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Introduction

Klinefelter syndrome (KS) is the most common sex-chromo-
some aneuploidy in humans, affecting approximately 1 in every 
600 newborn males.1 Most individuals with KS carry one extra 
X-chromosome (karyotype 47,XXY), although other reported 
variants include 48,XXXY, 48,XXYY and 49,XXXXY.2 The 
condition presents with a broad range of phenotypes that often 
vary in severity.2 In addition to the well-characterized physical 
and physiological features—tall stature, gynecomastia, hypogo-
nadism, and absent spermatogenesis3—KS is also often associated 
with psychiatric and neurodevelopmental phenotypes including 
language-based learning disabilities, decreased verbal intelligence 
and difficulties with task planning and inhibitory control.4 Of 
note, individuals with KS frequently exhibit symptoms related 

to schizophrenia including schizotypal traits,5 auditory halluci-
nations6 and verbal cognition impairment.7 Furthermore, several 
structural brain abnormalities are associated with the disorder 
including abnormal cerebral asymmetry8,9 and reductions in the 
size of specific brain regions,6,10,11 total brain volume,10,12,13 and 
white matter volume.9,10

The mechanism(s) by which the supernumerary 
X-chromosome determines the phenotypes evident in KS are 
poorly understood, although skewed X-chromosome inactiva-
tion (XCI), gene-dosage dysregulation, and the parental origin of 
the extra X-chromosome have all been implicated,14-16 suggesting 
that epigenetic processes play an important role. However, little is 
known about the specific epigenetic changes associated with KS, 
especially in tissues relevant to the KS phenotype. A study com-
paring global long interspersed nucleotide element-1 (LINE-1) 
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Klinefelter syndrome (KS) is the most common sex-chromosome aneuploidy in humans. Most affected individuals 
carry one extra X-chromosome (47,XXY karyotype) and the condition presents with a heterogeneous mix of reproduc-
tive, physical and psychiatric phenotypes. Although the mechanism(s) by which the supernumerary X-chromosome 
determines these features of KS are poorly understood, skewed X-chromosome inactivation (XCI), gene-dosage dys-
regulation, and the parental origin of the extra X-chromosome have all been implicated, suggesting an important role 
for epigenetic processes. We assessed genomic, methylomic and transcriptomic variation in matched prefrontal cortex 
and cerebellum samples identifying an individual with a 47,XXY karyotype who was comorbid for schizophrenia and had 
a notably reduced cerebellum mass compared with other individuals in the study (n = 49). We examined methylomic 
and transcriptomic differences in this individual relative to female and male samples with 46,XX or 46,XY karyotypes, 
respectively, and identified numerous locus-specific differences in DNA methylation and gene expression, with many 
differences being autosomal and tissue-specific. Furthermore, global DNA methylation, assessed via the interrogation 
of LINE-1 and Alu repetitive elements, was significantly altered in the 47,XXY patient in a tissue-specific manner with 
extreme hypomethylation detected in the prefrontal cortex and extreme hypermethylation in the cerebellum. This study 
provides the first detailed molecular characterization of the prefrontal cortex and cerebellum from an individual with a 
47,XXY karyotype, identifying widespread tissue-specific epigenomic and transcriptomic alterations in the brain.
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DNA methylation in whole blood from individuals with Turner’s 
syndrome (45,XO), healthy males (46,XY), healthy females 
(46,XX) and KS patients (47,XXY) reported that increased chro-
mosomal number was associated with hypomethylation across 
the genome.17 Studies of genome-wide patterns of DNA meth-
ylation in patients with trisomy 2118 and trisomy 819 also reveal 
large changes not limited to the supernumerary chromosome, 
indicating that widespread epigenetic changes may be a com-
mon feature of chromosomal aneuploidy. Moreover, differences 
in brain morphology have been associated with imprinting of the 
X-chromosome in Turner Syndrome, indicating that the parental 
origin of the X-chromosome may be important in mediating the 
psychiatric symptoms present in sex abnormalities.20

This study is the first to examine genome-wide patterns of 
DNA methylation and gene expression in two regions of the brain 
obtained post-mortem from a patient with a 47,XXY karyotype. 
We identify widespread tissue-specific epigenomic and transcrip-
tomic alterations, providing potential clues about the molecular 
causes and consequences of KS.

Results and Discussion

As part of an integrated “-omics” study of schizophrenia 
(Pidsley et al., submitted), we examined genome-wide patterns of 
DNA methylation, gene expression, and genetic variation in post-
mortem cerebellum and prefrontal cortex brain tissue samples 
from schizophrenia patients and controls. During the standard 
quality control steps of these data we identified a discrepancy 
between reported and measured sex for one schizophrenia patient 
who displayed the genomic characteristics expected of both male 
and female samples simultaneously. As expected, across the entire 
set of samples, males and females showed distinct levels of DNA 
methylation across probes on the X-chromosome, with the excep-
tion of one sample recorded as male, who clustered with the 
female samples (Fig. S1A). This individual also clustered with 
females for XIST gene expression (Fig. S2A) but with males when 
DNA methylation and gene expression across the Y-chromosome 
were assessed (Figs. S1B and S2B). A 47,XXY karyotype was 
confirmed via the high-resolution SNP genotyping array data 
(Figs. S3 and S4) and the presence of the Y-chromosome was 
confirmed via a PCR-based sex-typing assay (Fig. S5). A number 
of other genomic alterations were identified in this individual 
(Table S1), although there was no obvious excess burden of auto-
somal copy number variations (CNVs), except for one region 
with four copies of a region spanning the NKAIN2 locus. This is 
notable since copy number changes in this gene have previously 
been reported in neuropsychiatric phenotypes including neu-
rodevelopmental disorders and schizophrenia.21-24 The patient’s 
autopsy report did not record KS, suggesting that the 47,XXY 
karyotype was undetected during the patient’s lifetime, although 
we did not have access to detailed pre-mortem medical records. 
In addition to schizophrenia, the autopsy report highlighted that 
the 47,XXY patient had a poor nutritional state, hepatomegaly, 
vascular spiders, nystagmus, dysdyadocokinesia, some degree of 
ataxia at the time of death, a known history of alcohol abuse and 
were prescribed the medications parentrocite and sulpiride.

