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EXPERT REVIEW

Integrating the roles of long and small non-coding RNA in

brain function and disease

G Barry

Regulatory RNA is emerging as the major architect of cognitive evolution and innovation in the mammalian brain. While the protein
machinery has remained largely constant throughout animal evolution, the non protein-coding transcriptome has expanded
considerably to provide essential and widespread cellular regulation, partly through directing generic protein function. Both long
(long non-coding RNA) and small non-coding RNAs (for example, microRNA) have been demonstrated to be essential for brain
development and higher cognitive abilities, and to be involved in psychiatric disease. Long non-coding RNAs, highly expressed in
the brain and expanded in mammalian genomes, provide tissue- and activity-specific epigenetic and transcriptional regulation,
partly through functional control of evolutionary conserved effector small RNA activity. However, increased cognitive sophistication
has likely introduced concomitant psychiatric vulnerabilities, predisposing to conditions such as autism and schizophrenia, and
cooperation between regulatory and effector RNAs may underlie neural complexity and concomitant fragility in the human brain.
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INTRODUCTION

Our understanding of mechanisms underlying the complex
functioning of the human brain is experiencing a transformation.
Less than 2% of the transcribed human genome (currently
estimated to be around 80%) consists of protein-coding tran-
scripts while the overwhelming proportion is non-protein-coding.’
Furthermore, while the protein-coding genome has undergone
only modest alterations throughout evolution, the non—codin%
genome has scaled with biodiversity and organismal complexity
(Figure 1). Importantly, evidence is now rapidly accumulating to
suggest that most cellular transcription is functional thereby
exposing our current lack of knowledge regarding the protein
regulatory system that governs cellular processes. We have
hypothesized that the evolution of a more sophisticated
regulatory system, afforded by the expansion of non-coding
RNA, has allowed the emergence of cellular complexity and
abilities such as higher-order cognition as is illustrated through
the striking and rapid expansion of the primate brain® (Figure 1).
For such precipitous changes to occur in a relatively abrupt
evolutionary window there must exist mechanisms that permit,
but tightly regulate, heritable genetic adaptations. To this end,
non-coding RNA could significantly contribute by encompassing
(1) evolutionarily conserved classes of genomic controllers, such as
families of small RNA (sRNA) (for example, microRNA (miRNA),
small interfering RNA (siRNA) and small nucleolar RNA (snoRNA))
and (2) newly emerged families, such as long non-coding RNA
(IncRNA). The picture that is forming is one of evolving systems
that increase genetic complexity through unique temporal and
spatial regulation of existing processes. Here | examine two such
systems; one present in all life forms (sRNA) and one newly
evolved (IncRNA). Recent evidence suggests IncRNAs may provide

an additional layer of regulation for the refinement of sRNA
function, particularly in the brain.

