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The vascular endothelial growth factor (VEGF) family
of cytokines are important regulators of angiogenesis
that have emerged as important targets for the treat-
ment of obesity. While serum VEGF levels rise during
obesity, recent studies using genetic models provide
conflicting evidence as to whether VEGF prevents or
accelerates metabolic dysfunction during obesity. In the
current study, we sought to identify the effects of VEGF-A
neutralization on parameters of glucose metabolism and
insulin action in a dietary mouse model of obesity. Within
only 72 h of administration of the VEGF-A–neutralizing
monoclonal antibody B.20-4.1, we observed almost com-
plete reversal of high-fat diet–induced insulin resistance
principally due to improved insulin sensitivity in the liver
and in adipose tissue. These effects were independent of
changes in whole-body adiposity or insulin signaling. These
findings show an important and unexpected role for VEGF
in liver insulin resistance, opening up a potentially novel
therapeutic avenue for obesity-related metabolic disease.

Vascular endothelial growth factor (VEGF) proteins are
a subgroup of the platelet-derived growth factor family

and comprise four members, including VEGF-A, VEGF-B,
VEGF-C, and VEGF-D, which bind their cognate receptors
Flt-1 and Flk-1 to promote angiogenesis (1). Though clas-
sically studied in the context of angiogenesis stimulation
in endothelial cells, VEGF receptors are present in a wide
range of cell types and exhibit pleiotropic effects outside
of angiogenesis (2,3). For example, VEGF-B was recently
shown to regulate lipid transport across endothelial cells
(4). This is mediated by transcriptional induction of fatty
acid transporters, leading to enhanced transendothelial
transport of fatty acids and promoting their delivery
to tissues such as heart and muscle. Deletion of VEGF-
B reduces ectopic lipid deposition and improves insulin
sensitivity in dietary and genetic models of obesity in
mice (5), and this evidence has been used to suggest
a role for VEGF-B in type 2 diabetes and the metabolic
syndrome.

The role of VEGF and angiogenesis in obesity and
diabetes has become somewhat confused due to a number
of recent conflicting studies (6–8). Serum levels of VEGF-A
are raised during obesity (9–11) and rapidly decrease
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following bariatric surgery (10), suggesting that elevated
VEGF is deleterious. In support of this Lu et al. (12)
showed that VEGF knockdown suppressed obesity and
promoted “browning” of white adipose tissue (WAT). In
contrast, reports using adipose-specific VEGF transgenic
or knockout mice suggest that increased expression of
VEGF is beneficial during obesity (12–15). This is further
complicated by contradictory reports depending on the
model system; Sun et al. (13) found that antibody neutral-
ization of VEGF impaired metabolic homeostasis in a die-
tary model of obesity but improved glucose tolerance in
a genetic (ob/ob) model. These inconsistencies may be due
to the following reasons. In two of these studies (14,15),
the Fabp4 promoter was used to achieve adipose-specific
overexpression or deletion using the Cre-LoxP system. This
promoter is not specific to adipose tissue (16), meaning
that the observed effects may be the result of VEGF-A
changes in nonadipose tissues. In particular, FABP4 is
expressed in microvascular endothelial cells (17), which
are a key target of VEGF and present in tissues throughout
the body. Secondly, in addition to its role as an extracel-
lular signaling factor, VEGF displays intracellular, cell-
autonomous regulation of cell signaling (18,19). It may be
that the effects observed with genetic VEGF overexpression
or deletion may reflect changes in intracellular signaling
rather than changes in extracellular VEGF signaling, which
is selectively targeted by neutralizing antibodies. Lastly, the
possibility remains that adipose tissue may not be the most
important site of action for VEGF in mediating changes in
insulin sensitivity. This would be consistent with studies
reporting that systemic administration of antiangiogenic
compounds improves insulin sensitivity (20–22).

To address the issues described above, we determined
the temporal relationship between changes in whole-body
adiposity and glucose homeostasis upon blockade of extra-
cellular VEGF signaling in mice following administration
of a VEGF-A–neutralizing antibody (23). We show that
systemic VEGF-A neutralization is an effective and rapid
strategy for preventing as well as reversing diet-induced
insulin resistance in short- and long-term models of high-
fat feeding. These effects occur within a short timeframe
(72 h), involving almost complete amelioration of im-
paired hepatic insulin sensitivity and occur independently
of adiposity (20–22,24,25) and insulin signaling.

