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Review
Glossary

Bisulfite genomic sequencing: sequencing of bisulfite-treated DNA allowing

resolution of the methylation state of every cytosine in the target sequence, at

single-molecule resolution. This is considered the ‘gold standard’ for DNA

methylation analysis.

Bisulfite modification: exploits the different sensitivities of cytosine and 5-meC

to deamination by bisulfite under acidic conditions in which cytosine under-

goes conversion to uracil, whereas 5-meC remains unreactive.
There are over 28 million CpG sites in the human ge-
nome. Assessing the methylation status of each of these
sites will be required to understand fully the role of DNA
methylation in health and disease. Genome-wide analy-
sis, using arrays and high-throughput sequencing, has
enabled assessment of large fractions of the methylome,
but each protocol comes with unique advantages and
disadvantages. Notably, except for whole-genome bisul-
fite sequencing, most commonly used genome-wide
methods detect <5% of all CpG sites. Here, we discuss
approaches for methylome studies and compare ge-
nome coverage of promoters, genes, and intergenic
regions, and capacity to quantitate individual CpG meth-
ylation states. Finally, we examine the extent of pub-
lished cancer methylomes that have been generated
using genome-wide approaches.

DNA methylation and (de)regulation of the epigenome
Epigenetic regulation (see Glossary) of normal cellular pro-
cesses is typically driven in a cell type-dependent manner,
requiring a complex interplay between different layers of
epigenetic information, including DNA methylation, nucle-
osome positions, histone modifications, and expression of
noncoding RNA. Several epigenetic mechanisms help estab-
lish and consolidate the correct higher-order chromatin
structures and gene-expression patterns during differenti-
ation and development. Of these, DNA methylation is the
best-studied epigenetic modification in mammals. Precise
DNA methylation patterns are established during embry-
onic development and are mitotically inherited through
multiple cellular divisions. DNA methylation is necessary
for normal cell development [1,2], underpinning X chromo-
some inactivation [3,4], control of some tissue-specific gene
expression, and regulation of imprinted alleles [2,5,6], with
widespread effects on cellular growth and genomic stability
[7–9].

DNA methylation in mammalian cells is characterized
by the addition of a methyl group at the carbon-5 position of
cytosine residues within CpG dinucleotides through the
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action of DNA methyltransferase enzymes, forming 5-
methylcytosine (5MeC) [10]. There are approximately 28
million CpG sites in the genome, but these are not evenly
distributed; in fact, the bulk of the genome is depleted of
CpG sites with less than one quarter of the expected
frequency. By contrast, clusters of CpG sites occur at the
expected frequency, termed ‘CpG islands’, and these com-
monly span promoters of house-keeping genes. Promoter
CpG islands typically remain unmethylated in normal cells
and are associated with active gene expression during
differentiation (CpG island, promoter; Figure 1). By con-
trast, methylated CpG island promoters are associated
with gene repression. Regions of intermediate CpG densi-
ties also exist across the genome, often in the body of genes.
Unlike CpG island promoters, extensive exonic or genic
methylation is typically associated with active gene ex-
pression (genic; Figure 1). CpG island ‘shores’ are regions
of comparatively low CpG density, located approximately
2 kb from CpG islands [11]. Shores also exhibit tissue- and
cancer-specific differential methylation and are associated
with gene repression [12]. Beyond CpG islands and shores,
the remainder of genome displays a lower than expected
frequency of CpG sites and is typically methylated in
normal cells (intergenic; Figure 1). This includes CpG-poor
promoters and distal enhancers that regulate tissue-spe-
cific genes (tissue specific; Figure 1).

Despite extensive knowledge of DNA methylation
events, the underlying biology largely remains an enigma,
particularly the mechanism by which it is altered in dis-
eased states, such as cancer. Normal epigenetic processes
are disrupted during the initiation and progression of
Cancer methylome: the map of DNA methylation across a cancer cell genome.

DNA methylation: the addition of a methyl CH3 group to the cytosine base at

the carbon 5 position (5-meC) in DNA; found primarily in the context of CpG

dinucleotides in eukaryotes.

