute, Cambridge, MA, USA).
Therefore, we selected four stage 2–replicated phosSNPs—IDUA
rs6831280 and rs3755955, WNT16 rs2707466, and potentially
novel phosSNP ESPL1 rs56358776—for stage 3 de novo
genotyping replication.

Stage 3 (de novo genotyping replication)

In stage 3, the four stage 2–selected phosSNPs identified in the
previous paragraph were subject to further replication by de

novo genotyping. Three of these phosSNPs were replicated by
stage 3–specific meta-analysis at Bonferroni corrected a ¼
0.0125 (ie, 0.05/4).WNT16 rs2707466 was consistently replicated
for HIP-BMD, FN-BMD, and LS-BMD phenotypes in a gender-
combined sample. IDUA rs3755955 and rs6831280 were
significantly associated with FN-BMD and HIP-BMD phenotypes
in a gender-combined sample. ESPL1 rs56358776 was not
replicated at this stage (p ¼ 0.79, p ¼ 0.78, and p ¼ 0.32 in a
gender-combined sample for FN-BMD, HIP-BMD, and LS-BMD,
respectively).

Stage 1þ2þ3 meta-analysis

Table 2 presents ethnicity-specific and combined meta-analysis
results aggregating these three stages for stage 1–discovered
(a¼ 1.00� 10–4), stage 2–replicated, and stage 3–replicated
(Bonferroni-corrected a¼ 5.56� 10–3 and 0.0125, respectively)
phosSNPs: IDUA rs6831280 (A361T); IDUA rs3755955 (R105Q);
and WNT16 rs2707466 (WNT16B T263I), respectively. In ethnici-
ty-specific meta-analyses, in whites, all three attained phosSNP-
centric GWS (ie, a¼ 5.21� 10–6) for FN-BMD and only WNT16
rs2707466 attained this threshold for HIP-BMD; and in Asians,
only WNT16 rs2707466 attained phosSNP-centric GWS for HIP-
BMD. The effects of these phosSNPs were consistent between
white and Asian ethnicities. In combined meta-analysis across
three stages, IDUA rs3755955 was significantly associated
with FN-BMD and HIP-BMD phenotypes (p¼ 8.36� 10–10 and
p¼ 3.26� 10–6, respectively). Likewise, IDUA rs6831280 was
significantly associated with FN-BMD and HIP-BMD phenotypes
(p¼ 5.26� 10–10 and p¼ 1.97� 10–6, respectively). Similarly,
WNT16 rs2707466 was significantly associated with FN-BMD and
HIP-BMD phenotypes (p¼ 3.01� 10–10 and p¼ 1.63� 10–12,
respectively). Regional association plots were generated for
these three significant phosSNPs—IDUA rs3755955 and
rs6831280 (Fig. 2), and WNT16 rs2707466 (Fig. 3).

Phosphorylation sites predicted to be affected by IDUA
and WNT16 phosSNPs

Based on predictions by the two in silico bioinformatics tools
NetPhos2.0 and NetPhosK1.0, four phosphorylation sites were
predicted to be affected by these three BMD-associated
phosSNPs (either NetPhos2.0 score >0.5 or NetPhosK1.0 score
>0.5) (Table 3). Detailed information on 96 and 54 predicted
phosphorylation sites for IDUA and WNT16B are presented in
Supporting Tables 2 and 3, respectively. IDUA phosphorylation
sites T98 and S102 were potentially affected by their neighbor-
ing phosSNP IDUA rs3755955 (R105Q), whereas IDUA phosphor-
ylation site T366 was potentially affected by a neighboring
phosSNP IDUA rs6831280 (A361T). WNT16B phosphorylation site
T263 was potentially directly abolished by phosSNP WNT16
rs2707466 (WNT16B T263I). Of them, WNT16B T263 (affected
by WNT16 rs2707466) has been experimentally validated to
be phosphorylated in vivo,(47) whereas IDUA T98 and S102
(potentially affected by IDUA rs3755955) and T366 (potentially
affected by IDUA rs6831280) have yet not been experimentally
confirmed.

