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Cancer Biology and Signal Transduction

Phosphoproteomic Profiling Identifies Focal Adhesion
Kinase as a Mediator of Docetaxel Resistance in
Castrate-Resistant Prostate Cancer

Brian Y. Lee1, Falko Hochgr€afe1,5, Hui-Ming Lin1, Lesley Castillo1, Jianmin Wu1, Mark J. Raftery2,
S. Martin Shreeve6, Lisa G. Horvath1,3, and Roger J. Daly1,4

Abstract
Docetaxel remains the standard-of-care formen diagnosedwithmetastatic castrate-resistant prostate cancer

(CRPC). However, only approximately 50% of patients benefit from treatment and all develop docetaxel-

resistant disease. Here, we characterize global perturbations in tyrosine kinase signaling associated with

docetaxel resistance and thereby develop a potential therapeutic strategy to reverse this phenotype. Using

quantitative mass spectrometry–based phosphoproteomics, we identified that metastatic docetaxel-resistant

prostate cancer cell lines (DU145-Rx and PC3-Rx) exhibit increased phosphorylation of focal adhesion kinase

(FAK) on Y397 and Y576, in comparison with parental controls (DU145 and PC3, respectively). Bioinformatic

analyses identified perturbations in pathways regulating focal adhesions and the actin cytoskeleton and in

protein–protein interaction networks related to these pathways in docetaxel-resistant cells. Treatmentwith the

FAK tyrosine kinase inhibitor (TKI) PF-00562271 reduced FAK phosphorylation in the resistant cells, but did

not affect cell viability or Akt phosphorylation. Docetaxel administration reduced FAK and Akt phosphor-

ylation, whereas cotreatment with PF-00562271 and docetaxel resulted in an additive attenuation of FAK and

Akt phosphorylation and overcame the chemoresistant phenotype. The enhanced efficacy of cotreatment was

due to increased autophagic cell death, rather than apoptosis. These data strongly support that enhanced FAK

activation mediates chemoresistance in CRPC, and identify a potential clinical niche for FAK TKIs, where

coadministrationwith docetaxel may be used in patients with CRPC to overcome chemoresistance.Mol Cancer

Ther; 13(1); 190–201. �2013 AACR.

Introduction
Prostate cancer remains the third leading cause of

cancer-related death in men in the developed world (1)
with castrate-resistant prostate cancer (CRPC) being the
lethal stage of the disease. Docetaxel-based chemotherapy

is the first-line cytotoxic treatment offering both symp-
tomatic and survival benefits for patients diagnosed with
metastatic CRPC (2, 3). However, docetaxel only clinically
benefits approximately 50% of men at the cost of signif-
icant toxicity (2). Inevitably, those patients who respond
develop resistance to chemotherapy. Therefore, there is an
urgent need to identify novel therapeutic strategies to
overcome resistance to docetaxel in patients with CRPC.

Accumulating evidence has implicated several
mechanisms in the development of docetaxel resistance.
These include increased drug efflux through enhanced
expression of multidrug resistance proteins (MDRP; 4)
and perturbations in intra- and intercellular signaling
pathways. Examples of the latter mechanism include
altered expression and/or activation of apoptotic regula-
tors such as Clusterin (5), HSPs (6), IAPs (7), and Bcl2 (8)
and components of growth factor signaling pathways,
such as PI3-kinase/Akt/mTOR (9) and platelet-derived
growth factor receptor (10). However, clinical trials ema-
nating from these targets (11–16) have yet to make an
impact in the clinical setting with the exception of caba-
zitaxel. Cabazitaxel is a novel tubulin-binding taxanewith
poor affinity for the multidrug P-glycoprotein efflux
pump. A randomized phase III study (TROPIC trial)
demonstrated that men with CRPC progressing after
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docetaxel-therapy benefited from cabazitaxel treatment
with an improvement in median overall survival of
approximately 3 months (17). Collectively, such limited
success by conventional candidate-based approaches in
the clinical setting highlights an urgent need to
better understand the underlying molecular mecha-
nism of chemoresistance and design novel therapeutic
strategies.
To date, no one has undertaken a global analysis of

signaling networks in docetaxel-resistant CRPC. In this
study, we designed an integrative approach involving
characterization of aberrant phosphorylation events in
docetaxel-resistant cells using quantitative mass spec-
trometry (MS)-based phosphoproteomic profiling, fol-
lowed by functional interrogation of aberrantly activat-
ed kinases using selective tyrosine kinase inhibitors
(TKI). Our findings provide important insights into the
biology of chemoresistance in prostate cancer and have
significant implications for the development of thera-
peutic strategies.

