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Opening of the mitochondrial permeability
transition pore links mitochondrial dysfunction
to insulin resistance in skeletal muscle%
E.P. Taddeo 1, R.C. Laker 2,3, D.S. Breen 1, Y.N. Akhtar 2,3, B.M. Kenwood 1, J.A. Liao 1, M. Zhang 2,3,
D.J. Fazakerley 5, J.L. Tomsig 1, T.E. Harris 1, S.R. Keller 1, J.D. Chow 1, K.R. Lynch 1,4, M. Chokki 10,
J.D. Molkentin 9, N. Turner 8, D.E. James 5,6,7, Z. Yan 1,2,3,*, K.L. Hoehn 1,2,3,4,*
ABSTRACT
Insulin resistance is associated with mitochondrial dysfunction, but the mechanism by which mitochondria inhibit insulin-stimulated glucose uptake
into the cytoplasm is unclear. The mitochondrial permeability transition pore (mPTP) is a protein complex that facilitates the exchange of molecules
between the mitochondrial matrix and cytoplasm, and opening of the mPTP occurs in response to physiological stressors that are associated with
insulin resistance. In this study, we investigated whether mPTP opening provides a link between mitochondrial dysfunction and insulin resistance by
inhibiting the mPTP gatekeeper protein cyclophilin D (CypD) in vivo and in vitro. Mice lacking CypD were protected from high fat diet-induced glucose
intolerance due to increased glucose uptake in skeletal muscle. The mitochondria in CypD knockout muscle were resistant to diet-induced swelling
and had improved calcium retention capacity compared to controls; however, no changes were observed in muscle oxidative damage, insulin
signaling, lipotoxic lipid accumulation or mitochondrial bioenergetics. In vitro, we tested 4 models of insulin resistance that are linked to
mitochondrial dysfunction in cultured skeletal muscle cells including antimycin A, C2-ceramide, ferutinin, and palmitate. In all models, we observed
that pharmacological inhibition of mPTP opening with the CypD inhibitor cyclosporin A was sufficient to prevent insulin resistance at the level of
insulin-stimulated GLUT4 translocation to the plasma membrane. The protective effects of mPTP inhibition on insulin sensitivity were associated with
improved mitochondrial calcium retention capacity but did not involve changes in insulin signaling both in vitro and in vivo. In sum, these data place
the mPTP at a critical intersection between alterations in mitochondrial function and insulin resistance in skeletal muscle.

& 2013 The Authors. Published by Elsevier GmbH. All rights reserved.
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1. INTRODUCTION

Skeletal muscle tissue has an important role in whole body glucose
homeostasis by increasing glucose clearance from the blood in response
to insulin. Therefore, insulin resistance in skeletal muscle is a con-
tributing factor to glucose intolerance and type 2 diabetes. Risk factors
for skeletal muscle insulin resistance include aging and obesity;
however, the molecular mechanisms are unclear. Current evidence
links aging and obesity to insulin resistance in skeletal muscle via
http://dx.doi.org/10.1016/j.molmet.2013.11.003
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correlations with mitochondrial dysfunction, aberrant lipid accumulation,
and oxidative stress [1–6]. For example, physiological studies in both
humans and rodents demonstrate that acute lipid infusion or chronic
consumption of a high fat diet (HFD) is sufficient to promote skeletal
muscle insulin resistance concomitant with lipid accumulation in muscle
and/or mitochondrial dysfunction [7–10]. Furthermore, skeletal muscle
of young insulin resistant pre-diabetic patients that are non-obese also
demonstrates mitochondrial dysfunction and aberrant lipid accumulation
[11]. These data led the authors to speculate that mitochondrial
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inefficiency may promote lipotoxic lipid accumulation to drive skeletal
muscle insulin resistance. Together, these studies and others [12] have
identified an association between mitochondrial dysfunction and insulin
resistance, but cause–effect relationships remain to be proven [12].
Further work is required to determine the molecular mechanisms linking
skeletal muscle mitochondria to insulin sensitivity.
We have previously demonstrated that acute induction of mitochondrial
superoxide (O2

d) in skeletal muscle myotubes with the mitochondrial electron
transport chain (ETC) inhibitor antimycin A was sufficient to cause insulin
resistance [2]. This mechanism of insulin resistance was prevented by
overexpression of mitochondrial manganese superoxide dismutase
(MnSOD), treatment with mitochondrial O2

d scavengers, and inhibition of
the ETC with stigmatellin at a site upstream of antimycin A. Collectively, this
experiment demonstrated that mitochondrial O2

d, but not altered ATP
production, is sufficient to drive insulin resistance in skeletal muscle.
However, it also revealed a gap in knowledge concerning the mechanism
whereby membrane impermeable mitochondrial O2