Predicted functional impacts of IDUA and WNT16
phosSNPs

As shown in Supporting Table 4, although IDUA rs6831280
(A361T) and rs3755955 (R105Q) were predicted to have no
(Mutation Assessor and BLOSUM62 scores) or low (PMut and
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PANTHER scores) functional impacts, WNT16 rs2707466
(WNT16B T263I) showed the highest Mutation Assessor score
(0.705, nearly reaching a “low impact” threshold 0.80), lowest
BLOSUM62 score of (–1.00, indicative of “evolutionarily
less acceptable”), highest PMut pathogenicity score
(0.3099, indicative of a “moderate pathogenicity”), and lowest
PANTHER subSPEC score (–1.92476, indicative of a deleterious

effect corresponding to a highest deleteriousness probability
pdeleterious¼ 0.25441). Further, evolutionary analyses bymultiple
sequence alignment method revealed that a 27–amino acid
peptide (–14 toþ12) surrounding the T263 phosphorylation site
is conserved across three mammalian species—human, mouse
and rat (Supporting Fig. 1)—supporting a likely functional
significance of this phosSNP. Based on these bioinformatics

Table 2. GWA Meta-Analysis Results of Stage 1þ2þ3 for BMD-Associated PhosSNPs in Ethnicity-Specific and Combined Cohorts

Phenotype

Gene symbol SNP ID (WT/MUT alleles; AA change) PhosSNP type FN-BMD HIP-BMD LS-BMD

White (7 cohorts)
IDUA rs3755955 (G/A; R105Q) Type II (þ) 2.38�10–8 2.34� 10–4 0.0188
IDUA rs6831280 (G/A; A361T) Type III 1.98�10–8 1.83� 10–6 0.0366
WNT16 rs2707466 (C/T; T263I�) Type I (–) 1.13�10–7 4.54� 10–7 0.0109

Asian (3 cohorts)
IDUA rs3755955 (G/A; R105Q) Type II (þ) 0.03 0.0106 0.263
IDUA rs6831280 (G/A; A361T) Type III 0.033 0.0117 0.289
WNT16 rs2707466 (C/T; T263I�) Type I (–) 1.20� 10–3 1.04� 10–6 6.67� 10–3

Total (12 cohorts)
IDUA rs3755955 (G/A; R105Q) Type II (þ) 8.36�10–10 3.26� 10–6 8.50� 10–3

IDUA rs6831280 (G/A; A361T) Type III 5.26�10–10 1.97� 10–6 0.0147
WNT16 rs2707466 (C/T; T263I�) Type I (–) 3.01�10–10 1.63� 10–12 1.17� 10–4

PhosSNPs attaining GWS level (ie, p< 5.21� 10–6) are in bold. Combined refers to male and female. PhosSNP types are defined as follows: Type I (–), an
nsSNP that removes the phosphorylation site; Type II (þ), an nsSNP that creates one or multiple adjacent phosphorylation sites; and Type III, an nsSNP
that induces changes of protein kinase type(s) at adjacent phosphorylation site(s) as defined in Ren and colleagues(21) (2010), which were predicted by
GPS2.0 software.(20)

GWA¼genome-wide association; BMD¼bone mineral density; SNP¼ single-nucleotide polymorphism; phosSNP¼phosphorylation-related SNP;
WT¼wild-type; MUT¼mutant; AA¼ amino acid; FN¼ femoral neck; HIP¼ total hip; LS¼ lumbar spine; GWS¼genome-wide significance;
nsSNP¼non-synonymous SNP.

�The amino acid position at WNT16B protein isoform (SWISS-PROT ID: Q9UBV4-1) is indicated.

Fig. 2. Regional association plots for chromosome 4p16.3 loci IDUA exon 3 phosSNP rs3755955 (R105Q), exon 8 phosSNP rs6831280 (A361T), intergenic
SNP rs6827815, and FGFRL1 30-untranslated region SNP rs4647940 based on RefSeq accession number NG_008103.1 for FN-BMD (most significant
phenotype). (A) IDUA rs6831280 with flanking �100-kb (B) a zoomed-in view of the center region (indicated by the dashed box of A)—IDUA rs6831280
with flanking �40-kb. PhosSNPs are highlighted in bold.
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prediction results, we further assessed the potential impact of
WNT16 rs2707466 (WNT16B T263I) on WNT16B secondary and
tertiary structures.

Predicted secondary and tertiary structures of WT and
MUT alleles for WNT16 phosSNP

The secondary and tertiary structures of protein isoforms
encoded by WT and MUT alleles for WNT16 rs2707466
(WNT16B T263I) predicted by the Phyre2 server are presented
in Supporting Figs. 2 and 3, respectively. With respect to
secondary structures, this phosSNP (ie, T263 residue) is located
in a disordered region (indicated by a tract of “?” symbols) typical
for a phosphorylation site,(48) downstream of a predicted b-

strand (SIQISDK) for either isoform (Supporting Fig. 2) with
potential functional effects (Supporting Table 4). A comparison
of the local 3D structures between WT and MUT isoforms near
the T263 residue clearly shows different spatial patterns
(Supporting Fig. 3, dashed boxes).