Materials and Methods
Drugs and compounds
Docetaxel (Sanofi-Aventis), PF-00562271 (Symansis), Z-

VAD-FMK (R&D Systems), and 3-methyladenine (3-MA;
Sigma-Aldrich) were obtained from their respective man-
ufacturers and handled according to the manufacturer’s
recommendations.

Cell cultures and cell lines
PC3 and DU145 cell lines were purchased from and

authenticated by the American Type Culture Collection.
Docetaxel-resistant sublines (PC3-Rx and DU145-Rx)
were established andmaintained as previously described
(18). All cell lines were used within 10 passages and for
less than 3 months after reviving from frozen storage,
routinely tested to confirm chemosensitivity by cell via-
bility assay, and independently authenticated by Cell
Bank Australia in May 2013 using a short tandem repeat
profiling approach.

Cell viability assay
This was based on Trypan blue exclusion (18). The

concentration of drug required to kill 50% of the cells
(IC50) was calculated, as previously described (18).

Phosphoproteomic profiling
Quantitative tyrosine phosphorylation profiling of doc-

etaxel-sensitive and resistant cells was undertaken by
immunoaffinity purification followed by liquid chroma-
tography/tandem mass spectrometry (LC/MS-MS) in
combinationwith stable isotope labelingwith amino acids
in cell culture (SILAC), as previously described (19, 20).

Pathway enrichment and protein–protein interaction
network analyses
KOBAS was used to perform pathway enrichment

analysis (21). The hypergeometric test was selected to test

statistical enrichment of KEGG and Reactome pathways,
and the P values were corrected formultiple comparisons
(22). The protein–protein interactions among proteins of
interest were retrieved from the Protein Interaction Net-
work Analysis platform (23), and substrate–kinase rela-
tionships were downloaded from the PhosphoSitePlus
database (24). Cytoscape (25) was used for visualization
of networks.

Immunoblotting analysis
Preparation of cell lysates, immunoblotting, and den-

sitometry analyses were performed as previously
described (19, 26). All primary antibodies used in this
study were from Cell Signaling Technology, except
pY397-FAK (Invitrogen), FAK (BD Transduction Labora-
tories), pY576-FAK (Santa Cruz Biotechnology), b-Actin
(Sigma), and GAPDH (Abcam).

Apoptosis assay
Determination of sub-G1 phase of PC3/PC3-Rx and

DU145/DU145-Rx cell lines � docetaxel � FAK TKI was
undertaken, as previously described (19).

Colony-forming assay
Clonogenicity of the PC3/PC3-Rx and DU145/DU145-

Rx models was quantified by measuring the number of
surviving colonies undergoing� docetaxel� PF-00562271
(100 nmol/L) treatments (18).

Rhodamine assay
P-glycoproteinactivity inDU145andDU145-Rxcellswas

quantifiedbymeasuringRh123fluorescence�P-glycopro-
tein inhibitor PSC833 (1 mmol/L, Novartis; ref. 18).

Small interfering RNA transfection
Atg5 small-interfering RNAs (siRNA) #7, 8 and 10were

obtained from Thermo Scientific. #7 siRNA sequence was
GGCAUUAUCCAAUUGGUUU, #8 GCAGAACCAUA-
CUAUUUGC, #10 ACAAAGAUGUGCUUCGAGA. ON-
TARGETplus Non-Targeting Pool was obtained from
Thermo Scientific. Cells were transfected with 5 to 20
nmol/L of siRNAs using Lipofectamine (Invitrogen) for
48 hours. For cell death rescue experiment with Atg5
knockdown, 5 nmol/L of siRNAs were used.

Statistical analysis
Comparisons betweenmore than twogroupsweremade

using one-way analysis of variance (ANOVA)with Bonfer-
roni post hoc correction formultiple comparisons.P values
of less than0.05wereconsideredstatistically significant.All
statistical tests were performed using GraphPad Prism 5
(GraphPad Software Inc).