d triggers insulin resis-
tance, a process that occurs in the cytoplasm and at the plasma membrane
(PM) [13,14]. To explore this mechanism we investigated a role for the
mitochondrial permeability transition pore (mPTP). The mPTP is a multi-
protein complex that spans both mitochondrial membranes and allows the
passage of molecules less than 1500 Da between the cytoplasm and
mitochondrial matrix. Importantly, the mPTP is triggered to open by
mitochondrial O2

d and other factors linked to insulin resistance including
mitochondrial calcium overload [15–18]. Under normal physiological
conditions, transient opening of the mPTP releases ions and metabolites
from the mitochondrial matrix in order to maintain proper homeostasis
[16,17,19–21]. To investigate whether opening of the mPTP is required for
insulin resistance, we targeted the mitochondrial matrix peptidyl-prolyl cis-
trans isomerase cyclophilin D (CypD). CypD regulates mPTP opening by
directly binding to pore constituent proteins, and inhibition of CypD
decreases the probability of mPTP opening [18,19,21]. Based on these
data, we investigated whether the genetic or pharmacological inhibition of
CypD would protect from insulin resistance.
2. MATERIALS AND METHODS

2.1. Cell culture
Maintenance and differentiation of L6 rat skeletal muscle cells express-
ing HA-tagged GLUT4 was performed as described [2,22]. Differentiation
of myoblasts into myotubes was induced by culturing cells in MEM-α
containing 2% (v/v) horse serum and 1% (v/v) penicillin–streptomycin.
L6 myotubes were treated with specified drugs for the durations
and concentrations noted in the figure legends. Ferutinin, bongkrekic
acid (BKA), cyclosporin A (CsA), antimycin A, C2-ceramide, and bovine
serum albumin (BSA) were purchased from Sigma Aldrich (St.
Louis, MO).

2.2. GLUT4 translocation assays
GLUT4 translocation assays were performed as previously described [2]
in L6 myotubes treated with either 150 μM palmitic acid conjugated to
BSA or ethanol (control) in DMEM. Palmitate–BSA complexes were made
by combining BSA (20% BSA stock) and palmitic acid (200 mM palmitic
acid stock) in DMEM while vortexing at low speed at 50 1C. The
palmitate:BSA or ethanol:BSA (vehicle control) solutions were heated at
50 1C in a water bath for 20 min, then cooled to 37 1C for 15 min and
diluted in DMEM to the final concentrations indicated. The diluted
solutions were sterile filtered through a 0.45 μm PVDF membrane prior
to treatment of myotubes.
MOLECULAR METABOLISM 3 (2014) 124–134 & 2013 The Authors. Published by Elsevier GmbH. All
2.3. Western blotting
Following drug treatment, cells were washed twice with ice-cold
phosphate-buffered saline (PBS) and lysed with HEPES–EDTA–Sucrose
lysis buffer (250 mM sucrose, 20 mM HEPES pH 7.4, and 1 mM EDTA)
containing 2% sodium dodecyl sulfate (SDS). Whole cell lysates were
cleared of insoluble material by centrifugation [22]. Quadriceps
(�20 mg) were homogenized in 20� volumes (�400 μL) of radio-
immunoprecipitation assay (RIPA) buffer [150 mM NaCl, 10 mM nonyl
phenoxypolyethoxylethanol (NP)-40, 0.5% sodium deoxycholate, 0.1%
SDS, 50 mM Tris pH 7.5] containing protease inhibitors (Roche) and
phosphatase inhibitors (2 mM Na-orthovanadate, 1 mM Na-pyropho-
sphate, 10 mM Na-fluoride, 250 nM microcystin LR). Homogenates
were sonicated, rotated at 4 1C for 1 h and centrifuged at 16,000� g at
4 1C for 10 min. Lysates were diluted in 4� Laemmli buffer and
denatured at 65 1C for 5 min. Cellular proteins (20 mg) were resolved on
10% SDS-polyacrylamide gels or AnykD pre-cast gels (Bio-Rad
Laboratories, Hercules, CA) and electro-transferred overnight onto
nitrocellulose membranes. Equal protein loading was confirmed by
Ponceau staining. Protein expression was detected with the following
antibodies: phospho-Akt S473, total Akt, phospho-GSK3β S9, total
GSK3β, hexokinase 2, total pyruvate dehydrogenase (PDH) and glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH) (Cell Signaling, Beverly,
MA), phospho-insulin receptor (IR)/insulin-like growth factor 1 receptor
(IGF1R) Y1158/Y1162/Y1163 (Millipore, Billerica, MA), CypD (Mitos-
ciences, Eugene, OR), 14-3-3 (Santa Cruz Biotechnology, Dallas, Texas),
phospho-PDH S293 E1α (Novus Biologicals, Littleton, CO), GLUT4 R82
(generously provided by Dr. Thurl Harris, University of Virginia Depart-
ment of Pharmacology), myosin heavy chain (MHC) I (BA-F8) and MHC
IIa (sc-71) (generous gifts from Dr. Zhen Yan, University of Virginia
Robert M. Berne Cardiovascular Research Center). Primary antibodies
were detected using goat anti-mouse IgG (DyLight 800 conjugate) or
goat anti-rabbit IgG (DyLight 680 conjugate) polyclonal secondary
antibodies. Membranes were visualized, and protein band intensities
quantified, using the LI-COR ODYSSEY System and software (LI-COR,
Lincoln, NE, USA).