Identifying structural brain abnormalities associated with 
a 47,XXY karyotype is of relevance given the established link 
between KS and several neuropsychiatric disorders including 
schizophrenia.5,25 Detailed records taken by the neuropatholo-
gist at autopsy show that although the 47,XXY patient had a 
similar total brain mass to other patients (47,XXY = 1417 g, 
all other samples = 1410 ± 182 g, other males = 1454 ± 201 g, 
females = 1325 ± 92 g) they had a markedly lower cerebellum 
mass (47,XXY = 111 g, all other samples = 170 ± 24 g, other 
males = 175 ± 27 g, females = 160 ± 15 g), equating to more than 
two standard deviations below the mean of the other samples 
(Fig. 1; Fig. S6). The reduced cerebellum mass is consistent with 
the patient’s autopsy report of movement disorders, and previ-
ous studies demonstrate an association between cerebellar ataxia 
and reduced cerebellar size.26 Reductions in cerebral volume and 
decreased cortical thickness in the left inferior frontal, tempo-
ral, and superior motor regions have been previously reported in 
KS,13 and a recent imaging study showed significant reductions 
in the volume of several brain regions, including the cerebellum, 
in KS patients compared with controls.10 Other studies have also 
described brain abnormalities in KS patients, including reduc-
tions in total brain volume,12 specific brain regions6,11 and white 
matter volume,9 as well as abnormal cerebral asymmetry.8,9 These 
latter findings are consistent with the theory that brain asymme-
try and cerebral dominance in humans is determined by a XY 
homologous gene pair.27 Structural brain abnormalities have also 
been identified in patients with other types of X-chromosome 
aneuploidy28; a recent study reported increased cerebellum vol-
ume in Turner syndrome (45,XO) patients, contrasting with 
the decreased cerebellum volume in our patient (47,XXY).20 
However, because reduced cerebellum mass has been associated 
with alcoholism29 it is possible that the reduction observed in the 
47,XXY patient is related to the their alcohol abuse history.

Global DNA methylation levels were estimated in both brain 
regions across all individuals using bisulfite-pyrosequencing 
assays targeting LINE-1 and Alu repeat elements across the 

Figure  1. Reduced cerebellar mass in a 47,XXY patient comorbid for 
schizophrenia. Shown is the average cerebellar mass (in grams) across 
all samples compared with the cerebellar mass of the 47,XXY patient. 
Shown are the minimum, maximum, median and interquartile range of 
the cerebellar mass.
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genome, as described previously.30,31 Relative to other samples, 
the 47,XXY patient was a striking hypomethylated outlier across 
both LINE-1 (47,XXY = 67.7%, other samples = 73.0 ± 2.3%) 
and Alu (47,XXY = 25.5%, other samples = 28.1 ± 2.6%) repeti-
tive elements in the prefrontal cortex (Fig. 2A and B; Fig. S7A 
and B). Conversely in the cerebellum, the 47,XXY individual 
showed notable hypermethylation compared with the other 
samples at LINE-1 repetitive elements (47,XXY = 78.4%, other 
samples = 71.9 ± 2.1%), although no significant difference was 
observed at Alu repetitive elements (47,XXY = 24.7%, other 
samples = 24.8 ± 0.8%) (Fig. 2C and D; Fig. S7C and D).

Using the Infinium HumanMethylation450 BeadChip 
(Illumina Inc., San Diego, CA, USA) we identified numerous 
autosomal regions showing consistent differential DNA methyla-
tion in the 47,XXY patient compared with other samples (Tables 
1 and 2). Of note, a region within the sperm-associated antigen 1 
(SPAG1) gene is significantly hypermethylated in both the pre-
frontal cortex and the cerebellum, an interesting observation in 
the context of the infertility associated with KS given the role 
of this gene in spermatogenesis, fertilization, and infertility.32 
Other differentially methylated regions (DMRs) were found to 
be tissue-specific, and/or only detectable relative to either female 
or male controls. Of potential relevance to KS, for example, are 
cerebellar DMRs in the vicinity of Piwi-like protein 1 (PIWIL1), 
which plays a role in the self-renewal of germline stem cells.33 

Also of interest, given the cerebellar abnormalities seen in this 
individual, is evidence for cerebellum-specific hypermethylation 
of the LIM/homeobox 4 (LHX4) gene; mutations in this gene 
have been associated with altered brain development and cerebel-
lar structure.34 Given the comorbid diagnosis of schizophrenia in 
this patient, it is interesting that several of the prefrontal cortex 
DMRs are located in close proximity to other neurobiologically-
relevant genes, including NOTCH4, EPHB3 and KCNN1, that 
have been previously implicated in schizophrenia,35 brain devel-
opment36-38 and regulation of microglia and neurons during 
neuroinflammation.38 The large differences in DNA methyla-
tion reported here are specific to the XXY individual; none of 
these regions are significantly differentially methylated in our 
analysis of schizophrenia and matched controls (Pidlsey et  al., 
submitted).

Numerous genes were found to be differentially expressed 
(DE) in the 47,XXY prefrontal cortex and cerebellum compared 
with other samples (Tables 3 and 4) with a Bonferroni-corrected 
z-score P value < 0.05. In both brain regions the vast majority 
of DE genes were characterized by increased expression in the 
47,XXY patient (prefrontal cortex: 12 loci significantly upregu-
lated, 1 locus significantly downregulated; cerebellum: 18 loci 
significantly upregulated, 0 loci significantly downregulated), 
suggesting that the supernumerary X-chromosome may be 
upregulating transcription at multiple autosomal loci across the 

Figure 2. Tissue-specific differences in global DNA methylation in a 47,XXY patient comorbid for schizophrenia. The 47,XXY patient is significantly hypo-
methylated in the prefrontal cortex across both LINE-1 (A) and Alu repetitive elements (B) but hypermethylated in the cerebellum at LINE-1 elements (C), 
compared with the other samples. No significant difference was observed for DNA methylation across Alu repeat elements in the cerebellum (D). Shown 
are the minimum, maximum, median and interquartile range of the DNA methylation values.
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Table 1. 47,XXY-associated differently methylated regions in the prefrontal cortex (continued)