RESEARCH DESIGN AND METHODS

Mice
Male C57BL6 mice were from Australian BioResources (Moss
Vale, New South Wales, Australia). Animals were obtained at
7 weeks of age and acclimatized for 1 week prior to exper-
iments. Mice were maintained on a 12 h light/dark cycle
(0700/1900 h) at a temperature of 22 6 1°C with 80%
relative humidity and provided ad libitum access to food
and water. Experiments were carried out in accordance with
guidelines for animal research from the National Health and
Medical Research Council (NHMRC; Australia) and were ap-
proved by Garvan Institute animal ethics committee.

Diets
Diets were as previously described (26,27). Chow diet
(Gordon’s Specialty Stock Feeds, Yanderra, New South
Wales, Australia) comprised 8% calories from fat, 21%
calories from protein, and 71% calories from carbohy-
drate, with total energy density of 2.6 kcal/g. High-fat
diet (HFD) was 45% calories from fat (beef lard), 20%
calories from protein, and 35% calories from carbohy-
drate at a density of 4.7 kcal/g, based on rodent diet
D12451 (Research Diets, New Brunswick, NJ).

VEGF Neutralization
VEGF-A was neutralized using the antibody B20-4.1 (23)
from Genentech. Control antibody was mouse IgG (Sigma-
Aldrich). Antibodies were diluted in physiological saline
and administered by intraperitoneal injection at 5 mg/kg
body weight.

Western Blots
WAT samples were from 6-h–fasted or acute insulin–
stimulated (5 units/kg, 10 min) mice maintained on chow
of HFD for 3 days with VEGF or control IgG injection. Liver
samples were snap frozen following hyperinsulinemic–
euglycemic clamps. Densitometry was performed using
Odyssey software (LI-COR Inc.). n = 3–5 mice per group.
Antibodies used for Western blots were from Santa Cruz
Biotechnology, CA (14-3-3, sc-629); Cell Signaling Tech-
nologies, MA (phospho-S6K, 9205; phospho-S473 Akt,
4051; phospho-T308 Akt, 9275; total Akt, 9272; phos-
pho–hormone-sensitive lipase [HSL]; total HSL); and
Vala Sciences (phospho-perilipin).

Glucose and Insulin Tolerance Tests
Glucose challenge was as previously described (27–29).
Mice were fasted for 6 h beginning at 0800 h. Glucose
was administered by intraperitoneal injection using
a 25% glucose solution to achieve a final dose of 1 g/kg,
and blood glucose was measured with an Accu-Chek Per-
forma (Roche). Total area under the curve (AUC) was cal-
culated using the trapezoidal formula. Blood samples were
obtained via tail bleeds using 5 mL heparinized hematocrit
tubes (Drummond) and ejecting samples into a mouse ultra-
sensitive insulin ELISA (90080, Crystal Chem). Insulin tol-
erance test protocol was identical to glucose tolerance test
(GTT), using 0.75 units/kg insulin diluted in saline.

Tracer Uptake
3H-2-deoxyglucose (2-DOG; 2 mCi/25 g body weight) was
coinjected with glucose during the GTT as above. Blood
samples were obtained at 15, 30, 60, and 120 min using
5 mL heparinized hematocrit tubes (Drummond) and imme-
diately added to 100 mL saturated BaOH solution. At 120
min, mice were culled and tissues were snap frozen. Pro-
tein was precipitated from blood with saturated ZnSO4

solution, and radioactivity was measured in supernatants.
Frozen tissues were powdered, weighed, and homogenized
in 500 mL H2O, and soluble supernatant was collected.
Supernatant (150 mL) was diluted to 1 mL and added to
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4 mL scintillation fluid (Ultima Gold, PerkinElmer) for total
counts. To determine free (nonphosphorylated) glucose
counts, anion exchange columns were prepared using AG 1-
X8 resin (Bio-Rad) washed extensively in dH2O. Supernatant
(150 mL) was applied to anion exchange columns and eluted
with three 1 mL dH2O wash steps. Of this combined elution,
1 mL was diluted into 4 mL scintillation fluid. Vortexed
samples were read on a Beckman LS 6500 b-counter.
2-Deoxyglucose uptake and phosphorylation in tissues
was determined by subtracting AG 1-X8 resin eluate
readings from total, homogenized tissue readings and
normalized for tissue weight, blood glucose concentrations
during the GTT, and radioactive AUC determined from
blood samples taken during the GTT.