Epigenetic mechanisms: the mechanisms that govern the role of epigenetics in

gene expression without changing the underlying DNA sequence; include

chromatin structure, histone modifications, nucleosome positioning, and DNA

methylation.

Epigenetics: the study of changes in gene expression or phenotype of a cell,

caused by mechanisms other than changes in the underlying DNA sequence.

Methylome: the genome-wide map of DNA methylation.
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Figure 1. DNA methylation and (de)regulation of the genome. A schematic representation of the methylome and a summary of major changes that occur in cancer cells. CpG

islands are often associated with gene promoters and are resistant to DNA methylation in normal cells (A) (green). Gene expression can occur, and is highly correlated with high

levels of gene body (genic) methylation. CpG-poor regions (intergenic), with the exception of enhancers, are typically methylated in normal cells. Similarly, CpG-poor promoters

are silenced by DNA methylation and exhibit a closed chromatin structure unless gene expression is required (tissue specific). In cancer cells (B), CpG islands are prone to DNA

hypermethylation, which results in aberrant gene silencing (e.g., of tumor suppressor genes). Concomitant hypomethylation of intergenic regions and CpG-poor promoters

contributes to genomic instability and aberrant gene expression (e.g., of oncogenes), respectively. White circle, unmethylated CpG; black circle, methylated CpG.
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cancer, including global changes in DNA methylation pat-
terns [13]. CpG island hypermethylation is common and
often associated with the silencing of tumor suppressor
genes and downstream signaling pathways [13–16]
(Figure 1). Whereas CpG islands become susceptible to
DNA methyltransferase activity, CpG-poor regions under-
go hypomethylation during transformation, resulting in an
overall decrease in total genomic 5MeC in cancer cells
[13,14,16] (Figure 1). The exception includes CpG-poor,
distal enhancers that are unmethylated in normal cells
but often gain methylation [17,18] in cancer cells
(Figure 1). Global hypomethylation in cancer is thought
to contribute to genomic instability and aberrant expres-
sion of some oncogenes, such as MYC [19] (Figure 1), which
results in deregulation of cellular processes.

The opportunity now exists to provide more compre-
hensive maps of cancer DNA methylomes using whole
genome-based technologies [20–25]. These technologies
will help provide greater insight into the underlying
mechanism and location of cancer-specific methylation
changes at individual CpG residues and may aid in further
identification of potential epigenetic-based cancer bio-
markers.

Genome-wide methylome technologies
DNA methylation analyses were initially restricted to
relatively localized CpG-rich regions of the genome,
but several methods have now been developed to
map DNA methylation on a genomic scale. Here, we
describe four different genome-wide approaches (summa-
rized in Figure 2): whole-genome bisulfite sequencing
(WGBS); methyl-binding domain capture sequencing
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(MBDCap-Seq); reduced-representation-bisulfite-se-
quencing (RRBS); and Infinium HumanMethylation450
BeadChips (HM450, Illumina). We discuss some of the
requirements, merits, and challenges that should be con-
sidered when choosing a methylome technology to ensure
that it will be informative.

Whole-genome bisulfite sequencing

Bisulfite-sequencing, which was developed in 1992–1994
by Frommer and Clark [26,27], is considered the ‘gold
standard’ for DNA methylation analyses because CpG
methylation can be measured at single-base resolution.
DNA is treated with sodium bisulfite to convert cytosine to
uracil, which is converted to thymine after PCR amplifica-
tion, whereas 5MeC residues are not converted and remain
as cytosines [27]. Clonal sequencing of bisulfite-converted
PCR products from a single genomic region have typified
the approach until recently; however, the development of
high-throughput sequencing now facilitates the generation
of genome-wide, single-base resolution DNA methylation
maps from bisulfite-converted DNA (Figure 2). To perform
WGBS, genomic DNA (1–5 mg) is sheared and ligated to
methylated adaptors before size selection and bisulfite
conversion, followed by library construction and high-
throughput sequencing (Figure 2). More than 500 million
paired-end reads are required to achieve approximately
30-fold coverage of the 28 217 009 CpG sites on autosomes
and sex chromosomes; typically approximately 95% of all
CpG sites in the genome can be assessed using WBGS. The
first methylome was generated from the Arabidopsis thali-
ana genome in 2008 [28,29], and the first human methy-
lomes of embryonic stem cells and IMR90 fibroblasts were
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Figure 2. Summary of techniques to interrogate whole-genome DNA methylation. The figure compares the maximum coverage of whole-genome bisulfite sequencing