Gene DMR position (hg19)
Probes in 

DMR

47,XXY vs. all other 47,XXY vs. other males 47,XXY vs. females

β difference P value β difference P value β difference P value

VWA1 chr1:1374601–1374669 2 -0.05 6.28E-05

chr1:182669244–182669315 2 0.13 3.14E-06

chr1:247681102–247681931 8 0.16 1.35E-06

OR2L13 chr1:248100585–248100614 4 0.3 7.88E-06

chr2:4931004–4931074 2 -0.23 2.07E-08 -0.23 3.66E-08 -0.23 3.93E-09

MAP4K3 chr2:39665105–39665186 2 -0.01 4.03E-05

PCBP1 chr2:70313772–70313833 2 0.01 2.57E-05

LOC388965 chr2:84517321–84517950 9 -0.03 3.14E-05

CXCR1 chr2:219031640–219031719 2 -0.05 2.61E-05

IHH chr2:219922729–219922998 2 0.02 6.33E-07

chr2:240530497–240530569 2 -0.16 2.46E-05

WNT5A chr3:55515168–55515541 3 0.03 2.18E-05

NEK11 chr3:130745442–130745959 13 0.04 7.82E-05 0.04 < 2.00E-16

DVL3 chr3:183887905–183888477 4 -0.05 4.49E-05

EPHB3 chr3:184297380–184297522 3 -0.07 1.33E-05

chr3:195578011–195578280 6 0.22 2.18E-05

chr4:53588360–53588850 6 0.03 1.68E-06

SNHG8 chr4:119199621–119200372 11 0.04 2.30E-07 0.04 3.82E-11 0.04 2.16E-06

chr5:784832–784915 3 0.5 < 2.00E-16 0.5 < 2.00E-16 0.5 < 2.00E-16

RIPK1 chr6:3077011–3077041 2 -0.16 9.23E-05

NOTCH4 chr6:32179862–32179971 2 -0.02 1.43E-05

TAPBP chr6:33269769–33269832 2 -0.2 1.29E-08

chr6:168120556–168120635 2 -0.06 3.07E-06 -0.05 1.94E-06

MAD1L1 chr7:2144559–2144767 3 -0.09 8.00E-07

chr7:157075207–157075303 2 -0.1 2.74E-05

PTPRN2 chr7:157744316–157744347 2 -0.06 < 2.00E-16 -0.06 < 2.00E-16 -0.06 < 2.00E-16

chr8:58055876–58056026 2 0.39 1.20E-05 0.4 2.33E-06 0.38 3.12E-05

C8orf71 chr8:58192753–58192883 2 -0.22 9.11E-05

SPAG1 chr8:101224915–101225361 5 0.13 < 2.00E-16 0.13 < 2.00E-16 0.14 < 2.00E-16

SPAG1 chr8:101225800–101225902 2 0.22 < 2.00E-16 0.22 6.54E-12 0.23 < 2.00E-16

chr10:2978126–2978687 5 -0.1 7.97E-09

chr10:8090846–8090924 2 0.04 7.87E-05

STK32C chr10:134062522–134062614 2 -0.21 1.95E-05

TMBIM4 chr12:66563381–66563928 10 0.03 3.12E-06 0.03 2.10E-07 0.03 4.13E-08

GALNT9 chr12:132904540–132904689 2 -0.11 3.24E-06

NDRG2 chr14:21493406–21493410 2 0.03 2.15E-06

chr14:95837801–95837929 3 -0.05 1.77E-06 -0.06 2.54E-06 -0.05 3.52E-07

LBXCOR1 chr15:68125566–68125599 2 -0.2 7.84E-06

chr15:68126065–68126178 2 -0.04 8.16E-05

chr19:17504632–17504972 3 0.15 2.61E-07

KCNN1 chr19:18077727–18077834 3 0.02 4.85E-08

Light gray boxes indicate non-significant results. Dark gray boxes indicate that no comparison was made (X-chromosome-linked genes were compared 
with females only whereas Y-chromosome-linked genes were compared with males only).
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genome. Although some DE genes were observed only in com-
parisons with both 46,XY males and 46,XX females, most were 
sex-comparison-specific. Strikingly, across both brain regions, 
many more 47,XXY DE genes were observed in comparison with 
females than males in both tissues (prefrontal cortex: 47,XXY 
vs females = 59, 47,XXY vs males = 18; cerebellum: 47,XXY vs 
females = 50, 47,XXY vs males = 21). Furthermore, although 
some changes were consistently observed in both the prefrontal 
cortex and cerebellum (e.g., CAMP, EPCAM and LOC441208), 
the majority were tissue-specific to a single brain region. The 
large differences in gene expression reported here are specific to 
the 47,XXY individual; none of these transcripts are differen-
tially expressed in our analysis of schizophrenia and matched 
controls (Pidlsey et al., submitted).

Given previous evidence that KS is associated with skewed XCI 
in peripheral blood,14 we next assessed allelic patterns of DNA 
methylation in the proximity of a polymorphic repeat (CAG)

n
 in 

the androgen receptor (AR) gene. Although the prefrontal cortex 
was characterized by subtle allelic imbalance of XCI (7.5% skew-
ing), this did not exceed the range of normal skewing observed 
in our previous analysis of healthy individuals,40 and there was 
no evidence of allelic skewing in the cerebellum (0.4% skewing). 
We were also interested in examining the expression and DNA 
methylation status of X-linked genes believed to escape XCI in 
females.41 Between 5 and 15% of genes on the X-chromosome 
are thought to escape XCI in healthy females,42,43 and it has been 
suggested that these loci may play an important role in the KS 
phenotype.44,45 Although genes escaping XCI might be expected 
to show consistently high expression levels in females compared 
with males, many loci actually show variable levels of expression 
in females46 with evidence of tissue-specificity.45,47

Although the 47,XXY patient is an outlier for the expression 
of many genes thought to escape XCI, we find no consistent 
pattern of altered transcription; some loci are upregulated and 
others downregulated, with many showing changes specific to 
either male or female comparison groups (Table S2). There is 
also considerable evidence for tissue-specific differences in the 
expression of these genes, concurring with data from a study of 
genes escaping XCI in 41,XXY mice compared with karyotypi-
cally normal male and female mice.45 One of the loci showing 
noticeably higher expression in the 47,XXY patient compared 
with both females and males across both brain regions is the 
gene encoding Eukaryotic Translation Initiation Factor 1AX 
(EIF1AX ) (Fig. S8), which has been suggested as a possible can-
didate gene for Turner syndrome (45,XO).48 Browseable tracks 
for viewing within the Integrative Genomics Viewer (IGV) 

(http://www.broadinstitute.org/igv/home) showing 47,XXY-
associated changes in DNA methylation and gene expression for 
other loci are downloadable from our laboratory website (http://
epigenetics.iop.kcl.ac.uk/XXY).