SMALL NON-CODING RNA: IT IS A SMALL WORLD (OF GENE
REGULATION) AFTER ALL

Throughout evolution of life on earth, small non-coding RNAs
have been present (Figure 1). For example, snoRNAs are present in
archae, bacteria and eukaryotes where they direct chemical
modifications such as methylation and pseudouridylation of other
RNA classes including transfer and ribosomal RNA.* Plants possess
miRNAs and siRNAs and these sRNAs have evolved to play vital
roles in diverse functional capacities such as development, defense
against transgenes and viruses and long-range signaling.> All
eukaryotes possess RNA interference systems capable of repressing
gene expression post-transcriptionally. The earliest evolved of these
classes, siRNAs, are transcribed from repeat-containing elements
in the genome or generated from double-stranded RNA, and
repress gene expression through exact complementary binding of
target sequences.® miRNAs emerged during early metazoan
evolution” and function to repress gene expression via binding
to sequences with imperfect complementarity® (that is likely to
increase target range) and interfere with protein expression or
induce transcript degradation. Strong evolutionary pressure has
resulted in an overall expansion in miRNA numbers, especially in
mammals, with a high rate of turnover® suggesting a progressively
complex and adaptable set of genomic regulators. A less well
understood family of sSRNAs is the piwi-interacting RNAs (piRNAs)
that were initially reported to only function in the germ-line as a
defense against retrotransposon activity.'>'" However, this view
has been recently overturned with piRNAs detected in functional
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between 3.5 and 4 billion years ago with the appearance of archae and bacteria. Their respective genomes consisted of a high percentage of
protein-coding (PC) transcripts (archae 70-99.5%; bacteria 35-97%).> The emergence of protists between 1.5 and 2 billion years ago saw a
significant reduction in PC percentage of the genome (10-75%) whereas metazoans first emerging around 500 million years later showed an
even more striking decrease (1-27%). Primates possess only around 1-2% PC capacity in their genome. (b) The increase in non-protein-coding
regions of the genome has seen an expansion in classes on non-coding RNA, including both small (for example, piRNA, miRNA) and long
(for example, IncRNA) families. (c) The development of protein regulatory systems via non-coding RNA may have contributed to the
considerable and rapid growth during primate brain evolution and the acquisition of higher-order cognition.?

capacities in the brain.'>'* Although the ancient RNAi system
initially functioned mainly, or exclusively, as protectors of the
genome against endogenous and exogenous threats, recent
evolution has co-opted sRNA for a wide range of additional
functions, notably in the brain.

SRNAs in brain development

Globally, many sRNAs are dynamically regulated during embryonic
stem cell neural differentiation'®> and nervous system develop-
ment.'® Furthermore, disruption of common sRNA biogenesis
machinery significantly impacts brain development. For example,
a general loss of Dicer (resulting in absence of mature miRNA and
siRNA) produces widespread neuronal alterations during devel-
opment including cortical deficits and diminished differentia-
tion,'”'® while conditional loss in specific cellular populations
has demonstrated mechanistic deficits particular to neuronal
subtypes.'®?' These effects may be commonly due to a critical
requirement of SRNAs early in neural stem cell maintenance and
expansion.?? There are many brain-specific sSRNAs that clearly
indicate roles in neural development and function.?® Furthermore,
distinct miRNAs have been demonstrated to influence neuronal
differentiation such as brain-specific miR-9/9* and miR-124
that, when expressed in human fibroblasts, induce a neuronal
fate through compositional changes of chromatin-modifying
complexes.”* Many additional studies supporting particular
miRNAs involved in neuronal development have been documen-
ted affecting a wide variety of cellular pathways.>> Prader-Willi
syndrome offers insight into the importance of small interfering
RNAs for early neuronal development with both SNORD115%%%/
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and SNORD1162® potentially important factors for clinical pheno-
types, including neural abnormalities, observed in these patients.

SRNAs in neuronal function and dysfunction

There is an extensive body of work investigating the connection
between miRNAs and neuronal activity that has been recently
reviewed.”® Neuronal activity reduces the expression of most
neural miRNAs*° emphasizing their role in fine-tuning neuronal
plasticity. Indeed, Dicer gene inactivation abolishes mature miRNA
formation in adult mouse forebrain and results in an enhancement
of learning and memory*' as reduced miRNA activity permits local
translation of mRNAs encoding synaptic proteins at dendritic
spines and postsynaptic densities necessary for synaptic
function.*>** Intriguingly, a group of miRNAs, including miR-132
and miR-134, is increased in response to activity and may combine
to ultimately enhance expression of proteins such as BDNF and
CREB resulting in increased dendritic spine formation and
maturation.>* Following the recent discovery of piRNAs in the
brain'**° it has now been shown that this class of SRNA may have
important functions in neuronal activity.'* As piRNAs essentially
function through epigenetic rearrangements to block transcrip-
tion of inhibitors of synaptic facilitation, and miRNAs repress
translation of synaptic enhancer genes, these two classes of SRNAs
when oppositely regulated by neuronal activation may synergis-
tically combine to increase synaptic strength.'? piRNA-mediated
epigenetic changes are enduring, across many generations,
and may underlie mechanisms of activity-dependent, adaptive
‘memory storage’.'? SnoRNAs have been demonstrated to also
have potential involvement in learning and memory. For example,
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expression pattern studies of the brain-specific snoRNA AF357425
and Snord115 showed dynamic regulation in mouse hippocampus
following contextual fear conditioning.®® Additionally, an increase
in the expression of Snord115, that contains complementary
sequences to the serotonin 2c receptor, correlated with altered
neuronal activity and autistic phenotypes in vivo.>’

