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tion of 18- to 25-month-old WT mice in comparison with 
6-month-old mice. Conversely, the GluR1 protein level was 
maintained in old Pdyn KO mice, and the NMDA NR2B sub-
unit level was increased by 42% when compared to old WT 
animals.  Conclusions:  These results suggest that elevated 
dynorphin expression occurring during aging and AD may 
mediate cognitive deficits by altering the glutamatergic sys-
tem integrity.   © 2013 S. Karger AG, Basel

  Introduction

  Aging is generally characterized by slow progressive 
cognitive deficits. In Alzheimer’s disease (AD), memo -
 ry impairments are exacerbated by neuropathology de-
velopment, and synaptic plasticity underlying learning 
and memory processes is irreversibly altered  [1] . The 
neurotransmitter glutamate and its receptors have been 
closely linked to spatial and recognition memory  [2–4] . 
Memantine, an antagonist of the N-methyl- D -aspartate 
(NMDA) glutamate receptor subtype, is currently used 
clinically to treat AD  [5] . Impaired α-amino-3-hydroxy-
5-methyl-4-isoxazol-propionate (AMPA) glutamate re-
ceptor trafficking has also been associated with AD mem-
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  Abstract

   Background/Aims:  Expression of dynorphin, an endoge-
nous opioid peptide, increases with age and has been associ-
ated with cognitive deficits in rodents. Elevated dynorphin 
levels have been reported in postmortem samples from
Alzheimer’s disease (AD) patients, and prodynorphin (PDYN) 
gene polymorphisms might be linked to cognitive function 
in the elderly. Activation of κ-opioid receptors by dynorphins 
has been associated with stress-related memory impair-
ments. Interestingly, these peptides can also modulate
glutamate neurotransmission and may affect synaptic plas-
ticity underlying memory formation. N-methyl- D -aspartate 
(NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazol-pro-
pionate (AMPA) ionotropic glutamate receptor levels gener-
ally decrease with aging, and their function is impaired in AD. 
 Methods:  Here, we compared the impact of aging on iono-
tropic glutamate receptor levels in the hippocampal for-
mation of wild-type (WT) and Pdyn knock-out (KO) mice.
 Results:  We observed a significant reduction in GluR1 and 
GluR2 AMPA receptor subunits in the hippocampal forma-
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ory deficits  [6] . However, the processes by which normal 
aging triggers age-related memory impairment and how 
this is altered in AD are still debated.

  One possible mechanism for the observed progressive 
cognitive deficits occurring with aging may be related to 
rising dynorphin expression in the aged brain  [7, 8] . The 
dynorphins, opioid peptides produced through prody-
norphin (PDYN) gene expression, have been linked to 
learning, memory, emotional control and stress respons-
es  [9] . For example, enhanced dynorphin levels have been 
correlated with learning and memory impairments in 
aged rats  [10, 11] , and elevated levels of dynorphin A were 
reported in postmortem samples from AD subjects and 
correlated with neuritic plaque density  [7] . Furthermore, 
κ-opioid receptor density, the main receptor of dynor-
phins, is increased in the amygdala, ventral putamen and 
cerebellar cortex of the AD brain  [12, 13] . Activation of 
these receptors suppresses presynaptic glutamate release 
 [14]  and mediates stress-induced memory deficits  [15] .