We also looked at the expression of genes located in the pseu-
doautosomal regions (PAR) 1 and 249 (http://www.genenames.
org/genefamilies/PAR), which are represented by three copies in 
individuals with a 47,XXY karyotype. Again, although often an 
outlier for transcription at these loci (Table  S3), the observed 
pattern in the 47,XXY individual is heterogeneous, differing 
across tissues and between male and female comparison groups. 
Some PAR genes (e.g., SLC25A6 ) are clearly upregulated in 
the cerebellum but not the prefrontal cortex, while others (e.g., 
DHRSX ) are upregulated across both tissues. Other genes such 
as GTPBP6, for example, are consistent outliers for reduced 
expression in the 47,XXY patient suggesting that transcription 
is not always positively correlated with copy number in the PAR. 
Further work is needed to explore the regulatory mechanisms 
influencing expression of loci on the extra X-chromosome, and 
the processes involved in controlling dosage compensation. 
Another region of interest in KS is the X transposed region (XTR) 
on the Y chromosome,50 created by a 3.5 Mb duplication from 
Xq21.3 to Yp11.2 during hominin evolution.51-53 In Figure S4 the 
allele frequency plot for the 46,XY male (B) shows three bands 
across both chromosomal regions, whereas the 47,XXY patient 
(A) is characterized by four bands, most likely resulting from 
cross hybridization of microarray probes. Although epigenetic 
deregulation of the Protocadherin 11 X-linked (PCDH11X) and 
Y-linked (PCDH11Y) genes in these regions are of great interest 
in KS and neuropsychiatric disease,54-56 DNA methylation array 
probes in the vicinity of these genes were excluded during our 
stringent quality control steps due to cross-reactivity57 and could 
not be assessed in this study (see the “Materials and Methods” 
section). Because it is plausible that the XTR contains sequence 
and epigenetic differences that are important in KS and schizo-
phrenia, future studies should utilize methods that can unam-
biguously profile variation in this region.

In summary, this study identifies widespread transcriptomic 
and epigenomic changes in the prefrontal cortex and cerebel-
lum associated with a 47,XXY karyotype. Although our findings 
are based on data from only a single 47,XXY individual, and it 
will be important to confirm the observed patterns samples from 
additional patients, this study represents the first detailed molec-
ular characterization of brain tissue from an individual with a 
47,XXY karyotype. The patient, who was comorbid for schizo-
phrenia, was found to have a notably reduced cerebellum mass 

Table 1. 47,XXY-associated differently methylated regions in the prefrontal cortex (continued)

Gene DMR position (hg19)
Probes in 

DMR

47,XXY vs. all other 47,XXY vs. other males 47,XXY vs. females

β difference P value β difference P value β difference P value

AXL chr19:41731934–41732589 5 0.03 3.79E-06

KDELR1 chr19:48894694–48895030 9 0.03 4.30E-05 0.03 3.79E-11

chr21:44573854–44574022 3 -0.09 1.02E-07 -0.09 9.20E-08 -0.08 9.79E-10

Light gray boxes indicate non-significant results. Dark gray boxes indicate that no comparison was made (X-chromosome-linked genes were compared 
with females only whereas Y-chromosome-linked genes were compared with males only).
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and was characterized by considerable locus-specific changes in 
DNA methylation and gene expression, with many of these dif-
ferences being autosomal and tissue-specific. Strikingly, global 
DNA methylation, assessed via the interrogation of LINE-1 and 
Alu repetitive elements, was significantly altered in the 47,XXY 
patient in a tissue-specific manner. Finally, we find evidence for 
alterations in gene expression at loci believed to normally escape 
XCI in females.

Materials and Methods

Samples and nucleic acid isolation
Post-mortem brain samples were obtained from the MRC 

London Neurodegenerative Diseases Brain Bank (http://
w w w.kc l .ac .uk /iop /dept s /cn /re sea rch /MRC-London-
Neurodegenerative-Diseases-Brain-Bank/MRC-London-
Neurodegenerative-Diseases-Brain-Bank.aspx). Patients (n = 49) 

Table 2. 47,XXY-associated differently methylated regions in the cerebellum

Gene Position (hg19)
Probes 
in DMR

47,XXY vs. all other 47,XXY vs. males 47,XXY vs. females

β difference P value β difference P value β difference P value

LHX4 chr1:180201891–180201893 2 0.26 5.42E-05

LHX4 chr1:180202256–180202784 2 0.09 2.92E-09

LHX4 chr1:180203135–180203143 8 0.05 1.49E-06

LAMB3 chr1:209799191–209799353 4 -0.14 7.94E-05 -0.14 3.66E-07

TTC15 chr2:3469154–3469529 2 -0.19 2.47E-07

TET3 chr2:74328923–74329082 2 -0.07 5.17E-05

chr3:87137933–87138700 2 0.11 < 2.00E-16 0.11 < 2.00E-16 0.1 2.66E-12

CLDN18 chr3:137728810–137729296 9 -0.13 2.25E-05

NHEDC1 chr4:103940711–103941300 2 0.08 1.96E-07

chr5:784832–784915 2 0.43 < 2.00E-16 0.43 < 2.00E-16 0.43 < 2.00E-16

chr5:68628240–68628738 2 0.1 3.90E-06

RIPK1 chr6:3077011–3077041 3 -0.17 6.98E-05

HIST1H3C chr6:26045532–26045663 13 0.1 3.02E-12 0.1 4.68E-09 0.1 < 2.00E-16

PTPRN2 chr7:157744316–157744347 4 -0.05 7.10E-10

chr8:58055876–58056175 3 0.43 8.50E-05 0.44 1.55E-06

C8orf71 chr8:58191386–58192065 6 -0.25 4.89E-08 -0.26 3.82E-09 -0.25 1.38E-07

SPAG1 chr8:101224915–101225361 6 0.13 < 2.00E-16 0.13 < 2.00E-16 0.13 < 2.00E-16

SPAG1 chr8:101225800–101225902 11 0.21 < 2.00E-16 0.21 < 2.00E-16 0.21 < 2.00E-16