Effects of IDUA and WNT16 phosSNPs on protein stability

In CHO cells, Western blot results showed that, at the protein
level, IDUA rs6831280 (A361T) and rs3755955 (R105Q) MUT
alleles were expressed at equivalent levels compared with the
IDUA WT allele (Supporting Figs. 4A and 5A, respectively). The
WNT rs2707466 (WNT16B T263I) MUT allele was also expressed
at equivalent levels compared with the WNT16 WT allele
(Supporting Figs. 4B and 5B, respectively). Overall, the protein
expression of theMUT allele is equivalent to that of theWT allele
for each of these three phosSNPs, suggesting that their
influences of protein phosphorylations could be important,
rather than on expression levels per se.

Discussion

In the human genome, nsSNPs account for 60% of mutations
that cause diseases.(12) However, not all nsSNPs lead to a
functional impact. Therefore, it is essential to select only those
nsSNPs that are most plausible causal variants. Our study is
unique in associating phosSNPs affecting the most common
type of PTM with BMD phenotypes by taking a three-stage
approach to protect against an inflated false-positive rate.
Beyond detecting genetic association, we also performed in
silico and in vitro functional characterizations of identified
significant nsSNPs. At stage 1, four chromosomal loci, ie, 4p16.3
(IBSP), 4q22.1 (IDUA), 7q31.31 (WNT16), and 20q13.33 (GPATCH1),
were detected by both the current and conventional studies,(31)

but were represented by totally different SNPs, and for 4q22.1
and 20q13.33 were represented by different genes. At 7q31.31,
the previous study detected association with intergenic SNP
rs10242100 (with no apparent functional significance) near
WNT16 gene, which is in moderate LD with the WNT16 SNP
rs2707466 detected by our current study (r2¼ 0.462 in 1KG Pilot

Fig. 3. Regional association plot for WNT16 rs2707466 with flanking
�100-kb for HIP-BMD (most significant phenotype), with chromosome
7q31.31 WNT16 exon 2 nsSNP rs2908004 (WNT16B, G82R), intron 3 SNP
rs3801387, exon 4 phosSNP rs2707466 (WNT16B T263I), and intergenic
SNP rs10242100 based on RefSeq accession number NG_029242.1
indicated. The phosSNP is highlighted in bold.

Table 3. In Silico Predicted Phosphorylation Sites of Three PhosSNPs Associated With BMD Phenotypes

Gene
symbol

Predicted phosphorylation site
(represented by PSP[7,7])

PhosSNP ID (WT/MUT
alleles; AA change)

PhosSNP
type

NetPhos2.0 score
(prediction)

NetPhosK1.0 score
(prediction)

IDUA HWLLELVTTRGSTGQ

AA Pos: 98
rs3755955 (G/A; R105Q) Type II (þ) 0.417 (probable) 0.68 (yes)

IDUA ELVTTRGSTGQGLSY

AA Pos: 102
rs3755955 (G/A; R105Q) Type II(þ) 0.987 (yes) 0.51 (yes)

IDUA PFTQRTLTARFQVNN

AA Pos: 366
rs6831280 (G/A; A361T) Type III 0.600 (yes) 0.51 (yes)

WNT16 SIQISDKIKRKMRRR

AA Pos: 263a
rs2707466 (C/T; T263I��) Type I (–) 0.833 (yes) 0.86 (yes)

PhosSNP types are defined as in the footnote of Table 2. The phosphorylation acceptor residue is underlined, and the phosSNP site (mutant allele
shown) is highlighted in bold and italic. Predicted phosphorylation sites for respective phosSNPs have either a NetPhos2.0 score>0.5 or a NetPhosK1.0
score >0.5. GPS2.0 scores were directly extracted from the PhosSNP1.0 database,(21) where these scores were greater than their respective thresholds:
3.26, 2.85, and 2.43 for IDUA protein (SWISS-PROT ID: P35475) positions 98, 102, and 366, respectively; and 4.48 for WNT16B protein (SWISS-PROT ID:
Q9UBV4-1) position 263. For NetPhos2.0 and NetPhosK1.0 scores, “Yes,” “Probable,” and “No” refer to a score >0.5, 0.1–0.5, and <0.1, respectively.
SNP¼ single-nucleotide polymorphism; phosSNP¼ phosphorylation-related SNP; BMD¼ bone mineral density; PSP¼ phosphorylation site peptide;