Results
Phosphotyrosine profiling of docetaxel-resistant
prostate cancer cells

To complement our previously established PC3/PC3-
Rxmodel (18), we developed a second docetaxel-resistant

FAK and Docetaxel Resistance

www.aacrjournals.org Mol Cancer Ther; 13(1) January 2014 191

on October 13, 2014. © 2014 American Association for Cancer Research. mct.aacrjournals.org Downloaded from 

Published OnlineFirst November 5, 2013; DOI: 10.1158/1535-7163.MCT-13-0225-T 

http://mct.aacrjournals.org/


model, DU145/DU145-Rx using the same dose escalation
strategy. DU145-Rx cells exhibit a significantly increased
IC50 for docetaxel (Supplementary Fig. S1A) and
increased clonogenic capacity following docetaxel treat-
ment (Supplementary Fig. S1B), when compared with
their parental cells. Neither cell line model exhibited any
changes in P-glycoprotein activity, consistent with doc-
etaxel resistance not being mediated by drug efflux (Sup-
plementary Fig. S1C; ref. 18).

To quantitatively characterize the perturbed tyrosine
phosphorylation events associated with docetaxel che-
moresistance, we utilized an immunoaffinity-coupled
mass spectrometry (LC/MS-MS) approach in combina-
tion with SILAC (Fig. 1A) to compare docetaxel-
sensitive cells (PC3 and DU145) with their docetaxel-
resistant counterparts (PC3-Rx and DU145-Rx). This
identified 365 tyrosine phosphorylation sites derived
from 215 unique proteins exhibiting differential phos-

phorylation. A ranking of individual phosphosites with
up- or downregulated phosphorylation according to
their SILAC ratios demonstrated a large overlap of
phosphorylation changes in PC3-Rx and DU145-Rx cells
(Fig. 1B and Supplementary Table S1). A striking char-
acteristic of the phosphorylation profile associated with
docetaxel-resistant cell lines was the enrichment for
proteins involved in regulating focal adhesions and the
actin cytoskeleton, such as ACTN1/4, FAK, BCAR1,
VIM, PDLIM5, CAV, PAX, and ANXA1. Mapping pro-
tein–protein interactions among the differentially phos-
phorylated proteins highlighted the presence of interac-
tion "hubs" that centered on members of these pathways,
such as FAK, VIM, and ACTN1 (Fig. 2A). Furthermore,
pathway enrichment analysis revealed that "regulation of
actin cytoskeleton" and "focal adhesion" were the top 2
pathways enriched in PC3-Rx and DU145-Rx cells (the
corrected P < 0.05; Fig. 2B). The top 10 upregulated
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Figure 1. Phosphoproteomic profiling of docetaxel-resistant prostate cancer cells. A, workflow for quantitative phosphoproteomic profiling. B, heatmap of up-
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phosphorylation sites common to both Rx cell lines
included sites from 3 kinases (FAK, AXL, HIPK3), 1
protease (ADAM9), and 3 actin cytoskeletal proteins
(ACTN1, VIM, PDLIM5; Table 1). Of these, seven are
potential therapeutic targets amenable to inhibition by
small molecule drugs. Strikingly, the autophosphoryla-
tion and SRC binding site, Y397, and sites located at the
kinase domain activation loop, Y576 and Y577, of FAK
were included among the top phosphorylated sites.

FAK regulation and function in docetaxel-sensitive
and -resistant prostate cancer cells

Consistent with the profiling data, immunoblotting
revealed that both chemoresistant cell lines showed signif-
icantly enhanced FAK phosphorylation on Y397 and Y576
residues compared with the parental cells (Figs. 3A–C
and 4A–C). Of note, total FAK expression was not signif-
icantly altered. To interrogate the role of FAK-mediated
signaling in chemoresistance,weutilizedPF-00562271 (27),

Table 1. Characteristics of the top 10 upregulated tyrosine phosphorylation sites found common to both
docetaxel-resistant prostate cancer models, PC3/PC3-Rx and DU145/DU145-Rx