C9orf64 chr9:86571409–86572014 3 0.1 6.98E-05 0.1 6.25E-06

KIAA1274 chr10:72254314–72254335 2 -0.11 1.70E-06

CALHM1 chr10:105218160–105218286 2 -0.1 6.26E-05

CALCB chr11:15093613–15093769 2 -0.16 2.67E-06 -0.16 1.66E-06 -0.18 3.66E-07

TP53AIP1 chr11:128812804–128813442 2 -0.19 1.24E-05

TP53AIP1 chr11:128812846–128813008 3 -0.19 7.61E-05

PIWIL1 chr12:130822286–130822818 2 -0.25 4.26E-05

NBEA chr13:36044860–36045352 2 0.05 3.26E-05 0.05 2.21E-06 0.05 8.17E-05

chr15:26489846–26490045 2 -0.05 8.82E-05

KRTAP17–1 chr17:39472114–39472340 2 -0.15 9.52E-05

chr17:55213563–55213600 5 -0.15 9.68E-05

chr17:77680078–77680232* 2 -0.19 6.73E-05 -0.19 3.31E-07

LRP5L* chr22:25758621–25758749 5 -0.1 8.18E-05

MXRA5 chrX:3264517–3265089 2 0.04 1.92E-09

TTTY14 chrY:21238886–21239607 2 0.09 1.18E-11

Light gray boxes indicate non-significant results. Dark gray boxes indicate that no comparison was made (X-chromosome-linked genes were compared 
with females only whereas Y-chromosome-linked genes were compared with males only). *CNV with copy number of 3 overlapping with the region (see 
Table S1).
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Table 3. 47,XXY-associated differentially expressed genes in the prefrontal cortex (continued)

nuID Gene Probe position (hg19) Strand

47,XXY vs. all other 47,XXY vs. males 47,XXY vs. females

Fold 
change

P value
Fold 

change
P value

Fold 
change

P value

fVedl_tOxJHgKDgkUk ANGPTL7 chr1:11255703–11255752 + 0.17 1.11E-16 0.17 5.11E-15 0.17 < 2.00E-16

Zl4IEsHlNCOIgeii9c VCAM1 chr1:101204019–101204068 + 0.12 1.78E-08

cqSF81At6xB7XyHjiQ PRG4 chr1:186282872–186282921 + 0.2 < 2.00E-16

lojns5Hg3o6bW_X07 g CFH chr1:196648872–196648921 + 0.23 1.43E-07

Qo0T0_REI6OtlJLFOU CFH chr1:196658692–196658741 + 0.38 1.11E-16

NIDSs_kv.U.0.u7g.8 H3F3A chr1:226259333–226259382 + 0.33 7.90E-07

NfqgAIRfuk8Lfn_vAk EXOC8 chr1:231468728–231468777 - 0.21 1.68E-07

ZoXhLA6oEHo3o160B8 EPCAM chr2:47606943–47606992 + 0.69 1.11E-16

BnrvPnvPuvuuMkvvno EPCAM chr2:47607046–47607095 + 1.04 2.26E-08

cpAs4gp4jAojq4jkyo EPCAM
chr2:47612328–47612349:

47613711–47613738
+ 0.2 1.65E-09 0.2 2.98E-07 0.21 < 2.00E-16

xd6Z60LRKEWCAU0bEY EFEMP1 chr2:56149495–56149544 - 0.39 6.29E-10

9l31SOkN7XN3uegjnI AOX1 chr2:201535434–201535483 + 0.08 < 2.00E-16

Zl7s26IBCIUH.09XlU COL6A3 chr2:238232942–238232991 - 0.39 6.62E-14

QXNDUD1d6L9O85e_Sk COL6A3 chr2:238233095–238233144 - 0.13 6.77E-10

rItcu7lcV6dKfep3iA CAMP chr3:48266905–48266954 + 0.2 < 2.00E-16 0.2 < 2.00E-16 0.2 < 2.00E-16

69KffSiAkLEesX6HuQ SLC25A20 chr3:48900042–48900091 - 0.36 5.69E-11

lnxCeHgiilejtJhR.U DNASE1L3
chr3:58179070–58179093:

58178505–58178530
- 0.13 < 2.00E-16

6h.tJeHqxD3.vD_S7o PHLDB2 chr3:111694722–111694770 + 0.27 3.50E-09

ommprt5mtriFZmriGc FAIM chr3:138327937–138327986 + 0.11 3.54E-07

ln0vn7fesf3vOp.6ok TP63 chr3:189614936–189614985 + 0.21 < 2.00E-16

KpJwqU0.HokiEUlMrU NULL chr4:144496759–144496808 - 0.09 5.31E-07

35QRHIUd.o9CJHuzh4 GPX8 chr5:54460446–54460495 + 0.15 < 2.00E-16

riWe5en0.0i4hP7Huk BTNL9 chr5:180488062–180488111 + 0.2 3.57E-12

QfyhEl_TCJbggfqkvk LOC401233 chr6:3019504–3019553 - 0.15 7.79E-07

fajeo6Sh6PMkUgoxnk BMP5
chr6:55625255–55625272:

55623882–55623913
- 0.19 2.30E-14 0.18 7.69E-12 0.19 < 2.00E-16

K6oCu8IOLU3SUMufrs TBX18 chr6:85444495–85444544 - 0.12 6.56E-07

07q5ey9ScdKKeKSiDg IKBIP chr6:168224491–168224540 - -0.69 2.87E-07

0uHF8y.yziXFfoICwo TMEM196 chr7:19759195–19759244 - 0.21 4.12E-09

Zn50ZUiIgAvCeeFeCk INMT chr7:30797037–30797086 + 0.12 3.31E-12

cyxSgtKKIa_cDsvc3o LOC441208 chr7:32768986–32769035 + 0.32 < 2.00E-16 0.33 < 2.00E-16 0.32 7.88E-15

iX3qB7qexxL0p66.jk FGL2 chr7:76825768–76825817 - 0.43 2.49E-11

KmAXs1qVBeAE1SUIHo COL1A2 chr7:94057677–94057726 + 0.35 < 2.00E-16

9jUT7yueFyEiOB4rX4 COL1A2 chr7:94060111–94060160 + 0.45 < 2.00E-16

QyCF6hIoee3ld3rRXk DEFA1 chr8:6856660–6856709 - 0.12 1.38E-13 0.12 1.57E-12 0.12 1.11E-15

xKBJBHXp4QcJQzpXK0 SCARA5 chr8:27727946–27727995 - 0.26 9.82E-07

0LiHngASd5JSA633Ro SDCBP chr8:59492276–59492306 + 0.15 6.15E-07

K7con83.RdfSKOc6rU BNC2 chr9:16416697–16416746 - 0.17 1.83E-13

Light gray boxes indicate non-significant results. Dark gray boxes indicate that no comparison was made (X-chromosome-linked genes were compared 
with females only whereas Y-chromosome-linked genes were compared with males only). Annotation data for each probe obtained using the Bioconductor 
package illuminaHumanv4.db.39
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were approached in life for written consent for brain banking. 
All samples were dissected by a trained neuropathologist, snap-
frozen and stored at -80°C following legal and ethical guidelines. 
The time between death and removal of the brain was recorded 
as post-mortem interval (PMI). The samples used in this study 

comprised of prefrontal cortex (PFC, n = 49) and cerebellum 
samples (CER, n = 48), from 23 schizophrenia patients (includ-
ing the 47,XXY patient) and 26 unaffected controls. All schizo-
phrenia patients were diagnosed pre-mortem by psychiatrists in 
the UK using standardized diagnostic criteria. Demographic 