WT ¼ wild-type; MUT ¼ mutant; AA ¼ amino acid; NetPhos2.0 ¼ neural network phosphorylation predictor; NetPhosK1.0 ¼ neural network
phosphorylation kinase-specific predictor; Pos ¼ position.

aThe amino acid position at WNT16B protein isoform (SWISS-PROT ID: Q9UBV4-1) is indicated.
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1 CEU Population by applying SNAP tool(46)). Overall, three
phosSNPs (IDUA rs6831280 and rs3755955, and WNT16
rs2707466), were discovered in stage 1 and were independently
replicated in stages 2 and 3, respectively. In ethnicity-specific
meta-analyses, their effects were consistent in subgroups of
white and Asian ancestries, and statistical significances were
greater in white than in Asian samples in part because of a larger
white sample size (Table 2). In combined stage 1þ2þ3 meta-
analysis, all three phosSNPs reached conventional GWS for FN-
BMD, andWNT16 rs2707466 also attained conventional GWS for
HIP-BMD. Applying NetPhos2.0 and NetPhosK1.0, there were 96
and 54 predicted phosphorylation sites in IDUA and WNT16B
proteins, respectively (Supporting Tables 3 and 4). IDUA encodes
a glycosyl hydrolase that hydrolyzes the terminal alpha-L-
iduronic acid residues of two glycosaminoglycans, dermatan
sulfate and heparan sulfate.(49) Wang and colleagues(50) created
the Idua-W392X mouse model, and found that 35-week-old
homozygous Idua-W392X mice showed a 24% increase in femur
BMD, and bone abnormalities such as thickening of the
zygomatic arch and aberrations in the length and width of
the femur were also observed.
For IDUA protein, a predicted phosphorylation site, T366,

could be indirectly affected by IDUA rs6831280 (A361T), a type III
phosSNP, and two predicted phosphorylation sites, T98 and
S102, could be indirectly affected by IDUA rs3755955 (R105Q), a
type II (þ) phosSNP (Table 3). For WNT16B protein, phosphory-
lation site T263 could be directly abolished byWNT16 rs2707466
(WNT16B T263I), a type I (–) phosSNP. Of them, only WNT16B
T263 has been experimentally validated to be a genuine
phosphorylation site by mass spectrometry technology in a
phosphoproteomic analyses of human embryonic stem cells in
vivo.(47) Whether IDUA T98 and S102, and IDUA T366 are actual
phosphorylation sites influenced by nearby IDUA phosSNPs
rs3755955 (R105Q) and rs6831280 (A361T), respectively, remains
to be experimentally determined.
WNT16 encodes a member of the wingless-type mouse

mammary tumor virus (MMTV) integration site family, which has
been reported to mediate signaling via both canonical and
noncanonical Wnt pathways. Wnt proteins are known to play
important roles in vertebrate skeletal development.(51–53) Wnt16
is expressed in osteoid tissue of craniofacial bones during
embryonic development in mice, and suppresses osteoblast
differentiation through the canonical b-catenin pathway in
MC3T3-E1 preosteoblasts.(54) Several GWAmeta-analysis studies
have demonstrated thatWNT16 intron 3 SNP rs3801387,(41) exon
2 rs2908004 (WNT16B G82R), and exon 4 rs2707466 (WNT16B
T263I),(55,56) as well as intergenic SNP rs10242100(31) are
associated with BMD phenotypes (Fig. 3). However, functional
roles of noncoding SNPs rs10242100 and rs3801387, which are
in almost perfect LD (r2¼ 0.915 in 1KG Pilot 1 CEU Population by
applying SNAP tool(46)), remain unclear. WNT16 exon 2
rs2908004 (WNT16B G82R) and exon 4 rs2707466 (WNT16B
T263I) are shown to be in nearly complete LD (r2¼ 0.933 in 1KG
Pilot 1 CEU Population by applying SNAP tool(46)), which could
represent the same phosphorylation association signal (ie,
WNT16 rs2707466). Consistent with our results, exon 2 nsSNP
rs2908004 was significantly associated with upper limb BMD,
lower limb BMD, as well as skull BMD phenotypes, and is the top
signal in the chromosome 7q31.31 region in a GWA meta-
analysis of the Avon Longitudinal Study of Parents and their
Children and Generation R Study.(57) The phosSNP WNT16
rs2707466 results in a substitution of threonine by isoleucine in
both WNT16A (amino acid position 253) and WNT16B (amino