Position
Gene
name

DU145-Rx
SILAC Ratio

PC3-Rx
SILAC Ratio Peptide sequence Targeted Strategy

246 ACTN1 1.68 3.51 _AIMTYVSSFY(ph)HAFSGAQK_ —

61 VIM 1.27 2.22 _SLYASSPGGVY(ph)ATR_ Withaferin-A
702 AXL;UFO 1.29 2.03 _IYNGDY(ph)YR_ R428, XL-880
359 HIPK3;DYRK6 1.38 1.95 _TVCSTY(ph)LQSR_ —

53 VIM 1.34 1.91 _SLY(ph)ASSPGGVYATR_ Withaferin-A
397 FAK 1.87 1.65 _THAVSVSETDDY(ph)

AEIIDEEDTYTMPSTR_
PF-00562271, PF-04554878,
Y11, Y15, GSK-2256098,
TAE-226, PND-1186

577 FAK 1.79 1.51 _YMEDSTYY(ph)K_ PF-00562271, PF-04554878,
GSK-2256098, TAE-226,
PND-1186

576 FAK 1.76 1.42 _YMEDSTY(ph)YK_ PF-00562271, PF-04554878,
GSK-2256098, TAE-226,
PND-1186

815 ADAM9 1.33 1.72 _VSSQGNLIPARPAPAPPLY(ph)SSLT_ ProA9
251 PDLIM5 1.63 1.67 _YTEFY(ph)HVPTHSDASK_ —
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a small-molecule FAK TKI, and tested the ability of doc-
etaxel alone or docetaxelþ PF-00562271 cotreatment to kill
resistant cells. In the resistant cells, treatment with PF-
00562271 reduced phosphorylation on both Y397 and
Y576, whereas in the sensitive cells, the effects of this TKI
were more modest (Figs. 3B and C and 4B and C). Inter-
estingly,Docetaxel administration also reducedFAKphos-
phorylationonboth sites in the resistant cells, butcombined
treatment with PF-00562271 and docetaxel led to a further
diminution in FAK phosphorylation, such that it returned
to levels comparable with that of the parental cells.

Both the PC3-Rx and DU145-Rx cell lines showed sig-
nificantly enhancedAkt phosphorylation (S473 and T308)
with or without docetaxel (Supplementary Fig. S2). Strik-
ingly, the cotreatment further inhibited Akt phosphory-
lation compared with docetaxel alone. However, PF-
00562271 alone had no effect on Akt phosphorylation.
ERK activation was not enhanced in either docetaxel-
resistant cell line (data not shown).

We then determined the effect of FAK inhibition on the
sensitivity of the parental and resistant cells to docetaxel.
Administration of PF-00562271 alone did not affect the
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viability of either cell type (Fig. 5A and B). Treatmentwith
PF-00562271 did not affect the sensitivity of parental PC3
or DU145 cells to docetaxel. In contrast, it reversed the
chemoresistant phenotypes of both the PC3-Rx and
DU145-Rx cell lines. Cotreatment with PF-00562271/doc-
etaxel resulted in a 35- and28-fold IC50 decrease inPC3-Rx
and DU145-Rx cells, respectively, when compared with
docetaxel alone (P < 0.0004 and 0.0049, respectively; Table
2). In addition, while PF-00562271 alone did not affect
colony formation, coadministration of this TKI with doc-
etaxel significantly reduced colony formation by Rx cells

compared with docetaxel alone (Fig. 5C and D). These
data indicate that the elevated FAKactivity in the resistant
models mediates docetaxel resistance and can be targeted
to resensitize the cells to the drug.

Effect of docetaxel and PF-00562271 cotreatment on
apoptotic cell death

Consistent with the cell viability data, a higher percent-
age of parental cells underwent apoptosis upon docetaxel
treatment compared with their Rx counterparts, as deter-
minedbyassaying for cells in sub-G1phase (Fig. 6AandB)

Table 2. The IC50 values (docetaxel concentration required to inhibit 50% of viability) of docetaxel and
cotreatment in PC3/PC3-Rx and DU145/DU145-Rx cells

IC50 (ng/mL)

PC3 PC3-Rx DU145 DU145-Rx

Docetaxel 28.22 698.91 26.54 1,288.41
Docetaxel þ PF-00562271 32.59 19.86 18.51 45.42