2.4. Animals
Food and water were provided ad libitum until the date of study and all
animal care was in compliance with NIH guidelines and the University of
Virginia Animal Care and Use Committee. The high fat diet (45% kcal as
fat) was purchased from Research Diets (D12451). Normal chow diet
was purchased from Harlan Teklad (diet 7912). Animals were main-
tained on a 12/12 light/dark schedule at 68–72 1F and housed 4–5 per
cage. The CypD KO mice were obtained from Dr. Jeffrey Molkentin [23]
and maintained on an inbred C57BL/6 background as heterozygous
breeding pairs. Glucose tolerance tests were performed on mice
that were fasted for 5–6 h prior to intraperitoneal injection of glucose
(1.5–2 g/kg). Blood glucose levels were monitored at indicated time
points using an Accu-check II glucometer (Roche Diagnostics). Clear-
ance of the glucose analog [3H]-2-deoxyglucose ([3H]-2-DOG) into
glucose-6-phosphate and [U-14C]-glucose into glycogen was measured
in quadriceps muscles as described previously [2,24].

2.5. Serum and tissue analyses
Serum insulin was determined by ELISA (Crystal Chem, Downers
Grove, IL). Non-esterified fatty acids were measured from serum
samples by colorimetric assay (WAKO diagnostics, Osaka Japan).
Transmission electron microscopy (TEM) was performed at the UVa
EM facility using finely diced tibialis cranialis muscle fixed in 4%
glutaraldehyde and 2.5% paraformaldehyde for 3 days prior to post-
rights reserved. www.molecularmetabolism.com 125
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fixation in osmium tetroxide. TEM images were taken using a JEOL
1230. Mitochondrial length in the TEM images was calculated with
ImageJ using a standard size scale (600 pixels¼1 μm). At least 170
intermyofibrillar and Z90 subsarcolemmal mitochondria from 2 animals
per genotype were quantified. Only mitochondria fully contained within
the borders of the TEM images were included in the analysis.
2.6. Measurement of sphingolipids, glycerolipids and phospholipid
derivatives
Powdered quadriceps muscles (�15 mg) were weighed and homo-
genized using a Polytron (Brinkman Instruments, Westbury, NY) in 1 mL
acidified methanol (0.1 N HCl) containing internal standard cocktails for
sphingolipids (containing 0.5 nmol each: C17-ceramide, C12-glucosylcer-
amide, C8-dihydroceramide, and C12-sphingomyelin) and glycerolipids
(0.1 nmol each of C15-diacylglycerol and C17-lysophosphatidic acid). The
homogenate was divided into two 500 μL aliquots for extraction of
sphingolipids and glycerolipids/phospholipid derivatives.
To measure sphingolipids, 250 μL of chloroform was added to the
homogenate, and the homogenate was incubated overnight at 48 1C.
After cooling to room temperature, 200 μL of 0.1 M KOH in methanol
was added, and the samples were incubated at 37 1C for 2 h. Lipids
were neutralized with 17 μL of glacial acetic acid and centrifuged at
5000� g for 10 min to pellet debris. One milliliter of chloroform and
2 mL of millipure H2O were added to the supernatant, vortexed, and
centrifuged at 1500� g for 15 min to separate the organic and aqueous
phases. The organic phase was dried under nitrogen prior to
resuspension in mobile phase solvent containing 97% acetonitrile, 2%
methanol, and 1% formic acid (v/v/v) supplemented with 5 mM
ammonium formate. Samples were subjected to normal phase LC/MS/
MS using a using a triple quadrupole mass spectrometer (Applied
Biosystems 4000 Q-Trap) coupled to a Shimadzu LC-20AD LC system
equipped with a Supelcosil LC NH2 column (50 cm� 2.1 mm, 3 μm)
and a multiple reaction monitoring scheme for naturally occurring
species of ceramide, glucosylceramide, and sphingomyelin. Data
acquisition was performed as we have described [25], and quantification
was carried out by measuring peak areas for each analyte using Analyst
1.5.1 software. Recovery was assessed using internal standards, and
values were normalized to tissue weight and dilution.
To measure glycerolipids and phospholipid derivatives, 250 μL of chloro-
form was added to 500 μL homogenate, and the homogenate was
incubated on ice for 60 min. Chloroform (250 μL) and 0.2 M NaOH in H2O
(250 μL) was added to the samples. The samples were vortexed,
centrifuged for 5 min at 1000� g and the organic phase was extracted
and dried under nitrogen. Dried lipids were resuspended in mobile phase
solvent (69% methanol, 31% H2O, 10 mM ammonium acetate) for LC/MS/
MS with appropriate Reverse Phase chromatographic columns. Diacylgly-
cerols (DAGs), phosphatidylcholines (PCs) and phosphatidylethanolamines
(PEs) were analyzed in positive mode after separation in a Discovery
(Supelco) C18 column (50 mm� 2.1 mm, 5 μm bead size). Mobile phase
A consisted of 69% methanol, 31% H2O, 10 mM ammonium acetate; and
mobile phase B consisted of 1:1 ethanol:isopropanol (v/v) supplemented
with 10 mM ammonium acetate. The solvent gradient was as follows:
1 min 100% solvent A, a linear gradient to reach 100% solvent B at
9 min, 1 min 100% solvent B, 2 min 100% solvent A. Total flow was
0.75 ml/min. DAGs were analyzed by monitoring product ions generated
by neutral loss of ammoniated acyl groups [RCOOHþNH3] from DAGs
ammonium adducts [MþNH4]