(WGBS, orange; most genomic coverage), MBD capture sequencing (MBDCap-Seq, purple), reduced representation bisulfite sequencing (RRBS, blue), and

HumanMethylation450 BeadChip (HM450, green) assays for measuring genome-wide DNA methylation. A summary of the standard workflow for each method is

shown (colored boxes, left). The amount of genomic DNA or formalin-fixed paraffin-embedded tissue (FFPE) needed to perform each technique reliably ranges from 0.01 ug

(RRBS) to 5 ug (WGBS), which may influence platform selection. The minimum number of unique sequencing reads varies from 10 million reads (RRBS) to >500 million

reads (WGBS), whereas the HM450 platform utilizes array technology. Therefore, the cost of each technique is approximately proportional to the amount of data needed to

analyze reliably the data, and the coverage of the genome [range, 1.7% (HM450) – �95% (WBGS)].
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reported by Lister et al. in 2009 [22]. To date, relatively few
WGBS human cancer [30–32] or related [33] methylomes
have been generated, likely due to the overall cost of the
assay, technical expertise, and downstream computational
requirements.

WGBS has the advantage of providing single-nucleo-
tide resolution and whole-genome coverage. However, it
typically requires relatively large quantities of DNA (1–5
ug) and accurate interpretation requires computational
expertise. Commercial bisulfite conversion reagents exist
in kit form; yet, standard WGBS protocol/s or library
preparation methods are just beginning to emerge. Se-
quencing providers are performing WGBS using custom-
ized in-house methods, but the technique currently is not
particularly amenable to high-throughput use, particular-
ly in a clinical setting, partly due to the extensive hands-on
and depth of sequencing required. Finally, the bioinfor-
matics requirements for data interpretation present addi-
tional challenges. Initial WGBS studies relied upon in-
house adaptations of genome sequencing pipelines to bi-
sulfite data and unpublished bespoke analysis pipelines
[22,34–36]; however, public tools for the analysis of WGBS
data are being developed as the technique becomes more
accessible.
Enrichment-based technologies

Genome-wide affinity-based methods rely on enrichment
of methylated regions, followed by microarray hybridiza-
tion or next-generation sequencing (Figure 2). Two of the
common enrichment approaches include methyl-DNA
immunoprecipitation (MeDIP), which uses a monoclonal
antibody specific for 5-methylcytosine [37] and affinity
capture with MBDCap proteins [38,39]. Both MeDIP
and MBDCap can be combined with next-generation se-
quencing (MeDIP-Seq and MBDCap-Seq). However, due to
bias in the different capture technologies, distinctive geno-
mic regions are commonly interrogated [40]. MeDIP is
based on immunoprecipitation of single-stranded DNA
fragments and targets methylated regions of low CpG
density (e.g., intergenic regions). By contrast, the MBD-
based strategy captures double-stranded methylated DNA
fragments and favors enrichment of CpG-dense regions
(e.g., CpG islands) [41].

Here, we highlight MBDCap-Seq as one of the most
widely used capture approaches. The workflow for
MBDCap-Seq exhibits similarities to WGBS, but is devoid
of a bisulfite conversion step (Figure 2). To perform
MBDCap-Seq, genomic DNA (0.2–1 mg) is sonicated
before capturing methylated DNA with MBD protein
77
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coupled to streptavidin beads. Following capture, the
bound methylated DNA can be eluted as a single fraction
or in a step-wise elution series to enrich different
CpG densities. Enriched DNA is then subjected to library
preparation and high-throughput sequencing (Figure 2).
Although the method is more efficient with amounts of
>�0.2-mg DNA from fresh-frozen tissue, genomic DNA
preparations for cancer methylomes can also be isolated
from formaldehyde-fixed paraffin embedded tissue
(FFPET), and is amenable to MBDCap-seq using as little
as approximately 0.5 mg of DNA. Approximately 30 million
single-end reads are required for accurate interpretation of
data. MBDCap-Seq performed on fully methylated DNA can
yield approximately 18% coverage of the genome because it
captures approximately 5 million methylated CpG sites
(Figure 2).