1 10 100 1,000 10,0000

20

40

60

80

100

PC
3

PC
3-

R
x

0

20

40

60

80

100

120

V
ia

b
ili

ty
 

(%
 o

f 
v
e

h
ic

le
 c

o
n

tr
o

l)

1 10 100 1,000 10,0000

20

40

60

80

100

*

A B

C D

PC3

PC3-Rx

PC3-Rx

PC3

V
ia

b
il
it

y
 (

%
 o

f 
v
e
h

ic
le

 c
o

n
tr

o
l)

DU145-Rx DTX

DU145-Rx DTX + PF271

DU145

DU145-Rx

DU145-Rx

DU145

V
ia

b
il
it

y
 (

%
 o

f 
v
e
h

ic
le

 c
o

n
tr

o
l)

DTX

DTX

DTX + PF271

DTX + PF271

DTX

DTX

DTX + PF271

DTX + PF271

D
U
14

5

D
U
14

5-
R
x

0

20

40

60

80

100

C
o

lo
n

ie
s
 

(%
 o

f 
v
e
h

ic
le

 c
o

n
tr

o
l)

0 1 8 40 200

Docetaxel (ng/mL)

*

* *

0 1 8 40 200

Docetaxel (ng/mL)

0

20

40

60

80

100

C
o

lo
n

ie
s
 

(%
 o

f 
v
e
h

ic
le

 c
o

n
tr

o
l)

PC3-Rx DTX

PC3-Rx DTX + PF271

*

*

* *

0

20

40

60

80

100

120

V
ia

b
ili

ty
 

(%
 o

f 
v
e

h
ic

le
 c

o
n

tr
o

l)

**

N.S.

*

N.S.

Docetaxel (ng/mL) Docetaxel (ng/mL)

0 0

Figure 5. The FAK inhibitor PF-00562271 sensitizes chemoresistant prostate cancer cells to docetaxel. A and B, dose response curves assessing the effect of
individual and combination drug treatments on cell viability. The PC3/PC3-Rx (A) and DU145/DU145-Rx (B) models were treated with increasing doses of
docetaxel � PF-00562271 (PF271; 100 nmol/L) for 24 hours. Cell viability is expressed relative to vehicle (saline and DMSO) control. Results are
shown as mean � SEM for each data point in three independent experiments with triplicate samples. �, P < 0.0049; ��, P < 0.0004. Insets indicate that
PF-00562271 alone has no effect on viability in PC3/PC3-Rx and DU145/DU145-Rx cells. C and D, effect of drug treatments on colony-forming ability.
The PC3/PC3-Rx (C) and DU145/DU145-Rx (D) models were treated with increasing doses of docetaxel � PF-00562271 (PF271; 100 nmol/L) for 24 hours.
Colonies are expressed relative to vehicle (saline andDMSO) control. Results are shownasmean�SEM for each data point in three independent experiments
with triplicate samples. �, P < 0.0001.

FAK and Docetaxel Resistance

www.aacrjournals.org Mol Cancer Ther; 13(1) January 2014 195

on October 13, 2014. © 2014 American Association for Cancer Research. mct.aacrjournals.org Downloaded from 

Published OnlineFirst November 5, 2013; DOI: 10.1158/1535-7163.MCT-13-0225-T 

http://mct.aacrjournals.org/


and immunoblotting for cleaved caspase-3 and PARP
(Fig. 6C and D). However, while cotreatment with PF-
00562271 and docetaxel markedly reduced the viability of
the Rx cells, it did not induce increased apoptosis com-
pared with the administration of docetaxel alone. Fur-
thermore, pharmacologic blockage of the apoptotic path-
way using Z-VAD-FMK, a pan-caspase inhibitor, did not
rescue the decreased cell viability resulting from PF-
00562271/docetaxel cotreatment of PC3-Rx and DU145-
Rx cells, in contrast with the effect of this inhibitor on
docetaxel � PF-00562271 treatment of parental cells (Fig.
7A and B). These data indicate that the reduction in cell
viability induced by cotreatment of Rx cells is not via
enhanced apoptosis.