Table 3. 47,XXY-associated differentially expressed genes in the prefrontal cortex (continued)

nuID Gene Probe position (hg19) Strand

47,XXY vs. all other 47,XXY vs. males 47,XXY vs. females

Fold 
change

P value
Fold 

change
P value

Fold 
change

P value

6oXSUI4JlkkvBc4W5I CCL19
chr9:34689927–34689940:

34689801–34689836
- 0.32 <2.00E-16

WrlIsC.cAwT13R_xVE OGN chr9:95146774–95146823 - 0.77 4.11E-15

BDhFLxNahZPgiMZeio OGN chr9:95147978–95148027 - 0.88 <2.00E-16

ZjdFPOE1NVcnRRMkTI OMD chr9:95176881–95176930 - 0.45 3.73E-07

Kc4qiig6iKqdKpQwHc SLC27A4 chr9:131123437–131123486 + 0.09 3.26E-08

oKAoV4glIpSToLgqkg ITIH2 chr10:7788602–7788651 + 0.2 1.24E-09

lqMskrfH4OAt4z_eOk OTUD1 chr10:23730535–23730584 + 0.16 9.87E-11

xqKT0lF6D5OJ2dL_o8 PDE6H chr12:15134355–15134404 + 0.16 2.54E-08

ZfKOiSBOiKCP0.wnXU SLCO1C1 chr12:20905935–20905984 + 0.13 2.83E-10

fX9eh..pR5XocuAg6E PKP2 chr12:32944450–32944499 - 0.21 2.92E-07

cjif7cfQC.v58VfSXU GJB2 chr13:20761910–20761959 - 1 <2.00E-16

ciAGgiIoDiuq_igFTo EDNRB chr13:78470881–78470930 - 0.18 1.49E-07 0.18 1.11E-16

xuigGSeQeCaIdwFSfk PTGDR chr14:52742862–52742911 + 0.15 <2.00E-16

rl55P5uN0IXUlILV9Q PTGDR chr14:52743020–52743069 + 0.32 <2.00E-16

0knRyVFXXc.6sIg.HE TMEM30B chr14:61744888–61744937 - 0.45 <2.00E-16

TP6d2kdUp6iejF5XpI LOC388152 chr15:84871644–84871693 - 0.12 5.26E-09

3eh0.Qkv5.70DbjiAU NUDT21 chr16:56463489–56463538 - 0.15 1.04E-07 0.15 6.69E-08 0.15 5.92E-07

KsuX1EryiLsDi3rL_0 TMEM220 chr17:10617182–10617231 - 0.09 2.07E-08 0.09 2.60E-09 0.08 3.79E-08

x.Sd_F7Vd6eXeLeDdU TOP2A chr17:38545067–38545116 - 0.11 1.49E-07 0.12 <2.00E-16

EnpItS.SAMZeiUiS2E FAM20A chr17:66533566–66533615 - 0.12 2.70E-08 0.12 4.20E-09

9k3mzbqMPhOKn4iB1I CD177 chr19:43867372–43867421 + 0.14 6.18E-14 0.13 8.74E-12 0.14 <2.00E-16

3CBVEhgxeipOOJilWo MYL9 chr20:35176437–35176486 + 0.11 1.34E-07

No174RVAVBCigl6guU SLPI
chr20:43882216–43882241:

43881769–43881792
- 0.27 <2.00E-16

ojLV_BETnlid6ABVEk UBE2C
chr20:44444504–44444552:

44445348–44445348
+ 0.1 <2.00E-16

r37yu690k8Sk.uedqI LOC401397 chr20:57523176–57523225 - 0.11 2.69E-08

TdSCif1KMn_KMJ5o4k LOC96610 chr22:22664198–22664247 + 0.09 6.12E-08

luuljtLxeOlOiCJCmE ADRBK2 chr22:25817204–25817253 + 0.1 1.11E-16

TADKWp66dGXsNUkf6Q GGA1 chr22:38013841–38013890 + -0.83 9.84E-07 -0.86 2.61E-09

Z5K0omXVEuL9VRHadc RRP7A chr22:42907975–42908024 - 0.08 <2.00E-16

EqZLp0Zez1SR.qKUKQ RRP7B chr22:42969512–42969561 - -0.55 6.55E-10

0szegLje1eiuskL9Ro NPM1 chrX:123414788–123414837 + 0.2 8.35E-08

lLh40p.7RHpRI4TceU GYG2P1
chrY:14518992–14518993:

14518689–14518736
- 0.11 1.21E-07

Light gray boxes indicate non-significant results. Dark gray boxes indicate that no comparison was made (X-chromosome-linked genes were compared 
with females only whereas Y-chromosome-linked genes were compared with males only). Annotation data for each probe obtained using the Bioconductor 
package illuminaHumanv4.db.39
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Table 4. 47,XXY-associated differentially expressed genes in the cerebellum (continued)

nuID Gene Probe position (hg19) Strand

47,XXY vs. all other
47,XXY vs. other 

males
47,XXY vs. other 

females

Fold 
change

P value
Fold 

change
P value

Fold 
change

P value

uO7tSXg9R5ohX55GF4 TNFRSF18 chr1:1140794–1140843 -  0.15 1.01E-14

TQ5MLOicLl.6KP36CI FAM76A chr1:28087875–28087924 + 0.07 2.70E-07

3VHqE.9440_ek4J75o PCNXL2
chr1:233275460–233275463: 

233270891–233270936
- 0.14 6.48E-12

ZoXhLA6oEHo3o160B8 EPCAM chr2:47606943–47606992 + 0.54 5.47E-12

BnrvPnvPuvuuMkvvno EPCAM chr2:47607046–47607095 + 0.9 3.44E-13

6KDbq30yk7941631Kg KCNH7 chr2:163228344–163228393 - 0.12 7.42E-07

6R96hdG6D63d4rLojk LOC401052 chr3:10048205–10048254 - 0.22 1.16E-10

TQeEon6idqJ_oip878 ARPP21 chr3:35722564–35722613 + 0.1 1.46E-12

rItcu7lcV6dKfep3iA CAMP chr3:48266905–48266954 + 0.09 3.46E-12 0.09 1.86E-09 0.1 <2.00E-16