Hyperinsulinemic Clamps
Hyperinsulinemic–euglycemic clamps were performed in
5-h–fasted mice as previously described (30). In the cur-
rent study, an initial priming dose of insulin was fol-
lowed by constant infusion at a rate of 10 mU/kg/min.
Euglycemia was maintained by variable infusion of 2.5–
10% glucose solution. Glucose turnover was calculated
using Steele steady-state equation.

Adipocyte Diameter Measurements
Whole tissue sections were imaged on a Leica DM6000
Power Mosaic. Adipocyte area was analyzed in a blind,
semiautomated fashion using custom macros written in
ImageJ.

Endothelial Cell Proliferation
Human umbilical vein endothelial cells were plated at 4 3
103 cells per well in 96-well culture plates, and 10 ng/mL
VEGF-A or VEGF-B (R&D Systems) was preincubated
with 1.5 mg/mL anti-VEGF-A antibody for 15 min then
added to cells. Cell number was assessed with the MTS (3-
[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-
2-[4-sultophenyl]-2H-tetrazolium) assay (Promega) on
days 0 and 3.

Quantitative PCR
RNA was extracted using Tri reagent (Sigma-Aldrich).
cDNA synthesis (DyNAmo kit, Thermo Scientific) was
performed with 1 mg RNA. Gene expression of four
housekeeper genes (tbp, ywhaz, b2m, and hprt) was mea-
sured, and the geometric means of the two most stable
housekeepers, determined using NormFinder, were used to
normalize expression of Flt-1 (VEGF receptor Flt-1) and
Kdr (VEGF receptor Flk-1). Samples were run in technical
triplicate on a Roche LightCycler 480 using LightCycler
480 SYBR I Green Master Mix. qPCR primers used
were Flt1 (F: TTGTAAACGTGAAACCTCAG; R: GATTCT
TCATTCTCAGTGCAG), Kdr (F: AATGGTACAGAAATGGA
AGG; R: GCATCTCTTTCAGTCACTTC), B2m (F: GTATGCT
ATCCAGAAAACCC; R: CTGAAGGACATATCTGACATC),
Hprt (F: AGGGATTTGAATCACGTTTG; R: TTTACTGGCA
ACATCAACAG), Tbp (F: GTTCTTAGACTTCAAGATCCAG;
R: TTCTGGGTTTGATCATTCTG), and Ywhaz (F: ACTTAA
CATTGTGGACATCG; R: GGATGACAAATGGTCTACTG).

Triglyceride and Glycerol Measurements
Lipids were extracted using Folsch reagent, and triglycer-
ide content was measured using an assay kit (Roche/
Hitachi 11730711 216 triglycerides GPO-PAP) according
to manufacturer’s instructions. Glycerol was assayed in
plasma using a free glycerol determination kit (Sigma-
FG0100) as per manufacturer’s instructions.

Serum Cytokine and Metabolic Hormone Analysis
Serum cytokines are measured using Luminex multiplex
assay (Bio-Rad Mouse Grp I 23-plex), and serum meta-
bolic hormones were measured using Milliplex Mouse
Metabolic 14-plex kit (Millipore) Luminex assay.

Scanning Electron Microscopy
Hepatic sinusoidal fenestrations were measured in per-
fused livers by scanning electron microscopy as recently
described (31).

Statistics
Independent one-way ANOVA was used to compare scores
of normally distributed continuous variables. Post hoc anal-
ysis was conducted to determine significant difference bet-
ween groups. Type 1 errors were controlled for by applying
a Bonferroni adjustment. One-way between-group ANOVA
was tested using the Kruskal–Wallis test where data were
not normally distributed. GTT data are shown as median
values, error bars represent interquartile range. For GTTs,
total AUCs were used for analysis. Box plots are shown in
Tukey plot format. All analysis was performed using SPSS.

RESULTS

To investigate the role of VEGF-A on metabolic activity in
vivo, we used the selective VEGF-A neutralizing antibody
B20-4.1, which has previously been characterized on an in
vitro, in vivo, and structural basis (23,32). To further test
the specificity of B20-4.1, we measured the ability of this
antibody to suppress the biological activity of either
mouse VEGF-A or VEGF-B in primary endothelial cells.
Consistent with previous findings, B20-4.1–suppressed
VEGF-A, but not VEGF-B, stimulated endothelial cell pro-
liferation (Fig. 1).