MBDCap-seq is a simple approach that does not re-
quire bisulfite conversion and can be used to identify
differentially methylated regions [40,41]. However, a
notable disadvantage of MBDCap-Seq is that it does
not provide single-nucleotide resolution. Rather, it iden-
tifies regions containing multiple methylated CpG sites
typically at CpG-rich regions in a readout similar to
chromatin immunoprecipitation (ChIP-Seq). Further-
more, MBDCap-Seq is only marginally quantitative be-
cause the number of reads mapping to a particular
region of the genome depends on the density of methyl-
ated CpG sites [41].

Reduced representative bisulfite sequencing

RRBS is an efficient and high-throughput technique used
to analyze methylation profiles at a single-nucleotide level
from regions of high CpG content (e.g., CpG islands), but
does not interrogate intergenic or lowly methylated regions
of the genome (Figure 2) [24,42]. RRBS relies first on the
digestion of genomic DNA (0.01–0.03 mg) with a methyla-
tion-insensitive restriction enzyme, such as MspI (C0CGG),
that selects genomic regions with moderate to high CpG
density, such as CpG islands, followed by DNA size frac-
tionation (Figure 2). This ‘reduced representation’ of the
genome is sequenced similarly to WGBS to generate a
single-base pair resolution DNA methylation map
[24,42]. A minimum of approximately 10 million sequenc-
ing reads are required for the downstream analysis of
RRBS data sets, leading to approximately 3.7% actual
coverage of CpG dinucleotides genome-wide or approxi-
mately 1 million CpG sites.

One of the main advantages of RRBS is that it is more
cost-effective than WGBS, because it targets bisulfite se-
quencing to an enriched population of the genome, while
retaining single-nucleotide resolution. RRBS data are re-
stricted to regions with moderate to high CpG density, and
are enriched for promoter-associated CpG islands. Howev-
er, RRBS interrogates only <4% of the approximately 28
million CpG dinucleotides distributed throughout the hu-
man genome. Thus, a lack of coverage at intergenic and
distal regulatory elements is a potential disadvantage of
the method. In addition, although RRBS data can be
processed using similar WGBS pipelines (e.g., [43,44]) data
analysis requires a similar level of expertise and, hence,
involves similar challenges.
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Infinium HumanMethylation450 BeadChip

The HM450 is an attractive option for genome-wide DNA
methylation analyses in a variety of cell types. It is suitable
for clinical samples, including FFPE tissue, it requires
little starting material (approximately 0.5 mg), is cost ef-
fective, and can be used in a high-throughput manner. The
technology is distinct from the other methylation technol-
ogies described above, in that it does not depend on capture
or enrichment, or use of restriction enzymes or high-
throughput sequencing for data generation (Figure 2).
The HM450 protocol begins with the bisulfite conversion
of genomic DNA (0.5–1 mg) (Figure 2). Converted genomic
DNA is hybridized to arrays that contain predesigned
probes to distinguish chemically methylated (cytosine)
and unmethylated (converted to uracil). A single-base
extension step incorporates a labeled nucleotide that is
fluorescently stained. Scanning of the array detects the
ratio of fluorescent signal arising from the unmethylated
probe compared with the methylated probe, allowing the
level of methylation to be determined (Figure 2).