þ as previously described [26]. PCs were
analyzed by the production of the m/z 184 phosphocholine ion, whereas
PEs were analyzed by monitoring the product ions obtained after the loss
MOLECULAR METABOLISM 3 (2014) 124–134 & 2013 The Authors. Published by Elsevier GmbH. All
of a m/z 141.1 neutral fragment [27]. Phosphatidic acids (PAs), lisopho-
sphatidic acids (LPAs), and phosphatidylserines (PSs) were analyzed in
negative mode after separation in a Nucleodur (Macherey Nagel) C8
column (125 mm� 2 mm, 5 mm bead size). Mobile phase A consisted of
75% methanol, 25% H2O, 0.1% formic acid, and 1 mM ammonium
acetate. Mobile phase B consisted of 80% methanol, 20% chloroform,
0.1% formic acid, and 1 mM ammonium acetate. The solvent gradient
was as follows: 1 min 100% solvent A, 1 min 65% solvent B, a linear
gradient to reach 77% solvent B at 7 min, 3 min 100% solvent B, 2 min
100% solvent A. Total flow was 0.33 ml/min. LPAs were analyzed by the
production of the m/z 153 glycerophosphate ion, PAs were analyzed by
the production of an ion corresponding to the loss of an acyl chain (the
most intense ion was used), and PSs were analyzed by monitoring the
product ions obtained after the loss of a m/z 87.0 neutral fragment [28].
Optimal settings (DP, EP, CE, and CXP voltages; Ion Spray voltage, and
gas flows) were obtained by infusion of selected authentic phospholipids.
Quantification was carried out by measuring peak areas for each analyte
using Analyst 1.5.1. Recovery was assessed using appropriate internal
standards. LPAs, PAs, PCs, PEs, and PSs were normalized to C17-LPA,
and DAGs were normalized to C15-DAG. Total values were normalized to
tissue weight and dilution factor.
2.7. Calcium retention capacity
Isolated mitochondria were obtained from gastrocnemius muscles. Muscle
tissues were placed in 5 ml of ice-cold isolation buffer (in mM: 150
sucrose, 75 KCl, 50 Tris-base, 1 KH2PO4, 5 MgCl2, 1 EGTA, 0.2% BSA, pH
7.4) with 5 mg/ml of nagarse (Sigma P8038) for 1 min. Tissue was
homogenized using a polytron homogenizer. Isolation buffer (15 mL) was
further added and centrifuged at 700� g for 10 min at 4 1C. The
supernatant was then centrifuged at 10,000� g for 10 min at 4 1C. The
pellet obtained was resuspended in 15 mL of suspension buffer (in mM:
250 sucrose, 10 Tris-base, 0.1 EGTA, pH 7.4) and centrifuged at 8000� g
for 10 min at 4 1C. The mitochondrial pellet was then resuspended in
50 mL of suspension buffer. DC Protein Assay Kit (BioRad, USA) was used to
measure protein concentration in the buffer. Mitochondria (15 mg) were
suspended into a total volume of 100 mL using mitochondrial challenge
buffer (in mM: 250 sucrose, 10 MOPS, 0.05 EGTA, 10 Pi-Tris, pH 7.4) with
the addition of 50 mM of Na-succinate (Sigma S2378) and 10 μM rotenone
(Sigma R8875). Calcium Green 5N (1 mM; Invitrogen C3737) was added
and fluorescence was measured using an excitation/emission wavelength of
506/532 nm, respectively, in a FLUOstar omega plate reader (BMG
Labtech). Calcium chloride (83 nmol/mg protein) was added at regular
pulses as indicated.
2.8. Statistical analyses
Data were expressed as means7standard error of the mean (SEM) of
at least 3 independent experiments or animals per group. p-Values were
calculated by two-tailed Student's t-test, one-way ANOVA with either
Fisher's PLSD or Tukey's post-hoc test or two-way ANOVA with Sidak's
post-hoc test. Statistical significance was set at po0.05.
3. RESULTS