acid position 263) isoforms. This phosSNP is predicted to exert a
modest impact on protein function (by Mutation Assessor), and
to be evolutionarily less acceptable (by BLOSUM62) and
moderately deleterious (by PMut and PANTHER) (Supporting
Table 4). Because WNT16B T263 has been experimentally
confirmed to be a phosphorylation site in vivo,(47) in silico
secondary structure prediction shows that T263 is located in a
disordered region (Supporting Fig. 2). This is in agreement with
findings of Dephoure and colleagues,(58) who showed that
phosphorylation sites mostly occur in disordered regions, and
the addition of a phosphate group to acceptor residue upon
phosphorylation can lead to a disorder-to-order transition.(59)

Predicted local 3D structures also indicate notable differences
between WT and MUT isoforms around T263 phosphorylation
site (Supporting Fig. 3). Taken together, it is highly probable that
T263, a phosphorylatable residue located in a disordered region
of WNT16B protein, acts as a switch for regulating protein-
protein interactions,(59) and WNT16 rs2707466, a type I (–)
phosSNP that abolishes this phosphorylation site, constitutes a
causal variant for BMD phenotype. This is supported by
observations of wnt16-null mice, which had significantly
reduced total body BMD, thinner cortical bones at the femur
midshaft, and reduced bone strength of both the femur and
tibia.(55,56) Further, local injection of WNT16B (WT form) could
increase BMD, providing direct experimental evidence that the
WNT16 gene is critical for skeletal development.(25)

There are several limitations to our study. First, 9593
phosSNPs included in stage 1 (GWA discovery) of the current
study represent 14.98% of the entire 64,035 phosSNP set.
Nevertheless, the original 5,842,825 autosomal SNPs either
directly-typed or imputed in stage 1 of the conventional GWA
study(31) only covered 15.92% of the entire 36.7 million human
autosomal SNP set.(60) Therefore, although these included
phosSNPs appear limiting, they constitute a similar proportion
of total phosSNPs as the original stage 1 SNP set of the previous
conventional study.(31) Second, our in vitro protein expression
experiments of WT and MUT alleles of IDUA rs3755955 (R105Q),
rs6831280 (A361T), and WNT16 rs2707466 (WNT16B T263I) only
showed relatively equivalent protein expression levels between
WT and MUT alleles (Supporting Figs. 4B and 5B, respectively).
Additional experiments applying phosphospecific antibodies
could be insightful to reveal whether these phosSNPs truly affect
protein phosphorylations either directly (for WNT16 phosSNP
rs2707466) or indirectly (for IDUA phosSNP rs6831280 and
rs3755955). However, such experiments are time-consuming
and the extents of such differences may be challenging to
detect, because both IDUA and WNT16B proteins can have
multiple phosphorylation sites, and these phosSNPs may only
affect one or two among them. It also remains to be shown
whether a fraction of BMD variation is attributed to impacts of
IDUA rs6831280 (A361T) and rs3755955 (R105Q) on their
neighboring IDUA putative phosphorylation sites T98, S102,
and T366, and to abolishment of the WNT16B T263 phosphory-
lation site by WNT16 rs2707466 (WNT16B T263I). Nevertheless,
the study of Mov�erare-Skrtic and colleagues(25) clearly showed a
pivotal role of the WNT16B WT isoform in skeletal development,
and phosSNP rs2707466 could indeed play a major functional
role in regulating bone metabolism.

The collective findings from our multistage phosSNP-centric
GWA meta-analysis identified and robustly validated three
phosSNPs, IDUA rs6831280, IDUA rs3755955, and WNT16
rs2707466, to be significantly associated with FN-BMD and
HIP-BMD. These results could offer new mechanistic insights of
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causal variants for osteoporosis. Because there is currently a lack
of bone-specific phosphorylation maps for those phosphoryla-
tion sites that are impacted by these BMD-associated phosSNPs,
more studies are necessary to elucidate whether phosphor-
ylations affected by them are present in various types of bone
cells, such as osteocytes, osteoblasts, and osteoclasts
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