The HM450 BeadChip interrogates 482 422 cytosines
across the human genome, which represents only approxi-
mately 1.7% of all CpG sites in the human genome
(Figure 2), substantially less than other methods. Howev-
er, these sites are enriched for CpG (99.3%) residues and
almost half (>41%, approximately 197 790 CpG sites) of
the probes on the array cover intergenic regions, such as
bioinformatically predicted enhancers, DNase I hypersen-
sitive sites, and validated differentially methylated
regions (DMRs) [45,46]. HM450 can be performed on both
fresh-frozen and FFPE DNA, and methods are now being
optimized to enable smaller amounts (0.2 mg) to be profiled
efficiently [47]. Therefore, HM450 has become the method
of choice for genome-wide DNA methylation analyses of
profile large cohorts, because it requires a low amount of
input material and it is cost effective. However, when using
HM450 BeadChip technology, there are also some issues to
consider. First, the design is heavily biased due to prese-
lection and inclusion of probes that interrogate only certain
CpG sites that have been previously identified in methyla-
tion-based assays and, therefore, the design is not hypoth-
esis neutral. Second, it is assumed that CpG sites located
adjacent to those interrogated by the probes will be simi-
larly un/methylated, which is known as the ‘co-methylation
assumption’ [48]. Finally, there are behavioral differences
between the two types of probe design on the array, and the
filtering of probes may be affected by single nucleotide
polymorphisms, which need to be factored in to the data
analysis pipelines [49].

Comparison of genome-wide coverage
The major advantage of WGBS is that, in theory, the
methylation state of almost every single CpG dinucleotide
(total 28 217 009) in the genome can be determined at
single molecule resolution (Figure 3A,B). By contrast,
with MBDCap-Seq, RRBS, and HM450, there is substan-
tially less coverage with approximately 5 040 790, approx-
imately 1 054 280, and 482 422 individual CpG sites,
respectively, interrogated (Figure 3A,B). Notably, only a
proportion of CpG sites are commonly interrogated by all
three techniques (Figure 3A). MBDCap-Seq has greater
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Figure 3. Proportion of promoters, genic, and intergenic regions interrogated by each technique. (A) The overlap and relative proportions of whole-genome bisulfite

sequencing (WGBS), MBD capture sequencing (MBDCap-Seq), reduced representation bisulfite sequencing (RRBS), and HumanMethylation450 BeadChip (HM450) is

plotted in a Venn diagram. (B) The total number of CpG dinucleotides (based on fully methylated DNA) covered by each technique is shown, and ranges from 482 422

(RRBS) to 27 031 201 (WBGS). Each CpG site is located in a promoter or genic or intergenic region of the genome and the distribution of these sites is detailed in the upper

panel. The number of CpG sites covered by each technique that overlap CpG-rich regions (CpG island and CpG shores) is also shown in the lower panel. (C) WGBS covers

approximately 95% of all CpG sites in the genome, most of which are located in intergenic or genic regions (approximately 12 million in each category) and the remainder in

promoters (approximately 2 million). By contrast, HM450 interrogates the DNA methylation state of approximately 120 000 intergenic, approximately 170 000 genic, and

approximately 180 000 promoter CpG sites. Data are expressed as a percentage of all CpG sites in the human genome.
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coverage of promoter (approximately 1 281 140) and CpG
island (approximately 1 572 590) CpG sites, as well as
greater regional coverage of intergenic regions (approxi-
mately 1 571 060) and shores (approximately 902 060), com-
pared with RRBS and HM450 arrays (Figure 3B). Moreover,
when the genome is sorted into functional categories (pro-
moter, genic, or intergenic; Figure 3B), it becomes clear that
each technique, except for WGBS, is biased for different
regulatory regions of the genome (Figure 3B,C). For exam-
ple, MBDCap-Seq interrogates 1 572 591 CpG island sites
(approximately 31% of all CpG sites assayed using
MBDCap-Seq) compared with WGBS, which interrogates
all 2 019 500 CpG island sites in the genome (approximately
7.5% of all CpG sites assayed using WGBS). Although RRBS
covers less than 5% of all CpG sites in the human genome
(Figure 3B), it enriches for regions of the genome that have a
high CpG content and of the more than approximately 1
million CpG sites interrogated, almost 50% (504 446) are
within promoter regions and 641 182 CpG sites are within
CpG islands. Although HM450 arrays cover the fewest
number of CpG sites (Figure 3B,C), the arrays provide
good coverage of methylation at CpG island promoters.
Nonetheless, WGBS is the only method to date that best
represents regions of lower CpG density, such as intergenic
‘gene deserts’, partially methylated domains, and distal
regulatory elements (e.g., enhancers) that potentially
facilitates control of tissue-specific expression and noncod-
ing RNA expression, which are commonly deregulated in
cancer.