QEKvDrJSV50hXQ4Rno ANKRD17 chr4:74005263–74005312 - 0.22 1.98E-07

0q44on0oRTyiSnoQTc SH3TC2 chr5:148384360–148384409 - 0.1 5.29E-11

WVElhxxViAlxN9F9ec RASGEF1C
chr5:179564876–179564899: 

179564687–179564712
- 0.13 4.15E-07

01Xd110F6gx9ITdQHQ RNF39
chr6_mcf_hap5:1420068–

1420117
- 0.16 6.29E-07

0cVOsh0SeXuuB.p1eU PRRC2A
chr6_dbb_hap3:2890088–

2890137
+ 0.35 2.22E-07

Tqg7v6gLQi6yj6_nqY C6orf132 chr6:42070437–42070486 - 0.23 3.15E-10

HqI33tUcoB5g_xRIqI C6orf176 chr6:166338009–166338058 - 0.11 1.15E-08

cyxSgtKKIa_cDsvc3o LOC441208 chr7:32768986–32769035 + 0.14 3.61E-07

cyxSgtKKIa_cDsvc3o LOC441208 chr7:32768986–32769035 + 0.15 <2.00E-16

3WfZR.WSd6.5x7nndc C7orf52 chr7:100813863–100813912 - 0.15 4.28E-09 0.15 1.03E-08 0.14 1.43E-09

K_N4laRVOKE5IkXkig CNTFR
chr9:34552159–34552166: 

34552028–34552069
- 0.23 <2.00E-16 0.23 3.99E-14 0.23 <2.00E-16

uJdPSKuSnCZOhiSaug GPSM1 chr9:139252547–139252596 + 0.25 2.95E-08

90NSdfgVdSVn0l6k0c ENTPD2 chr9:139942751–139942800 - 0.09 6.35E-08

3Z2Vqi1Jrte6J5ZTpU IL15RA chr10:6019449–6019498 - 0.08 8.68E-07 0.08 6.27E-08

ZIRQ6g1Q6oLY56590U IGF2
chr11:2159459–2159460: 

2156712–2156759
- 0.1 9.90E-14 0.09 1.45E-12 0.1 < 2.00E-16

Wl36k3qhE6w57l_Egs CALCA chr11:14988290–14988339 - 0.23 8.30E-09 0.23 5.73E-09 0.22 5.94E-09

x9f4JKzfk6VFquC1eU TMEM223 chr11:62558209–62558258 - 0.28 6.22E-07

9ooIoDrhULuqvuvSgI SLC22A6 chr11:62744143–62744192 - 0.18 3.65E-07 0.18 9.29E-07 0.18 9.39E-08

Z9IldVfociaepInc.BI CNIH2 chr11:66051236–66051285 + 0.35 9.53E-07 0.36 4.88E-15

HFwXl7tTpgV3E1wXlo SMARCC2 chr12:56558210–56558259 - 0.18 8.81E-08 0.19 4.36E-08 0.18 6.14E-07

QO_wesnjwsy9XkVfeo LOC220115 chr13:53161055–53161104 + 0.12 8.32E-09

c70LXLcyj6S.A5.HVU OLFM4 chr13:53626107–53626156 + 0.09 4.37E-07 0.09 1.59E-07

36JWb571RKl2v.XB_c SPSB3 chr16:1826791–1826840 - -0.89 9.17E-07

BloWN0NHoOuep7agcE TNRC6A chr16:24834917–24834966 + 0.13 9.96E-09 0.13 1.69E-08 0.13 9.43E-09

QLR0VHu.euUKd_KlUc FAM64A chr17:6354072–6354121 + 0.1 1.33E-07

EdOgRNRCeCkhClZIJ0 RPL19 chr17:37360385–37360427 + 0.7 6.11E-08

Light gray boxes indicate non-significant results. Dark gray boxes indicate that no comparison was made (X-chromosome-linked genes were compares to 
females only whereas Y-chromosome-linked genes were compared with males only). Annotation data for each probe obtained using the Bioconductor 
package illuminaHumanv4.db.39
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information about the samples is summarized in Table  S4. 
Genomic DNA was extracted from each tissue sample using a 
standard phenol-chloroform extraction and tested for purity and 
degradation using spectrophotometry and gel electrophoresis, 
respectively. RNA was extracted using a standard Trizol extrac-
tion method and purified using an RNeasy Mini Kit with DNase 
I digestion (QiagenQIAGEN), according to manufacturer’s 
instructions. RNA was tested for degradation and purity using 
an Agilent 2100 Bioanalyzer and RNA 6000 Nano kit (Agilent 
Technologies). All samples were randomized with respect to gen-
der and disease status throughout all stages of the project to avoid 
potential batch effects.

Global DNA methylation assay
Bisulfite-PCR pyrosequencing was used to assess the methyla-

tion status of LINE-1 and Alu repeats as a proxy of global DNA 
methylation levels, as described previously.30,31 Samples were 
run on the Pyromark Q24 pyrosequencer (QiagenQIAGEN) 
according to manufacturer’s instructions. DNA methylation lev-
els for each sample were calculated as the average of the three 

interrogated CpG sites on each assay. Fully methylated and fully 
unmethylated control samples were included in all procedures to 
act as assay controls.

Genome-wide DNA methylation array processing
500ng of genomic DNA from each sample was treated with 

sodium bisulfite in duplicate, using the EZ-96 DNA methyla-
tion kit (Zymo Research) following the manufacturer’s standard 
protocol. Duplicates were pooled and the samples (PFC n = 46 
and CER n = 46) were assessed using the Illumina Infinium 
HumanMethylation450 BeadChip (Illumina Inc.) run on the 
HiScan System (Illumina). All samples were randomized with 
respect to gender and disease status to avoid batch effects, and 
processed on eight BeadChips.