3.1. CypD KO mice are resistant to diet-induced glucose intolerance
and demonstrate improved skeletal muscle glucose uptake
To test the role of the mPTP in diet-induced insulin resistance, we fed
whole-body CypD knockout (KO) mice and wild type (WT) littermate
rights reserved. www.molecularmetabolism.com 127
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Original article
controls a low fat chow diet (LFD) or high fat diet (HFD) for a period of up
to 11 weeks. Glucose tolerance tests were performed at weeks 1, 4,
and 11 of HFD feeding. As shown in Figure 1A–D, WT mice had time-
dependent impairment in glucose clearance when challenged with an
intraperitoneal bolus of glucose, whereas CypD KO mice were largely
protected from glucose intolerance. The improved glucose tolerance was
not due to differences in adiposity (Figure 1E), body weight (Figure 1F
and Supplemental Figure S1), or food intake (2.9870.10 and
2.8870.06 g/mouse/night for WT and CypD KO, respectively). Also,
serum insulin, free fatty acid (FFA), or triglyceride levels were not
statistically different between genotypes in either the fed or fasted states
(Figure 1G–I). Therefore, these parameters were not underlying the
improved glucose clearance observed in the CypD KO mice.
To determine the tissue type(s) that accounted for the increased glucose
clearance, CypD KO and WT control mice fed a HFD for 11 weeks were
administered a glucose bolus containing [U-14C]-glucose and [3H]-2-
deoxyglucose ([3H]-2-DOG) (Figure 2). The clearance of [3H]-2-DOG from
the circulation was significantly higher in the CypD KO mice compared to
WT controls (Figure 2A and B). Analysis of tissue [3H]-2-DOG-phosphate
identified a 1.75-fold increase in glucose uptake in CypD KO quadriceps
muscle (Figure 2C, po0.01) compared to WT controls, with no significant
changes in glucose uptake in adipose tissue (Figure 2D, p¼0.12). Skeletal
muscle tissue of CypD KO mice also utilized more glucose for glycogen
storage compared to WT controls, as determined by a 2.1-fold increase in
the incorporation of [U-14C]-glucose into glycogen (Figure 2E, po0.05). In
contrast, hepatic glycogen synthesis was not significantly different between
128 MOLECULAR METABOLISM 3 (2014) 124–134
CypD KO and WT mice (Figure 2F, p¼0.24). These data point to an
important role for skeletal muscle, but not adipose or liver tissues, in whole
body glucose clearance in CypD KO mice.
3.2. Enhanced skeletal muscle glucose utilization in CypD KO mice is
independent of insulin signaling and lipid accumulation
To further investigate the mechanism underlying improved glucose tolerance
(increased glucose uptake and storage) in skeletal muscle from CypD KO
mice, we evaluated the expression of proteins that regulate glucose
metabolism and insulin signaling in this tissue. After 11 weeks of HFD, the
phosphorylation of Akt (S473) and GSK3β (S9), and the expression of GLUT4,
hexokinase 2 (HK2) and pyruvate dehydrogenase (PDH) were not altered in
skeletal muscle from CypD KO mice compared with WT mice (Figure 3A–D
and Supplemental Figures S2 and S3).
Lipid accumulation in skeletal muscles can lead to lipotoxicity and is
associated with insulin resistance. We therefore measured lipid accumula-
tion in skeletal muscle from high fat-fed mice injected with glucose. Mice
were harvested 90 min after glucose injection (1.5 g/kg) as this time point
correlates with the period during which we observe the improved glucose
uptake and metabolism (Figure 2). However, there were no observable
differences in the accumulation of ceramides, diacylglycerols (Figure 3E and
F), or other sphingolipids, glycerolipids or phospholipid derivatives in skeletal
muscle from CypD KO and WT mice (Supplemental Figures S4 and S5).
The proportion of oxidative skeletal muscle fibers is indicative of insulin
sensitivity in humans, as insulin resistant subjects have fewer type I oxidative
& 2013 The Authors. Published by Elsevier GmbH. All rights reserved. www.molecularmetabolism.com
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muscle fibers and more type II glycolytic fibers [29]. However, we found that
the ratio of type I oxidative fibers to type II glycolytic fibers was similar
between genotypes (Supplemental Figures S6 and S7). Furthermore, the level
of Thiobarbituric Acid Reactive Substances (TBARS) and protein carbonyls,
which are indicative of skeletal muscle oxidative damage, were not different
between CypD KO and WT mice on HFD (Supplemental Figure S8).
In sum, these data indicate that the mechanism whereby CypD ablation
protects from diet-induced glucose intolerance is likely downstream or
independent of metabolic enzyme expression, signal transduction defects,
lipotoxicity, and changes in either skeletal muscle fiber composition or
oxidative damage.