Comparison of DNA methylation data output
Consistent with variations in genomic coverage, the data
output of the genome-wide DNA methylation approaches
differs considerably (summarized in Figure 4). We have used
CAV1 and GSTP1 gene promoters to illustrate the differ-
ences in methylation signal and coverage across CpG island
gene promoters and adjacent intergenic and genic regions
(Figure 4A,B). With the exception of MBDCap-Seq, WGBS,
RRBS, and HM450 all measure both unmethylated and
methylated cytosines at single CpG sites and, therefore,
are fully quantitative, but the accuracy depends on cover-
age. Notable is the explicit detail of CpG methylation in
WGBS data (Figure 4C,D). With sufficient sequencing
depth, individual WGBS and RRBS sequencing reads allow
the separation of DNA methylation data for each strand, the
detection of cytosine methylation in a non-CpG context [22],
heterogeneous patterns, and allele-specific DNA methyla-
tion (Figure 4C,D). Current bisulfite-based methodologies
cannot distinguish between 5mC and other novel structur-
ally similar DNA modifications that have recently been
discovered, including 5-hydroxymethylcytosine (5hmC),
5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). This
79
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Figure 4. Comparison of DNA methylation approaches. The signal from MBD capture sequencing (MBDCap-Seq) is averaged and not fully quantitative, whereas explicit

detail can be viewed in whole-genome bisulfite sequencing (WGBS) data. (A,B) Screenshots of glutathione-S-transferase P1 gene (GSTP1) and caveolin 1 (CAV1) gene

promoters and adjacent intergenic and genic regions show that reduced representation bisulfite sequencing (RRBS) and HumanMethylation450 BeadChip (HM450) largely

capture CpG sites surrounding promoters, but few CpG sites in the genic and intergenic regions of these genes. MBDCap is not fully quantitative and relies on accurate

analysis and interpretation of the raw signal. (C) Individual sequencing reads allow the separation of DNA methylation data by genomic sequence (e.g., single nucleotide

polymorphisms; SNP), demonstrating the phenomenon of allele-specific DNA methylation. (D) Heterogeneous methylation (defined as either sporadic methylation within

an individual DNA molecule or differential levels of methylation between individual DNA molecules) can be observed in WGBS data, as can the unique information obtained

from the forward- and reverse-sequencing strands.
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may have consequences for data interpretation, potentially
leading to an overestimation of DNA methylation levels.
However, innovative detection methods are being devel-
oped, such as those that allow specific detection of 5mC
and 5hmC [50,51], which opens up future possibilities to
develop whole-genome approaches to assess all methylation
modifications simultaneously.

Bioinformatics
A particular challenge of any genome-wide approach is the
downstream computational requirements for obtaining
meaningful outcomes. The main disadvantages of WGBS
80
at the present time are the onerous computational
resources needed for read alignment [43,52–54], and the
current need to develop custom bioinformatics scripts.
Additionally, WGBS studies to date have performed few,
if any, replicates, which severely limits statistical power
and the ability to distinguish actual alterations from bio-
logical variability [55]. RRBS also requires bioinformatics
expertise for analysis; however, the greatly reduced
amount of data produced per experiment requires compar-
atively modest computational resources [56]. MBDCap-
Seq requires less bioinformatics expertise and can be
analyzed using established algorithms [41,57]. However,
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Figure 5. Cancer methylomes. (A) Cancer methylomes of at least 21 broad cancer types have been completed, representing >8000 individual data sets. Most DNA

methylomes have been produced for breast (approximately 14% of all methylomes), lung (approximately 12% of all methylomes), and brain tumors (approximately 11% of

all methylomes). Data from rare cancers are also beginning to be performed (nerve; one methylome, approximately 0.01% of all methylomes). The data are expressed as

percentage of all methylomes produced, regardless of tumor origin, and show a wide distribution of methylomes across a broad range of cancer types. (B) We compared

the techniques used to generate each methylome. HumanMethylation450 BeadChip (HM450; green) clearly dominates as the method of choice for high-throughput

methylation studies. Currently, only four whole-genome bisulfite sequencing (WGBS; orange) data sets have been produced (colon). MBD capture sequencing (MBDCap-