Effect of docetaxel and PF-00562271 cotreatment on
autophagic cell death

Next, we sought to determine whether type II pro-
grammed cell death, also known as autophagic cell death,
was involved (28). One of the precursor signatures of
autophagy is reduced phosphorylation of mTOR. Strik-
ingly, cotreatment, but not administration of either agent
alone, resulted in a marked attenuation of mTOR phos-
phorylation at 6 hours, but not at 24 hours (Fig. 8A). In
addition, LC3B conversion and degradation of p62 are
downstream features of induction of autophagy. During
the autophagy process, LC3B is cleaved to generate LC3B-
I, which is then converted to membrane-bound LC3B-II

via lipidation. LC3B conversion can be quantified by the
ratio of LC3B-II relative to LC3B-I (29, 30).

While cotreatment of PF-00562271 and docetaxel for
24 hours did not affect relative LC3B-II or p62 levels
compared with docetaxel alone in the parental PC3 cells
(Fig. 8A), coadministration resulted in a significant
enhancement of relative LC3B-II accumulation and a
marked decrease in p62 expression in PC3-Rx cells (Fig.
8A and B). However, unlike in the PC3 model, where
docetaxel only induced autophagy in the resistant cells,
docetaxel monotherapy induced autophagy in both
DU145 and DU145-Rx cells, but the combination treat-
ment resulted in a significant enhancement of relative
LC3B-II accumulation and p62 degradation specifically
in DU145-Rx cells in comparison with docetaxel alone
(Fig. 8C and Supplementary Fig. S3). While administra-
tion of 3-MA, a pharmacologic inhibitor of autophago-
some formation, did not affect the sensitivity of Rx cells
to docetaxel alone, it significantly attenuated co-treat-
ment–induced cell death (Fig. 9A and B). We next used
siRNA to transiently knock down Atg5, a gene essential
for autophagosome formation (Fig. 9C). This also res-
cued PC3-Rx cells from cotreatment–induced cell death,
but did not affect sensitivity to docetaxel alone (Fig. 9D).
These data indicate that the enhanced efficacy of
cotreatment in reducing viability and overcoming the
chemoresistant phenotypes in Rx cells is mediated via
increased autophagy.
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Discussion
To date, the targeting of FAK has faced significant

challenges in the clinic. Early studies in ovarian cancer
cell lines and xenografts demonstrated that knockdownof
FAK expression enhanced docetaxel efficacy in docetaxel-
sensitive and docetaxel-resistant models in vitro and in
vivo (31, 32). Subsequently, TAE226, a TKI that targets
FAK and IGF-1R, was demonstrated to enhance docetaxel
cytotoxicity (33); however, at this point, development
stalled due to the drug failing clinical trials. Other first-
generation FAK TKIs had problems with compensatory
upregulation of the FAK homolog, Pyk2, which affected
clinical efficacy (34). Newer FAK TKIs targeting FAK and
Pyk2, PF-00562271, and its second-generation PF-
04554878, were well tolerated in phase I clinical trials
(35, 36), and the latter is currently in phase Ib and II
clinical trials (37). While the efficacy of combining PF-
00562271 with cytotoxic agents has not been reported,
coadministration of this TKI with sunitinib in a hepato-
cellular carcinoma xenograft model exhibited a signifi-
cantly greater effect than monotherapy, blocking tumor
growth and tumor recovery after treatment (38). PF-
00562271 is a potent inhibitor of CYP3A, whereas PF-
04554878 is a weak CYP3A inhibitor with a low potential
for CYP3A drug–drug interaction (35, 36), making this
second-generation compound the preferred FAK inhibi-

tor for development in combination with cytotoxics. Our
preclinical data support the establishment of clinical trials
testing docetaxel in combinationwith PF-04554878 inmen
with metastatic CRPC.