VEGF-A Neutralization Blocks the Onset of
Diet-Induced Glucose Intolerance
To investigate the role of VEGF-A in metabolic dysfunc-
tion, 8-week-old C57BL6 males were randomly assigned
to treatment groups, and an initial baseline GTT was per-
formed (Fig. 2A and B). Mice were then given a single intra-
peritoneal injection with either the VEGF-A–neutralizing
antibody B20-4.1 or the control antibody (5 mg/kg body
weight) and immediately placed on either chow diet or
HFD. The VEGF-A–neutralizing antibody raised circulat-
ing VEGF-A levels, consistent with decreased clearance of
antibody-bound VEGF-A as described previously (Supple-
mentary Fig. 1) (1,33–35), and surprisingly, a trend toward
decreased VEGF receptor expression was observed (Supple-
mentary Fig. 1B and C). Three days of high-fat feeding
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was sufficient to cause a pronounced decrease in whole-
body glucose tolerance, with increased fasting glucose
levels (Table 1). Treatment with the VEGF-A antibody al-
most completely prevented the impaired glucose tolerance
observed in HFD animals (Fig. 2C and D). These changes
occurred without any significant change in circulating in-
sulin levels in either the basal or glucose-stimulated state
(Table 1, Fig. 2E). To determine which tissues were con-
tributing to these changes, we next administered 3H-2-
DOG during the GTT and measured uptake into skeletal
muscle and WAT (Fig. 2F and G). As evidence of improved
insulin action, we observed increased 2-DOG uptake into
WAT, but not quadriceps, in mice treated with the VEGF-A
during high-fat feeding.

VEGF-A Neutralization Reverses Glucose Intolerance
During Long-term High-Fat Feeding
In addition to acute studies, we next wanted to determine
if VEGF-A neutralization could reverse insulin resistance
in long-term high-fat–fed mice. Male (8 weeks old) C57BL6
mice were placed on HFD for 4 weeks to establish obesity,
glucose intolerance, and insulin resistance. This was suffi-
cient to trigger more profound glucose intolerance than ob-
served after 3 days of high-fat feeding concomitant with
a significant increase in fasting hyperglycemia (Fig. 3). Sim-
ilar to our previous studies (Fig. 2B), only two injections of
VEGF-A–neutralizing antibody were sufficient to improve
glucose tolerance in high-fat fed animals (Fig. 3B), and this
improvement was sustained for at least 17 days after the
last dose of antibody (Fig. 3B–E). One observation was the
substantial reduction in fasting blood glucose following
treatment with the VEGF antibody (Supplementary

Fig. 2). Insulin tolerance was also assessed as a direct
measure of insulin sensitivity (Fig. 4). The glucose-lowering
effect of insulin in the VEGF-neutralized mice appeared
limited by the significantly lower fasting glucose levels in
these mice, complicating interpretation of these data. By 21
days post injection, the ameliorating effects of the VEGF-A–
neutralizing antibody on glucose tolerance were no longer
evident (Fig. 3F). The eventual loss of an effect on glucose
tolerance may reflect a decline in the downstream effects of
VEGF-A neutralization or alternatively the eventual clear-
ance of the neutralizing antibody. These data suggest that
VEGF-A inhibition is an effective and persistent strategy for
treating preexisting metabolic dysfunction. Moreover, in
view of the reversibility of the effects on metabolism, this
suggests that the VEGF antibody is targeting a regulatory
parameter that is highly plastic. After this 21-day period,
mice were maintained on their respective diets without fur-
ther intervention for an additional 3 weeks (Fig. 3A). Mice
were again treated with a single dose of VEGF-A or control
antibody (5 mg/kg body weight) and subjected to a GTT 72
h later (Supplementary Fig. 3). Again, this single retreat-
ment with the VEGF-A–neutralizing antibody rapidly reini-
tiated a significant improvement in whole-body glucose
tolerance in long-term high-fat–fed animals. This provides
significant evidence in favor of the therapeutic potential of
this reagent for the treatment of metabolic disease.