Seq; purple) has been used to measure DNA methylation in blood, brain, endometrial, and lung tumors, whereas the use of reduced representation bisulfite sequencing

(RRBS; blue) has been limited to blood cancer. (C) Key online resources for accessing publicly available methylation data are summarized.
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MBDCap-Seq is not fully quantitative and, therefore,
relies on accurate analysis and interpretation of the raw
signal. In particular, failure to control for copy-number
alterations can lead to inaccuracies in methylation mea-
surements, an issue that affects cancer samples [57]. More
mature bioinformatics analysis pipelines exist for HM450
[58–60], and these pipelines already include normalization
measures to analyze data [49,59], meaning that these
arrays may be the most accessible genome-wide DNA
methylation assay.

Sequencing coverage
The amount of sequencing needed to yield meaningful
results differs substantially between techniques. The main
disadvantage of WGBS at the present time is the cost of
sequencing, which requires >500 million reads (100 bp
paired-end) per sample (approximately 30 x coverage), or
approximately three sequencing lanes on the Illumina
HiSeq. At a ‘shallow’ sequencing depth (1–5 x coverage),
regions of high and low average methylation can be quan-
titated, whereas at a ‘deep’ sequencing depth (30 x), indi-
vidual CpG sites can be accurately quantitated. With
sufficient coverage, it is possible to apply adaptations of
genomic variant detection algorithms [61] to interrogate
the genotype and methylation status of the samples simul-
taneously, enabling applications such as the assessment of
allele-specific methylation (Figure 4C). By contrast,
MBDCap-Seq only requires short read chemistry (50 bp
single-end) and a relatively ‘shallow’ sequencing depth
(approximately 30 million reads per sample), allowing
six samples to be multiplexed per HiSeq lane. However,
RRBS requires only 10 million reads per sample (Figure 2).
Notably, the sequencing depth required correlates with the
genome coverage capability of each approach. HM450
arrays do not rely on high-throughput sequencing for data
generation.

Summary of cancer methylome studies
To date, approximately 8000 cancer methylomes have been
generated (Figure 5A). Most major cancers have at least
one representative methylome, with no one type being
overrepresented as a proportion of all methylomes avail-
able (Figure 5A). However, it is clear that the HM450
arrays dominate studies investigating cancer methylomes
(Figure 5B). Indeed, the Cancer Genome Atlas consortium
(TCGA; http://cancergenome.nih.gov) is a portal for under-
standing the genomic basis of more than 200 human cancer
types. Among the massive data sets that are accessible to
all researchers, TCGA has profiled the DNA methylome in
approximately 7500 samples using the HM450 methodol-
ogy [62–66]. These data sets largely comprise the newer,
HM450 array. To date, only two deeply sequenced WGBS of
primary tumors have been completed [30,32], three shal-
lowly sequenced WGBS tumors (all colon; Figure 5B) [31]
and approximately 55 RRBS analyses, of which most in-
vestigate primary blood cancers (Figure 5B). However, the
limited number WGBS cancer methylomes is likely to
change drastically as the cost of the technology and ease
of bioinformatics analyses improves. A summary of DNA
methylation data portals is shown in Figure 5C.
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What have we learnt from cancer methylome studies?
The development of next-generation sequencing technol-
ogies and ability to map the changes in DNA methylation
across many cancer types has led to huge advances in
knowledge. DNA methylation studies have revealed that
changes are not restricted to CpG island promoters, but
occur genome wide, including genic and intergenic
regions. The intergenic space is vast and houses distal
regulatory elements, including enhancers and noncoding
RNA genes, and is a frequent site for the mutation hot-
spots in cancer [67,68]. It is now clear that DNA methyla-
tion in distal regulatory regions is also associated with
transcriptional regulation. Methylation in genic or exonic
regions is also associated with changing levels of tran-
scription, where high methylation occurs in active genes
and lower methylation in repressed genes [22]. Somatic
mutations in noncoding regions add another dimension to
the complexity of deregulation of the cancer epigenome,
given that mutation hotspots can be caused by DNA
methylation [69,70] and that genetic mutations can be
strongly associated with changes in methylation patterns
[9,66,71–74].