3.3. Improved mitochondrial morphology and calcium retention
capacity in CypD KO skeletal muscle
Mitochondrial swelling is reported in skeletal muscles of insulin resistant
mice fed a HFD [10]. To determine whether mitochondrial swelling was
MOLECULAR METABOLISM 3 (2014) 124–134 & 2013 The Authors. Published by Elsevier GmbH. All
altered in skeletal muscle lacking CypD, we analyzed mitochondrial
morphology by transmission electron microscopy (TEM). Consistent with
previous reports [10], we observed that the mitochondria within skeletal
muscle fibers of WT mice fed a HFD were vacuolated and swollen in
both intermyofibrillar and subsarcolemmal muscle regions. In contrast,
CypD KO skeletal muscle did not show any mitochondrial swelling or
accumulation of damaged organelles (Figure 4A–D). However, these
morphological differences in skeletal muscle mitochondria between WT
and CypD KO mice were not accompanied by changes in mitochondrial
size (Figure 4E), or activities of skeletal muscle oxidative enzymes
including mitochondrial citrate synthase and the β-oxidation enzymes
medium chain acyl-CoA dehydrogenase (MCAD) and β-hydroxyacyl-CoA
dehydrogenase (β-HAD) (Supplemental Figure S9). Similarly, enzyme
activities of ETC complexes I, II, and IV were comparable in skeletal
muscle from CypD KO and WT mice (Supplemental Figure S9).
Mitochondria isolated from quadriceps muscles of CypD KO and WT
rights reserved. www.molecularmetabolism.com 129
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mice also showed similar native ETC complex content and supramole-
cular assembly (Supplemental Figure S10), PDH activity (Supple-
mental Figure S3) and bioenergetic function (Supplemental Figure S11).
130 MOLECULAR METABOLISM 3 (2014) 124–134
In contrast, HFD feeding was associated with a decrease in skeletal
muscle mitochondrial calcium retention capacity in WT mice (Figure 4F),
an effect that was rescued by deletion of CypD (Figure 4G). These
& 2013 The Authors. Published by Elsevier GmbH. All rights reserved. www.molecularmetabolism.com



results indicate that CypD ablation may improve skeletal muscle glucose
uptake by preserving mitochondrial morphology and calcium handling in
insulin resistant skeletal muscle.
3.4. Inhibition of mPTP opening prevents multiple models of insulin
resistance in vitro
We next sought to determine if mPTP opening was sufficient or
necessary to induce insulin resistance, as determined by inhibition of
insulin-stimulated GLUT4 trafficking to the PM, an endpoint of the insulin
signaling pathway. We tested 2 well-documented mechanisms of mPTP
opening including mitochondrial calcium overload [30] and mitochondrial
O2
d production [16] in cultured L6 myotubes. Mitochondrial calcium

overload was induced by 30 min treatment with the ionophore ferutinin
[31,32]. Ferutinin treatment caused dose-dependent inhibition of insulin-
stimulated GLUT4 trafficking to the PM that was reversible with either of
the mPTP inhibitors cyclosporin A (CsA) or bongkrekic acid (BKA)
(Figure 5A). CsA inhibits CypD and calcineurin, whereas BKA inhibits
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another mPTP regulatory component, the adenine nucleotide translo-
cator (ANT). Since CsA is a dual inhibitor of both CypD and calcineurin,
we confirmed that the calcineurin inhibitor FK506 did not protect
myotubes from ferutinin-induced mPTP opening and insulin resistance
(Supplemental Figure S12). Ferutinin-induced insulin resistance did not
affect insulin signaling through Akt, nor was signaling altered by CsA or
BKA (Figure 5B).
We have previously demonstrated that the mitochondrial complex III
inhibitor antimycin A is sufficient to promote mitochondrial O2