VEGF-A Neutralization Improves Hepatic Insulin
Sensitivity
Whole-body insulin action in mammals is largely governed
by insulin action in muscle and liver. Our analysis of 3H-2-
DOG uptake during the GTT revealed no significant ef-
fect of VEGF neutralization in muscle and a significant
improvement in WAT. During acute high-fat feeding,
whole-body insulin resistance is largely due to impaired
insulin action in the liver (36), which precedes insulin
resistance in muscle (37). This is consistent with our ob-
servation of no change in 2-DOG uptake into muscle or
fat with high-fat feeding, despite profound glucose intol-
erance (Fig. 2). To investigate this, we used the hyper-
insulinemic–euglycemic clamp method (Fig. 5). After
3 days of high-fat feeding, the whole-body glucose infu-
sion rate in response to a 10 mU/kg/min insulin infusion
was reduced by.80% compared with the chow-fed group.
This inhibitory effect was almost completely abolished by
one single dose of the VEGF-neutralizing antibody prior
to commencement of the HFD (Fig. 5A). There was a ten-
dency toward increased peripheral glucose disappearance
in VEGF-treated animals, but this failed to reach statisti-
cal significance (P = 0.08) (Fig. 5B). More strikingly, VEGF
neutralization completely prevented HFD-induced hepatic
insulin resistance as indicated by measurement of endog-
enous glucose production (Fig. 5C). These data are in
agreement with previous studies also showing that insulin
resistance during short-term high-fat feeding is mediated
by decreased suppression of hepatic glucose output,
rather than peripheral insulin resistance (36), and suggest

Figure 1—Biological activity of VEGF-A–neutralizing antibody B20-
4.1. Human umbilical vein endothelial cells were incubated as in-
dicated with either recombinant mouse VEGF-A or VEGF-B (10
ng/mL) in the presence or absence of the VEGF-A–neutralizing
antibody B20-4.1 (1.5 mg/mL). *P < 0.05, Mann–Whitney test.
ctrl, control; HUVEC, human umbilical vein endothelial cell.
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that VEGF neutralization prevents HFD-induced insulin
resistance largely through changes in the liver.

In an effort to further explore the mechanism of VEGF
neutralization on hepatic and WAT insulin action, we
next examined insulin signaling. We did not observe any

significant difference in insulin-stimulated Akt signaling
with VEGF neutralization (Supplementary Fig. 4). We then
sought to determine whether changes in circulating cyto-
kines could account for these effects and measured a panel
of cytokines in the serum of VEGF- or control IgG-treated

Figure 2—Glucose tolerance during VEGF neutralization in acute high-fat fed mice. A: Schema for experiment. B: Chow-fed mice were
randomly assigned to treatment groups and baseline glucose tolerance was measured. Immediately following baseline GTT, mice were
injected (5 mg/kg, intraperitoneally) with either VEGF-neutralizing or control (IgG) antibody and placed on chow diet or HFD. C: Three days
after injection and diet, glucose tolerance was again assessed and quantified by (D) total AUC. E: Blood insulin levels were measured during
GTT. Phosphorylated 3H-2-DOG uptake into (F ) quadriceps and (G) epididymal WAT during GTT was assessed to determine rates of
glucose uptake. B and C: n = 22–27 mice per treatment across four independent cohorts. E–G: n = 14–19 mice per treatment across three
independent cohorts. ***P < 0.001; **P < 0.01, Kruskal–Wallis test. Glucose and insulin levels are plotted as median values, and error bars
are interquartile range. Large dots are outliers, as per representation of data using Tukey box plot format.
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mice (Supplementary Table 1). No change was observed,
indicating that the cytokines measured do not play a role in
mediating metabolic changes with VEGF neutralization.

We next measured the effect of VEGF neutralization
on adipocyte diameter, fat depot size, and whole-body
adiposity, as changes in these parameters have also been
implicated in changes to whole-body insulin sensitivity.
There was a pronounced increase in the size of epididymal
and inguinal fat pads, as well as adipocyte diameter, in
control animals after 3 days of HFD, which was not
affected by VEGF-A neutralization (Fig. 6A and F, Table
1). We next measured whole-body adiposity by dual-energy
X-ray absorptiometry scanning and again observed an in-
crease in adiposity with high-fat feeding, with no reduction
following VEGF neutralization (Fig. 6B). Using a long-term
model of high-fat feeding (Fig. 3), we also observed no
change in epididymal fat pad mass or whole-body adi-
posity determined by dual-energy X-ray absorptiometry
in animals treated with the VEGF antibody (Fig. 6C and
D). In contrast to previous studies (20–22), these data
suggest that improvements in insulin sensitivity and glu-
cose tolerance occur independently of changes in adiposity
and are consistent with a previous report showing no
change in adiposity with systemic antibody neutralization
of VEGF-R2 (38).