Cancer methylomes now face finer interpretation as
we try to understand architectural differences, such as
long-range epigenetic silencing (LRES; [75]) or long-range
epigenetic activation (LREA; [76]), as well as discrete
changes, such as atypical DNA methylation at localized
CpG sites, partially methylated domains (PMDs;
[30,31,77]) and DMRs [31] that may be responsible for
disabling or enabling key gene regulatory elements. The
identification of DNA methylation valleys (DMVs) in em-
bryonic stem cells points to novel genomic features that
may also be evident in tumor methylomes [36]. Altered
cancer methylomes are commonly associated with
changes in transcriptional output and altered genomic
stability. Indeed, cancer cells undergo a multitude of
step-wise and cumulative methylation changes that im-
pinge on crucial biological pathways that potentially in-
fluence proliferation rates, response to extracellular
signals, and the response to DNA damage.

Yet, not all aberrant DNA methylation changes drive
disease. It is, and will be, important to distinguish driver
from passenger roles [78], which will enable an even more
precise stratification of cancer subtypes [66,79] and per-
sonalized therapeutic programs [9,80]. One of the first
studies investigating the role of DNA methylation drivers
and passengers demonstrated that cancer cells are poten-
tially addicted to the modified epigenome [78]. Future
analyses will reveal the specific DNA methylation signa-
tures that are either associated or drive the survival
capacity of cancer cells. However, distinct methylation
patterns are being used to classify distinct subtypes [81–
84]. For example, the CpG Island Methylator Phenotype
(CIMP), first described in colorectal cancer [85] and evident
in many other cancer types [86], indicates that DNA meth-
ylation is potentially useful for disease classification. In
fact, CIMP has recently been reported to be associated with
underlying genetic mutations, such as somatic isocitrate
dehydrogenase-1 (IDH1) mutations and mutations in ten-
eleven translocation (TET) methylcytosine dioxygenase-2
(TET2).
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Advances in genome-wide DNA methylation technology
have also enabled new strategies for the identification of
early novel diagnostic and prognostic cancer biomarkers
[87,88]. Already, the measurement of promoter hyper-
methylation of individual genes has been successfully
implemented in the clinic. For example, the glutathione-
S-transferase P1 gene (GSTP1) gene is methylated in
>90% of prostate cancers [89] and Septin 9 (SEPT9) is
hypermethylated in colorectal cancer; both are currently
being used for early cancer detection in tissue samples and
body fluids [90]. Moreover, promoter hypermethylation of
the MGMT DNA-repair gene is a clear predictor of tumor
responsiveness to alkylating agents in patients with glio-
blastoma [91,92]. These examples highlight the promise of
translating epigenetic markers into a clinical setting, es-
pecially given that the deregulation of cellular epigenetic
patterns is an early event in carcinogenesis.

Concluding remarks and future perspectives
The advent of genome-wide approaches to map the cancer
methylome, and the ability to identify differentially meth-
ylated loci, is leading to the development of panels of
biomarkers that increase the specificity and sensitivity
for improved diagnostic potential [93,94]. In cancer treat-
ment, one of the major challenges is to stratify tumor types,
because most cancer subtypes do not behave as a single
entity in response to current therapies. The ability to
identify epigenetic events associated with survival from
archival cancer samples is revealing epigenetic prognostic
signatures that can be used to cluster subtypes upon
diagnosis to enable better treatment options. The future
production of cancer methylomes, especially with detailed
information of the approximately 28 million CpG sites in
each different cancer cell type will further advance under-
standing of the role of DNA methylation in epigenetic-
based molecular function and disease progression. Ulti-
mately, however, the choice of which whole-genome meth-
ylation approach to use will depend on the quantity and
quality of DNA available, accessibility to next-generation
sequencing, bioinformatics expertise, cost, and, finally,
consideration of the question being asked and the required
coverage of the genome.
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