d produc-
tion and cause insulin resistance [2]. Here we show that antimycin
A-induced insulin resistance requires mPTP opening, as CsA fully
protected L6 myotubes from defects in GLUT4 trafficking caused by
antimycin A (Figure 5C). Antimycin A-induced insulin resistance occurred
without significant changes in cellular ATP content (Supplemental Figure
S13). Previously, we have validated that antimycin A-induced insulin
resistance is due to O2

d rather than mitochondrial inhibition because it is
reversible by overexpression of MnSOD [2]. To confirm the requirement
of the mPTP for O2

d-induced insulin resistance, we also tested
C2-ceramide, which is an inducer of mitochondrial O2

d [33] and promotes
insulin resistance [34]. As shown in Figure 5C, CsA also completely
prevented insulin resistance caused by C2-ceramide.
Finally, we and others have demonstrated that low-dose (150 μM)
palmitate induces insulin resistance in L6 myotubes at the level of
GLUT4 trafficking to the PM, without disrupting insulin signaling [2,22].
Here we show that palmitate treatment reduced mitochondrial calcium
retention capacity (Figure 6A) and impaired insulin-stimulated GLUT4
trafficking to the PM (Figure 6B). Treatment of myotubes with CsA
prevented palmitate-induced insulin resistance at the level of GLUT4
translocation and improved mitochondrial calcium retention capacity
(Figure 6A and B). Overall, these data identify that CypD-dependent
opening of the mPTP is required for multiple models of skeletal muscle
insulin resistance in vitro and in vivo as outlined in Figure 6C.
4. DISCUSSION

Abnormal mitochondrial structure and/or function are correlated with
insulin resistance in skeletal muscle. In the present study, we
investigated whether the mPTP represents a link between mitochondrial
dysfunction and insulin resistance. The rationale for investigating the
mPTP included (1) the close proximity of the mPTP to the source of
mitochondrial O2

d production in the mitochondrial inner membrane;
(2) opening of the mPTP can be rapid and reversible, and is triggered by
insults that are associated with insulin resistance including mitochon-
drial O2

d and mitochondrial calcium overload; and (3) mPTP opening
serves as a potential means of communication between mitochondrial
stress and insulin-stimulated GLUT4 translocation to the PM and glucose
uptake into the cytoplasm. We identified that genetic deletion of CypD,
which decreases the probability of mPTP opening [18–21], protected
mice from HFD-induced glucose intolerance and increased glucose
uptake specifically in skeletal muscle. The increased glucose uptake in
skeletal muscle was associated with preserved mitochondrial morphol-
ogy and improved mitochondrial calcium handling. In cultured muscle
cells, we found that mitochondrial O2

d, mitochondrial calcium overload,
and palmitate all require mPTP opening for induction of insulin
resistance. These results position the mPTP at a critical intersection
between alterations in mitochondrial function and insulin resistance in
skeletal muscle.
It is intriguing that the improved glucose tolerance in high fat-fed CypD
KO mice was associated with improved glucose uptake in skeletal
rights reserved. www.molecularmetabolism.com 131
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muscle, but not in liver or adipose tissue. This tissue-specific phenotype
may be the result of structural and physiological differences in the mPTP
complex in skeletal muscle, compared to adipose and liver tissues.
For example, skeletal muscle expresses the mPTP component ANT1,
whereas the liver lacks ANT1, predominantly expresses ANT2 and has
lower levels of ANT3 and ANT4 [35]. The tissue-specific isoforms of ANT
also have distinct mitochondrial localization within the inner membrane
[35] and contain subtle structural variations that may affect interactions
between pore components. Supporting this notion, ANT1 is reported to
have a higher binding affinity for CypD than ANT2 [35], and this CypD–
ANT interaction promotes mPTP opening [18–21]. Another tissue-
specific difference in mPTP composition involves HK2, which is
expressed in skeletal muscle, but not in the liver. HK2 binds to the
voltage-dependent anion channel (VDAC) in the mitochondrial outer
132 MOLECULAR METABOLISM 3 (2014) 124–134
membrane and stabilizes the structure to block mPTP opening [36,37],
providing a molecular connection between glucose uptake and mPTP
activity in skeletal muscle. Furthermore, this structural heterogeneity is
known to dictate mPTP activity in response to metabolic stress, as the
mPTP shows tissue-specific sensitivity to opening [38]. Therefore,
variations in the composition and function of the mPTP may contribute
to different pore dynamics in skeletal muscle and confer the tissue-
specific regulation of insulin sensitivity.
Insulin resistance in muscle is frequently, but not always, associated with
defects in the insulin signaling pathway. Our data demonstrate that mPTP
opening promotes insulin resistance via a mechanism that does not involve
alterations in the canonical insulin pathway. For example, induction of mPTP
opening with insults that increase mitochondrial O2