Evidence for Altered Lipid Uptake With VEGF
Neutralization

We next quantified the level of triglyceride in liver and
muscle tissues since previous studies have shown that
antiangiogenic compounds reduce ectopic lipid deposi-
tion. As expected, high-fat feeding increased triglyceride
content in both liver (Fig. 7A) and muscle (Fig. 7B); how-
ever, this was reduced by VEGF neutralization in muscle
only. Intriguingly, VEGF neutralization raised serum tri-
glyceride levels under both chow and high-fat conditions
(Fig. 7C) while there was no change in circulating free
glycerol levels (Fig. 7D). These data support the idea
that muscle triglyceride levels are reduced with VEGF
neutralization due to decreased lipid uptake, rather than
increased b oxidation, which would have decreased serum
triglycerides and increased free glycerol in the blood. One
possibility for the increase in serum triglycerides is de-
creased uptake of lipid particles from the bloodstream
into the liver, which occurs via fenestrations in the
hepatic sinusoid, whose formation is VEGF dependent
(39). We performed scanning electron microscopy of he-
patic sinusoidal endothelial cells (Supplementary Fig. 5)
and observed no trend in fenestration frequency, diam-
eter, or porosity, suggesting some other mechanism is
at play.

Table 1—Effects of VEGF-neutralizing antibody on metabolic parameters in chow- and high-fat–fed mice during an acute model
of high-fat feeding

Parameter Chow IgG Chow anti-VEGF HFD IgG HFD anti-VEGF

Fasting glucose, mmol/L 9.4 (8.4–10.5) 8.6 (8.2–9.7) 10.9 (10.0–12.0) 10.2 (8.5–11.6)

Glucose tolerance, total AUC 1,484 (1,400–1,603) 1,397 (1,289–1,488) 1,915 (1,826–2,066) 1,649 (1,508–1,743)

Fasting insulin, pg/mL 455.1 (275.8–719.2) 337.9 (250.6–582.4) 847.6 (600.8–970.9) 747.2 (538.2–1,190.0)

Liver triglycerides, mmol glycerol/mg 14.88 (12.05–18.29) 12.85 (10.55–16.96) 23.83 (15.47–50.42) 18.10 (16.20–33.69)

Serum triglycerides, mg glycerol/mL 80.12 (66.76–93.47) 84.61 (70.99–123.2) 89.12 (66.85–96.77) 91.39 (79.92–124.5)

Serum HDL, mmol/L, n = 5–8 1.900 (1.775–1.995) 1.820 (1.595–1.890) 2.770 (2.480–2.900) 2.565 (2.108–2.695)

Serum cholesterol, mmol/L, n = 5–8 2.6 (2.5–2.8) 2.7 (1.9–2.8) 3.9 (3.8–4.2) 3.8 (3.3–4.0)

Serum glycerol, ng/mL 74.89 (63.2–84.68) 67.94 (56.09–97.40) 72.72 (55.34–115.00) 84.62 (66.46–124.00)

WAT glucose clearance,
3H-2-DOG dpm/g/min 2.77 (1.47–4.08) 2.49 (2.11–3.44) 2.16 (1.73–3.18) 3.69 (3.04–4.99)

Quadriceps 3H-2-DOG clearance,
3H-2-DOG dpm/g/min 13.11 (10.24–17.75) 18.13 (15.48–23.39) 13.41 (10.73–14.28) 14.34 (11.48–17.56)

Epididymal fat mass, mg 259 (248–354) 324 (299–375) 459 (308–600) 541 (431–605)

Retroperitoneal fat mass, mg 156 (132–181) 172 (141–184) 240 (156–368) 285 (230–313)

Interscapular brown fat mass, mg 79.4 (64.75–85.55) 74.8 (35–82.2) 72.4 (67.8–94.7) 85.3 (59.8–97.3)

Body weight, g 23.1 (22.6–24.1) 22.7 (22.0–24.8) 23.2 (22.0–25.1) 23.3 (22.4–24.1)

Adipocyte diameter, mm2 1,839 (1,708–1,852) 1,790 (1,700–1,867) 1,923 (1,814–2,009) 1,914 (1,891–1,992)

Glucose infusion rate (clamp),
mmol/kg/min, n = 5–7 86.97 (43.05–94.69) NA 9.89 (2.86–20.22) 51.46 (33.28–81.87)