  Results

  In this study, we evaluated the impact of Pdyn expres-
sion on ionotropic glutamate receptor levels in aging. We 
compared AMPA GluR1 and GluR2 as well as NMDA 
NR1, NR2A and NR2B subunit expression in the hippo-
campal formation of young (6 months), middle-aged (12 
months) and old (18–25 months) C57Bl/6N wild-type 
(WT) and Pdyn KO mice  [16] . The animals were sacri-
ficed, and tissue containing the hippocampus, entorhinal, 
perirhinal and portions of adjacent neocortices were
homogenized in a lysis buffer containing protease in-
hibitors. Protein concentration was determined using the 
bicinchoninic acid protein assay kit (Pierce, Rockford, 
Ill., USA). Western blot analysis was carried out on ho-
mogenates as described previously  [17]  with primary an-
tibodies against GluR1, GluR2, NR2A, NR2B (dilution
1:   1,000; Abcam, Cambridge, Mass., USA) and NR1 (dilu-
tion 1:   2,000; Santa Cruz Biotechnology, Santa Cruz, Cal-
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  Fig. 1.  Ionotropic glutamate receptor pro-
tein levels in hippocampal formation of 
young, middle-aged and old WT and Pdyn 
KO mice. Protein expression of AMPA 
GluR1 ( a ) and GluR2 ( b ) as well as NMDA 
NR1 ( c ), NR2A ( d ) and NR2B ( e ) subunits 
was evaluated in 6-month- (young), 
12-month- (middle-aged) and 18- to 25-
month-old (old) mice homogenates by 
Western blot. Values represent the mean ± 
SEM of 12 separate experiments (n = 6 for 
each age group and genotype), and data
are expressed as percentage of control 
(6-month WT mice).  *  p < 0.05, two-way 
ANOVA with Bonferroni post-tests. 
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if., USA). The actin level was used as a loading control, 
and 20 μg of proteins were loaded since this protein con-
centration was revealed as optimal for all the antibodies 
by serial dilutions of young WT reference samples (0, 
3.125, 6.25, 12.5, 25, 50 and 100 μg; data not shown), done 
according to Halim et al.  [18] .

  As shown in  figure 1 a, GluR1 protein level is signifi-
cantly reduced in homogenates of older WT mice in com-
parison with Pdyn KO mice at the same age (genotype 
effect: two-way ANOVA, F (1, 30)  = 4.86, p = 0.0353). The 
impact of aging on GluR1 expression is significant be-
tween young and old WT mice (unpaired t test, p = 
0.0107). In contrast, GluR2 protein levels decreased with 
age in both strains ( fig. 1 b). However, a significant varia-
tion was measured only for old WT (unpaired t test, p = 
0.0296) in comparison with 6-month-old mice (unpaired 
t test, p = 0.0718 for KO mice). Interestingly, NMDA NR1 
subunit protein levels were significantly increased in
old mice of both strains (age effect: two-way ANOVA,
F (2, 30)  = 5.05, p = 0.0128;  fig. 1 c) while no differences were 
observed for NR2A ( fig.  1 d). Finally, NR2B expression 
was significantly higher by 42% in homogenates of old 
Pdyn KO mice compared to old WT mice ( fig. 1 e, un-
paired t test, p = 0.0178). Taken together, these results 
suggest that glutamatergic transmission in Pdyn KO mice 
is protected from the normally seen decline induced by 
aging.

  Discussion

  Modulation of AMPA and NMDA receptors has been 
proposed as a mechanism for the treatment of many neu-
rological diseases including AD  [5, 19] . As shown in this 

study, increased dynorphin expression as observed dur-
ing normal aging  [10, 11]  and AD  [7]  might contribute to 
altered glutamatergic function associated with cognitive 
deficits. Lack of PDYN gene expression prevented age-
related AMPA GluR1 protein decrease and enhanced the 
NMDA NR2B level in the hippocampal formation of old 
mice, suggesting an important role of dynorphin signal-
ing in the control of AMPA and NMDA receptor expres-
sion. Both subunits are closely linked with cognition and 
performances in spatial memory tasks  [20–23] , a form of 
cognition specifically altered in human and AD mouse 
models  [24, 25] . In line with our results, age-related cog-
nitive deficits in the hippocampus-dependent Morris 
Water Maze spatial task are reduced in Pdyn KO mice 
 [26] . Future studies will be necessary to determine the 
exact mechanism of the interactions of dynorphins with 
the glutamatergic system and to evaluate whether expres-
sion of these peptides correlated with memory impair-
ments in AD mouse models and patients suffering from 
the disease. Blocking κ-opioid signaling might slow down 
the progression of cognitive decline generally occurring 
with aging and exacerbated in AD.
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