The brain is highly susceptible to sRNA disturbances high-
lighting their critical role for correct neural function. In particular,
brain disorders involving aberrant miRNA activity are extensive
and well documented. For example, miRNAs are implicated in
neurodevelopmental disorders (for example, Fragile X3*3*® and
Rett syndromes®®4%), neurodegenerative disorders (for example,
Alzheimer's and Parkinson’s disease*' ™), neuropsychiatric dis-
orders (for example, schizophrenia®*** autism®® and drug
addiction®¥) and brain cancers.*** Disturbances in snoRNAs
may also result in deleterious neural phenotypes such as
autism.>’*® Moreover, preliminary data suggest snoRNAs are
involved in stem cell differentiation in the brain'> implying that
altered activity may lead to a cancerous state and, although not
yet linked to brain cancers per se, snoRNAs are emerging as
potential contributors to tumorigenesis.** Vault RNAs are compo-
nents of the vault ribonucleoprotein complex®® and these small
non-coding RNAs, although their exact functions are not yet clear,
have recently been linked with brain cancers’' intellectual
disability®®> and neurodegeneration.®®> The current escalation
of research focusing on investigating sRNAs (especially those
in addition to miRNA), coupled with techniques such as
transcriptome-wide deep sequencing, will undoubtedly result in
rapid progress to determine the full impact of their involvement in
brain function and disease.

IncRNA: FINE TUNING FOR FUNCTIONAL SOPHISTICATION

In contrast to the more ancient sRNAs discussed above, IncRNAs
appear later in evolution (Figure 1), where they are present in
invertebrates,>® vertebrates®> and plants,*® and about one-third
are primate-specific.’’” LncRNAs maintain features common to
protein-coding genes such as promoter regions, intron-exon
boundaries and alternative splicing; however in contrast, they are
mainly nuclear localized, less polyadenzlated and far more tissue-
specific than protein-coding genes.>” These differences are
significant as they imply that the functions of IncRNAs lie in the
refinement of regulatory circuits specific to particular cells and
activities, especially in the brain>’ It is well documented that
IncRNAs display strikingly unique spatial and temporal expression
and are highly expressed in the specific cells where they are
active.>®> However, although some IncRNAs are highly expressed
throughout multiple tissues, their function may not always be
obvious when using a traditional knockout strategy if functional
analyses are not carried out that would specifically uncover their
precise, and sometimes subtle, role within the cell. For example,
while mouse knockouts of the IncRNAs Hotair® and Xist®' result in
severe phenotypes, mice with a knockout of the ubiquitously and
highly expressed IncRNA Malat1,°%%® displayed no obvious
phenotype. While indications of function, such as regulation of
synaptogenesis,®* alternative splicing,®® cell cycle control®® and
cancer’” have been reported for Malat1 it is still unknown
what the precise role is of this abundant and broadly expressed
IncRNA.