Interrogation of the functional role of FAK in the che-
moresistant cells revealed that while treatment with PF-
00562271 significantly decreased FAK phosphorylation,
this did not affect cell viability in vitro, consistent with
other studies using small-molecule FAK inhibitors and
cells grown under monolayer conditions (19). Instead, a
significant reduction in cell viability was only observed in
the presence of docetaxel, where coadministration of a
FAK inhibitor resensitized the cells to docetaxel chemo-
therapy. This reflects a novel effect of docetaxel, where
treatment with this drug reduced FAK phosphorylation
on both Y397 and Y576, and coadministration with FAK
inhibitor resulted in an additive diminution of FAK phos-
phorylation back to the levels characteristic of parental
cells. The activity of docetaxel on focal adhesion signaling
likely reflects its activity as amicrotubule-targeting agent,
asmicrotubules interactwith focal adhesions and regulate
their turnover (39). Support for this model is provided by
studies on a different microtubule-targeting agent, lauli-
malide, which also decreases FAK phosphorylation (40).
Of note, while FAK couples to PI3-kinase/Akt signaling
via recruitment of the p85 subunit of PI3-kinase to phos-
phorylated Y397 (41), individual treatment with either
docetaxel or a FAK inhibitor was insufficient to signifi-
cantly downregulate Akt/mTOR signaling in vitro.
Instead, this was only achieved by the combination treat-
ment. BecausemTORnegatively regulates autophagy,we
propose that the combination therapy reduces mTOR
activation belowacertain threshold and triggers anautop-
hagic response and ultimately cytotoxicity. Whether the
effect of the combination treatment on Akt and mTOR is
entirely due to a reduction in FAK activation requires
further clarification.

While docetaxel induced apoptotic cell death in the
parental cells, chemosensitization conferred by the com-
bination treatment was not associated with increased
apoptosis in the drug-resistant cells. This is in contrast
with previous studies involving targeting of FAK in
combination with administration of chemotherapeutic
agents. For example, Halder and colleagues (33) reported
increased tumor cell apoptosis in ovarian cancer cell line
xenografts when these were subjected to TAE-226/doc-
etaxel coadministration, compared with either treatment
alone. In addition, Golubovskaya and colleagues (42)
detected enhanced apoptotic cell death when Y15, a
small-molecule agent that targets the FAK autophosphor-
ylation site, was administered to glioblastoma cell lines in
combination with temozolomide. Consequently, the abil-
ity of FAK-directed agents to induce apoptosis appears to
be dependent on context and the targeting strategy
employed.

Interestingly, in our study, coadministration of PF-
00562271 and docetaxel was also not associated with
enhanced caspase-independent cell death, as indicated
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by increasedmitochondrial outermembranepermeability
(data not shown). Instead, cotreatmentwith FAK inhibitor
and docetaxel resulted in increased autophagy, and a
causative role for this process in the enhanced cytotoxicity
induced by the cotreatment was confirmed by pharma-
cologic and genetic approaches. These data are of interest
in light of a previous studywhere knockdownof p130Cas,
which signals downstream of FAK, resulted in enhanced
autophagy in ovarian cancer cells (43) and add further
weight to the emerging concept that the role of autophagy

in cancer development and progression is highly context
dependent. Thus, while specific autophagy genes, such
as Beclin-1, can act as tumor suppressors (44), and par-
ticular drug regimens can exert cytotoxicity through
autophagic cell death (45, 46) induction of autophagy can
also confer drug resistance to cancer cells, for example,
against the TKIs erlotinib (47) and saracatinib (48). More-
over, our work also emphasizes how FAK signaling can
exert contrasting effects on autophagy and cell survival.
Recent work from Sandilands and colleagues using a skin
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cancer model demonstrated that components of the
autophagy pathway are intimately associated with focal
adhesions, and that loss of FAK can trigger an apoptotic
response, unless the active Src released upon FAK
ablation is subject to autophagic targeting (49). This led
to the suggestion that combining FAK and/or Src inhi-
bitors with an autophagy inhibitor may reduce the
viability of cancer cells. Since, in our study, blocking
autophagy rescued prostate cancer cells from a combi-
nation treatment involving FAK inhibition, this high-
lights how such strategies should be applied in a selec-
tive manner.
While PF-00562271 and PF-04554878 monotherapies

werewell tolerated in phase I trials (35, 36), a clear clinical
application for FAK TKIs has yet to be identified. Accord-
ing to the molecularly characterized preclinical data pre-
sented in this study,we have identified a potential clinical
niche for selective FAK TKIs, where coadministration
with docetaxel may be used in patients with CRPC to
overcome chemoresistance, providing the basis for fur-
ther clinical development.
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