Rate of disappearance (clamp),
mmol/kg/min, n = 5–7 115.3 (84.38–135.8) NA 71.63 (65.56–85.23) 87.65 (79.33–111.4)

Endogenous glucose production
(clamp), mmol/kg/min, n = 5–7 41.19 (21.22–54.84) NA 54.71 (52.47–83.16) 33.29 (29.5–47.5)

See Figs. 2 and 7. Values shown are median (interquartile range) and represent 14–19 animals per group unless otherwise indicated. NA,
not applicable.
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DISCUSSION

In the current study, we have shown that systemic VEGF
neutralization is a rapid and effective strategy for im-
proving glucose tolerance and insulin sensitivity under
both chow and high-fat conditions. VEGF neutralization
not only prevented glucose intolerance upon induction
of high-fat feeding, but reversed glucose intolerance in
long-term high-fat fed mice. These improvements per-
sisted for 17 days after administration of the VEGF-
neutralizing antibody, though they were ameliorated by

21 days. The rapid, and eventually reversible, nature
suggests that these effects are mediated through a per-
sistent, ongoing maintenance process, such as vascular
remodeling. The vasculature of adipose tissue was pre-
viously identified as a target for reducing obesity and
improving metabolic homeostasis (20–22,24,25), yet
we observed no change in adipocyte diameter, fat pad
mass, or overall adiposity (Fig. 6). VEGF neutralization
resulted in profound amelioration of hepatic insulin re-
sistance following 3 days of high-fat feeding (Fig. 5).

Figure 3—VEGF neutralization in long-term high-fat–fed mice. A: Eight-week-old mice were placed on chow diet or HFD for 4 weeks and
were administered a single injection of either VEGF-neutralizing or control antibody at days 0 and 3. Glucose tolerance was assessed (B)
3 days after the first single injection and again at (C) day 7, (D) day 11, (E ) day 17, and (F) day 21. G: Glucose tolerance was quantified by
measuring AUCs. n = 5–8 mice per group. *P< 0.05; **P< 0.01, Kruskal–Wallis test. Glucose levels are plotted as median values, and error
bars are interquartile range. Ab, antibody; DXA, dual-energy X-ray absorptiometry; ITT, insulin tolerance test.
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These effects of VEGF neutralization on the liver are in
agreement with two recent studies (40,41). The lack of
effect in peripheral glucose disposal further highlights
the importance of the liver.

Interestingly, we observed increased serum triglycerides
(Fig. 7C) with VEGF-A antibody treatment. This increase in
serum triglycerides may not reflect a change in angiogenesis
per se, but rather an alternate action of VEGF-A. For ex-
ample, VEGF-B, another VEGF family member with partial
homology to VEGF-A, regulates lipid uptake across the
endothelium into tissues (4). Recently, it was shown that

genetic ablation or antibody neutralization of VEGF-B pro-
tected against metabolic dysfunction in diet or genetic
models of insulin resistance (5), due to reduced ectopic
lipid deposition into muscle (5). It is possible that VEGF-
A has similar effects to VEGF-B in blocking lipid uptake
into tissues, which might explain increased serum triglyc-
erides and decreased ectopic lipid deposition into muscle of
chow-fed mice. Consistent with this hypothesis, in a recent
study from Sun et al. (13), antibody neutralization of VEGF
impaired lipid uptake into tissues of high-fat–fed mice, as
measured by a lipid tolerance test.

Figure 4—Insulin tolerance during VEGF neutralization in (A) chow and (B) long-term high-fat–fed mice. Long-term high-fat–fed animals
were injected with VEGF-neutralizing antibody (5 mg/kg) at day 0 and day 3 as shown in Fig. 2A. At day 13, animals were subjected to
insulin tolerance test (0.75 units/kg). n = 5–8 mice per group. Values shown are median, and error bars are interquartile range.