d and calcium caused
insulin resistance at GLUT4 trafficking, but did not affect the insulin
signaling pathway. Similarly, inhibition of mPTP opening did not improve
insulin signal transduction in vitro or in vivo. This disconnect between
insulin-stimulated GLUT4 trafficking and signaling through the canonical
insulin pathway (e.g. IRS/PI3K/Akt/AS160) has been described by our group
previously [2,22], and is in agreement with other studies showing that lipid-
induced impairment in the formation of GLUT4 vesicles [39] and their
translocation to the PM [34] do not involve altered signaling through the
canonical pathway. This phenomenon is also observed in humans, where
impaired muscle glucose transport in insulin resistant individuals or type
2 diabetes patients is not associated with defects in Akt activation [40,41].
In agreement with these previous studies, the data presented herein
indicate that the mechanism linking mPTP opening to insulin resistance
does not involve the canonical insulin signaling pathway through Akt.
The precise molecular mechanism whereby mPTP opening triggers insulin
resistance is unclear, but the broad spectrum of mitochondrial ions and
metabolites that escape the mitochondrial matrix during mPTP opening
provides numerous possibilities. For example, calcium homeostasis is a
critical function of mitochondria that is altered in insulin resistance. Normally,
mitochondria serve as an intracellular calcium buffer to help maintain calcium
homeostasis [42], with the mPTP opening transiently to act as a calcium
release valve [19]. However, during periods of cellular stress, calcium
accumulation in the mitochondrial matrix triggers high-conductance opening
of the mPTP, which results in a loss of ionic gradients between the cytoplasm
and mitochondrial matrix and an inability to retain matrix calcium [17,42].
Calcium retention capacity estimates the relative amount of calcium that
mitochondria can store before undergoing mPTP opening and thus is a
measure of both mPTP opening and mitochondrial quality [43]. In this study,
we observed that high fat feeding reduces calcium retention capacity and
sensitizes skeletal muscle mitochondria to mPTP opening, an effect that was
reversed by deletion of CypD. However, apart from calcium [44], it is possible
that blocking mPTP opening may sequester other ions such as iron [45,46]
and metabolites such as fumarate [47] or acylcarnitines [48,49] that are
associated with impaired insulin-stimulated glucose metabolism, and thus
help maintain maximal insulin action in skeletal muscle. The identification of
the precise molecules that pass through the mPTP to antagonize insulin
action will require further elucidation.
It is thought that nutrient overload can alter mitochondrial shape [50], and
insulin resistant skeletal muscle often contains swollen, misshapen
mitochondria with damaged membranes [10,51]. In WT mice fed a HFD,
we observe mitochondrial swelling and accumulation of damaged
organelles in both intermyofibrillar and subsarcolemmal muscle regions,
similar to the results seen by Bonnard et al. in mice fed a HFD for 16
weeks [10]. Remarkably, CypD KO muscle mitochondria were not swollen
and demonstrated minimal evidence of damaged organelles compared to
WT muscle. Our data therefore support findings of other groups which
document that inhibition of CypD prevents mitochondrial swelling [23,52].
& 2013 The Authors. Published by Elsevier GmbH. All rights reserved. www.molecularmetabolism.com



However, the molecular significance of mPTP-mediated swelling and
regulation of muscle fiber morphology in the context of insulin resistance
remains to be resolved.
In summary, our data show that opening of the mPTP is required for insulin
resistance in skeletal muscle. This finding is important because it
demonstrates a mechanism whereby mitochondrial dysfunction is causally
linked to insulin resistance. Despite the question regarding whether
mitochondrial dysfunction is a cause or consequence of insulin resistance
[12], our current data suggest that in the early onset of diet-induced insulin
resistance in skeletal muscle that mitochondrial dysfunction precedes
impairment in insulin action. However, we acknowledge that our data do
not rule out the possibility that insulin resistance may also occur upstream of
mitochondrial dysfunction in different experimental conditions or genetic
models. For example, the muscle insulin receptor knockout (MIRKO) mouse
has skeletal muscle mitochondrial dysfunction [53]. Since mPTP opening is
indicative of mitochondrial stress, one interpretation of the current data is that
mPTP-induced insulin resistance represents an effort by the cell to decrease
nutrient influx and reduce mitochondrial stress. This theory that insulin
resistance may be a protective mechanism was originally hypothesized by
Unger [54] and is supported by more recent studies [2,55–57]. Although
insulin resistance may be protective in an acute setting, chronic insulin
resistance promotes metabolic disease. Thus, the development of a muscle-
specific mPTP inhibitor may have beneficial effects on glucose clearance in
diabetics. Supporting this concept is the fact that metformin, one of the most
effective anti-diabetes drugs, is a weak mPTP inhibitor [58] and improves
skeletal muscle mitochondrial function and insulin sensitivity [59,60].
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