IncRNAs in brain function and dysfunction

Research investigating IncRNAs is still in its relative infancy;
however, great strides are rapidly being made in their functional
annotation. In 2011, Guttman and colleagues used a loss-of-
function strategy to extensively investigate many IncRNAs in mice
and their roles in embryonic stem cell biology and differenti-
ation.® Their results, and others,®*7° have reinforced the
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importance of IncRNAs in the regulation of cellular maintenance
and cell fate, especially in the brain and particularly through
governing epigenetic processes. In fact, an emerging theme for
IncRNAs is control of epigenetic targeting via three-dimensional
modularity through their ability to bind RNA, DNA and
protein.”™73

Functional domains contained within IncRNAs allow fine-tuning
of activity-dependent cellular regulation by way of scaffolds or
molecular ‘sponges’.®>’>7* For example, Malat1 has been shown
to be involved in synapse formation® and act as a splicing factor
‘sponge’ suggesting a role in alternative splicing in neural cells.”
Recently, the first mechanistic illustration of an IncRNA involved in
neuronal activity-dependent alternative splicing was demon-
strated for Gomafu.”* This study also showed Malat1 expression
was unchanged in induced pluripotent stem cell-derived neurons
upon stimulation, indicating that Malat1 may either play a subtly
different role in human neuronal function, or an equivalent role in
different subsets of neural cells. The former hypothesis may be
more likely as both Malatl and Gomafu are present in non-
overlapping nuclear-retained speckle-like structures in neurons’®
suggesting discrete nuclear speckle bodies are independently
regulated. In addition to epigenetic targeting and alternative
splicing, IncRNAs are involved in mRNA processing, stability,
translation and decay®®’?”” and, taken together, places the
modular functions of IncRNAs at a cellular crossroad with
enormous regulatory potential.

As with sRNAs, disruptions to widespread IncRNA-mediated
functions would have adverse consequences. This is especially
important in the brain where most tissue-specific IncRNAs are
expressed.’’ Indeed, it is emerging that IncRNAs are associated
with a wide range of neurodevelopmental, neurodegenerative
and psychiatric diseases’*’®3* and brain cancer.®#® With the
advent of induced pluripotent stem cell technology, coupled with
next generation sequencing, it is now possible to generate tissue-
and subtype-specific human neural cells from disease-affected
and unaffected subjects, and comprehensively analyze the trans-
criptome and proteome to determine causality.®” These techni-
ques, focusing on distinct cell populations, will undoubtedly reveal
many more long non-coding RNAs as critical regulators of normal
human brain activity and associated disorders.

LONG AND sRNAs: REGULATING THE REGULATOR

The discussion to this point has revealed many overlapping
functional themes between long and sRNAs in the brain with
common links to neurogenesis and neuronal activity and, in
dysfunction, to neurodevelopmental, psychiatric and neurode-
generative disease. Therefore, it should come as no surprise that
these two classes of non-coding RNA would be intimately linked in
cellular function. Furthermore, evolutionary data suggest that
IncRNA, appearing after sRNAs, may have arisen as an upstream
regulatory tier of sSRNA-directed transcriptional control. This seems
to be the case, especially for widely studied miRNAs, although
feedback mechanisms may also be employedgs’89 (Figure 2). First,
IncRNAs can act as precursors from which miRNAs are gener-
ated,’® such as in the case of miR-675 that is contained within
exon 1 of the IncRNA H19.°" The role of H19, therefore, may
function to regulate the release of miR-675 and its potent anti-
proliferative and anti-Igf signaling properties.®> The process of
sRNA regulation by IncRNA precursors also extends to snoRNAs”
and piRNAs,"" and may well exist as a common checkpoint for
sRNA production. Second, IncRNAs and miRNAs may bind directly
to affect the transcriptional landscape. A recent report examined
deep sequencing data sets produced by photoactivatable
ribonucleoside-enhanced cross-linking and immunoprecipitation
(PAR-CLIP) for Argonaute proteins in HEK293 cells to elucidate
direct miRNA-binding sites in the human genome.”* The authors
report finding expected protein-coding gene targets but,
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precursors from which they are generated;”° (b) miRNAs may bind broadly to IncRNAs resulting in as yet undefined cellular effects;** (c)
IncRNAs compete for miRNA binding sites®® and (d) IncRNA act as miRNA ‘sponges’ to regulate suppressor activity.””