Figure 5—Insulin sensitivity and hepatic glucose output during VEGF neutralization. Hyperinsulinemic–euglycemic clamps were performed
72 h after treatment with VEGF-neutralizing or control antibody and chow or high-fat feeding as in Fig. 1. (A) Glucose infusion rate, (B) rate
of disappearance, and (C) endogenous glucose output from the liver. n = 5–7 mice per group. *P < 0.05; **P < 0.01 Kruskal–Wallis test.
Large dots are outliers, as per representation of data using Tukey box plot format. Rd, rate of disappearance.
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It has been shown that VEGF positively regulates met-
abolic homeostasis. These findings were based on adipocyte-
specific overexpression or deletion of VEGF (13–15) and so
may reflect a long-term local effect of VEGF in adipose
tissue. Conversely, systemic modulation of VEGF func-
tion as used here and in other studies (40,41) that de-
scribe positive effects of neutralizing VEGF function likely
reflect effects of VEGF in alternate tissues, such as the liver.
However, we also observed positive effects of neutralizing
VEGF on insulin action in adipose tissue (Fig. 2). This leaves
open the possibility that genetic manipulation of VEGF
in adipose tissue gives rise to some chronic change in adi-
pose function, possibly even developmental, which is not

observed with the shorter-term systemic administration
of VEGF-neutralizing antibody.

We examined insulin signaling at the level of Akt to
determine whether improvements in glucose transport in
WAT could be attributed to enhanced signal transduction.
There was no change in Akt phosphorylation following VEGF
neutralization. Although Akt activation is both necessary and
sufficient to transduce the insulin signal to enhance glucose
transport in adipocytes (42), we cannot rule out the involve-
ment of alternate signaling pathways, such as atypical pro-
tein kinase C (43). Insulin suppresses lipolysis in WAT via
both Akt-dependent and Akt-independent signaling path-
ways through HSL or perilipin, respectively (44). We did

Figure 6—Adiposity during VEGF neutralization. (A) Fat pad mass and (B) percentage whole-body fat in an acute model of high-fat feeding and
VEGF neutralization (Fig. 1); n = 14–19 mice per group. (C) Epididymal fat padmass and (D) whole-body fat during a long-termmodel of high-fat
feeding (Fig. 2); n = 5–8 mice per group. E: Body weights before and after acute high-fat feeding and VEGF treatment. F: Frequency distribution
of adipocyte size in the 3-day model of VEGF treatment. Large dots are outliers, as per representation of data using Tukey box plot format.
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not detect changes in HSL or perilipin phosphorylation
(Supplementary Fig. 4). These data suggest that both Akt-
dependent and Akt-independent pathways, at least in the
case of lipolysis, are not influenced by VEGF neutralization.

One key question regarding these findings is how VEGF
neutralization so rapidly modulates insulin sensitivity in
the liver. It is conceivable that this observation has sig-
nificant bearing on the mechanism by which dietary
manipulations such as HFD rapidly induce insulin re-
sistance in the liver (36). Vascular remodeling in the liver
following VEGF neutralization has been reported to acti-
vate the hypoxia-inducible factor-2a pathway, induce in-
sulin receptor substrate (IRS) 2 expression and improve
insulin signaling (40,41). In contrast, we did not observe
any detectable change in downstream Akt signaling follow-
ing VEGF neutralization (Supplementary Fig. 4). We have
previously shown that defects in IRS signaling are unlikely
to contribute to insulin resistance (27). Unlike the partial
restoration of IRS2 observed in these recent studies
(40,41), complete genetic deletion of IRS2 in the liver has
no measurable effect on hepatic glucose homeostasis (45).
Given this, there is no plausible explanation as to why an
increase in IRS2 levels would be sufficient to improve in-
sulin action in the absence of other changes. We therefore
believe that some other mechanism most likely accounts
for the effects of VEGF on liver metabolism. It is notable

that microvascular blood flow is impaired in the liver of
obese rodents due to a combination of ballooning of hepa-
tocytes, distorting hepatic sinusoidal endothelial cells, col-
lagen deposition in the spaces of Disse, and recruitment of
proinflammatory, nonparenchymal cell types to the micro-
vasculature, which could impair blood flow (46). VEGF is
a potent vasodilator, and it is likely that VEGF neutraliza-
tion would further impair vasodilation, which is required
for insulin sensitivity. Changes in vasodilation are there-
fore unlikely to account for the improved insulin sensitivity
observed during VEGF neutralization.

In conclusion, we have shown that VEGF neutraliza-
tion results in a rapid and sustained improvement in
overall glucose homeostasis, an effect primarily mediated
by changes in hepatic insulin sensitivity. In view of the
untoward side effects associated with systemic manipula-
tion of VEGF action, it is unlikely that this will provide
a practical therapeutic approach for the management of
insulin resistance. It is therefore essential to pinpoint the
mode of action of VEGF neutralization in the liver that so
effectively reverses insulin resistance in HFD mice.
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