surprisingly, many IncRNAs were additionally targeted by miRNAs
inferring an as yet unexplored feature of small and long RNA
interaction. This is illustrated in a separate study that assembled all
known miRNA-IncRNA interactions and computationally predicted
that the majority of interactions are yet to be discovered.® Third,
IncRNAs can alter miRNA binding through direct competition for
binding sites. For example, the IncRNA BACE1-antisense, that is
upregulated in Alzheimer’s disease pathology, physically blocks
the binding of miR-485-5p to BACE1 target sites resulting in a
reduction of miR-485-5p-induced repression of endogenous
BACE1 protein translation.”® Finally, IncRNAs may also function
as miRNA ‘sponges’ thereby decreasing their suppressor functions.
This is illustrated by an IncRNA expressed antisense to the PTEN
pseudogene, PTENpg1 that regulates PTEN expression partly
through its miRNA sponge activity.”” The IncRNA lincRNA-RoR also
binds miRNAs resulting in the upregulation of principal transcrip-
tion factors involved in embryonic stem cell maintenance and
differentiation.”® Collectively, regulatory interactions between
long and sRNAs represent an advanced layer of genome
modulation, combining the widespread effects of sRNAs with
the specificity of IncRNAs.

TARGETING NON-CODING RNAs FOR THERAPEUTIC
INTERVENTION

Genome-wide association studies of psychiatric disease have
uncovered only a small amount of genetic links to protein-coding
regions.”® It has been observed that most disease-associated
haplotype blocks from genome-wide association studies occur in
non-coding regions of the genome'®™'% and combined with
strong experimental evidence for IncRNAs and sRNAs under-
pinning neural processes (for example, IncRNAs;>74104105
SRNAs'#253419) and brain disease (INcCRNAs;”#'%* sRNAs*24>46)
suggest that a major proportion of disease-causing variants reside
in regulatory non-coding genes.

Clearly, regulatory RNAs provide excellent opportunities for
targeted therapeutic interventions in brain disease given their
functional and regional specificity and an implied reduction in
potential adverse side effects. The challenges are (1) uncovering

© 2014 Macmillan Publishers Limited

the disease-relevant signaling pathways and related druggable
targets, (2) an efficient method of genetic manipulation and (3)
effective delivery systems. Overcoming the first challenge is
underway  with  specific  small?32829344244-47,106-109 3 g
long’#788385104110 pRNA  targets, and their related signaling
pathways, being discovered that may alleviate brain disorders if
effectively targeted. The second challenge requires strategies for
genetic manipulation and assessment and viability of multiple
methods for targeted transcript knockdown. This includes sRNA
mimics and antagonist oligonucleotides (for example, Antago-
miRs), locked nucleic acid antisense oligonucleotides and syn-
thetic miRNA sponges.'”"™"'® An effective delivery method is the
final challenge and positive progress is being made exploiting a
number of different systems such as exosomes''*''® and
nanoparticles,""”"""® while increasing our understanding of the
optimal formulation for non-viral siRNA delivery.'"®

FUTURE PERSPECTIVES

This article aims to elaborate on the significance of non-coding RNA
in brain function and to unify the independent fields of small and
long non-coding research to better understand protein regulatory
systems that underpin evolved neurological processes. An appealing
picture emerges where the ancient sRNA system, a widespread post-
transcriptional genomic supervisor, is itself governed by a newly
evolved layer of regulation imparted by the IncRNAs. Our knowledge
of brain function will undoubtedly improve through research into all
classes of sRNAs and uncovering the functional repertoire of
IncRNAs, to complement the more comprehensively investigated
miRNAs. Moreover, a deeper appreciation of the interactions
between DNA, proteins and regulatory RNA within a three
dimensional cellular architecture (or four dimensional when
including time or activity) will allow deciphering of the exquisite
cellular control of human neural cells and how dysregulation at
multiple levels may result in similar adverse neurodevelopmental,
psychiatric and neurodegenerative phenotypes.
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