Methylomic data processing and analysis
Signal intensities were extracted using Illumina GenomeStudio 

software (Illumina) and imported into R58 using the methylumi 
and minfi packages.59,60 Multi-dimensional scaling plots of vari-
able probes on the X- and Y-chromosome were used to check con-
cordance between predicted and reported sex for each individual 

Table 4. 47,XXY-associated differentially expressed genes in the cerebellum (continued)

nuID Gene Probe position (hg19) Strand

47,XXY vs. all other
47,XXY vs. other 

males
47,XXY vs. other 

females

Fold 
change

P value
Fold 

change
P value

Fold 
change

P value

x6gXnXotNXeQEiJUi4 RBFOX3
chr17:77303806–77303842: 

77231875–77231887
- 0.57 2.85E-09

iIoD3lFP9UreSVdSeo RBFOX3 chr17:77303839–77303888 - 0.3 3.77E-07

f4oYbqlTz8YVp9fc6U FN3K chr17:80708373–80708422 + 0.22 1.29E-10 0.21 7.08E-10 0.23 1.34E-14

x3S.SNd5j.Pi6At_Z4 MGC70870
chr17_gl000205_random:

119141–119190
+ 0.31 3.30E-07

oCVdUCZaWHZ7dnqh38 NFIC chr19:3463515–3463564 + 0.1 1.67E-08

QudxDtFe.RtNJF3qhU OLFM2 chr19:9964866–9964915 - 0.54 9.61E-07 0.57 1.20E-08

9RSiJQISr7l8VSiUVc NACC1 chr19:13251492–13251541 + 0.49 7.50E-11 0.49 1.49E-08 0.5 < 2.00E-16

uCKpSOEVwJKeNqQ6is RAB3A chr19:18307891–18307940 - 0.93 1.71E-12

l3roFeVfFJfjpJqDes POU2F2 chr19:42595686–42595735 - 0.09 6.52E-08

T3DouuhUIkzS5yQDpI UBE2V1
chr20:48700666–48700677: 

48699413–48699451
- 0.19 8.02E-09

uXOOCKm1HogpVesKUk KIAA1647 chr22:18958144–18958171 + 0.12 6.51E-07

i1_RF4d7R0Jf3UUpV0 SERPIND1 chr22:21141675–21141724 + 0.1 4.00E-07

Z5K0omXVEuL9VRHadc RRP7A chr22:42907975–42908024 - 0.16 4.44E-15

EU_ve.pMFc8DrmSJ4M LOC389834
chrUn_gl000218:51064–

51113
- 0.14 1.87E-07

lt1Hf71dcOcPygIhR4 CHIC1 chrX:72903733–72903782 + 0.08 4.14E-06

WnUxEZ5faxUURBNQuk L1CAM chrX:153127445–153127494 - 0.77 1.28E-05

HLEukIKIKKaSqkOEnQ L1CAM chrX:153128160–153128209 - 0.08 2.23E-05

fKg7fXeNt9dKDIdCzk RPS4Y1 chrY:2712151–2712200 + 1.48 <2.00E-16

Q8jADkAqS017VJIV90 NLGN4Y chrY:16953254–16953303 + 0.06 1.27E-08

6tUwTEFxS.3kFYCVKk AL833666 chrY:21724080–21724129 - 0.18 3.20E-10

Light gray boxes indicate non-significant results. Dark gray boxes indicate that no comparison was made (X-chromosome-linked genes were compares to 
females only whereas Y-chromosome-linked genes were compared with males only). Annotation data for each probe obtained using the Bioconductor 
package illuminaHumanv4.db.39

©
20

14
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.



www.landesbioscience.com	E pigenetics	 11

(see the “Results and Discussion” section). The comparison of 
non-CpG SNP probes on the array confirmed that the PFC and 
CER were sourced from the same individual where expected. 
Raw β values of CpG probes within brain region-specific dif-
ferentially methylated regions (DMRs) (extracted from ref. 61) 
were used to confirm that the predicted and reported brain 
region corresponded for each sample. Probes containing a SNP 
with MAF > 5% within 10 bp of the CG target site based on the 
Illumina annotation data (n = 35 413) and non-CG probes (n 
= 65) were removed. Further stringent data quality control and 
processing steps were conducted using the dasen function in the 
wateRmelon package as previously described.62 The pfilter func-
tion was used to filter data by beadcount and detection P value to 
stringently control for poor quality probes (PFC n = 5623 probes 
and CER n = 10 417 probes removed across all samples). Prior 
to statistical analyses cross-reactive probes co-hybridizing to the 
sex-chromosomes, as previously identified,57 were removed. The 
pnorm function used to identify differentially methylated CpG 
sites in the 47,XXY patient and the comb-p package63 was used 
to identify 500bp regions of 2 or more adjacent differentially-
methylated probes. The identified regions of differential DNA 
methylation were compared with copy number variation (CNV) 
data of the 47,XXY patient to screen for overlaps with any large 
genomic aberrations.

Genome-wide expression array processing
An amount of 100 ng RNA from each sample (PFC n = 47 and 

CER n = 48) was biotinylated and amplified using the Illumina 
TotalPrep RNA Amplification kit (Life Technologies) to produce 
cRNA. cRNA was quantitated using a NanoDrop NO-1000 
(Thermo Fisher Scientific) and RediPlate 96 RiboGreen RNA 
Quantitation Kit (Life Technologies). Genome-wide expression 
was assessed using the Illumina HumanHT-12 v4 Expression 
BeadChip (Illumina Inc.) according to manufacturer’s 
instruction.

Expression data processing and analysis
Signal intensities for each probe were extracted using Illumina 

GenomeStudio software (Illumina) and imported into R using 
the lumi package within Bioconductor.64 Initial quality control 
checks using functions within lumi identified clear outlying 
samples, which were removed from subsequent analyses (PFC n 
= 5, CER n = 4). The sex of the samples was checked by compar-
ing the sex predicted by the expression levels of the XIST gene 
with the reported sex for each individual (see the “Results and 
Discussion” section). Probes targeting transcripts of genes in the 
vicinity of brain region-specific DMRs61 were used to confirm 
that the predicted brain region corresponded with the reported 
region for each sample. Remaining samples were processed using 
the lumi64 and MBCB65 Bioconductor packages in R. During pro-
cessing, probes with a detection P value > 0.01 across all samples 
were considered non-detectable and removed from subsequent 

analysis. The ComBat function within the sva package in R66 was 
used to adjust the data to remove batch effects. The pnorm func-
tion was used to identify differentially expressed transcripts in 
the 47,XXY sample. Genes identified as differentially expressed 
were compared with the CNV data of the 47,XXY patient to 
record overlaps with large genomic aberrations.

Genome-wide CNV detection
200ng of genomic DNA from each prefrontal cortex sam-

ple were genotyped using the Illumina HumanOmniExpress 
BeadChip (Illumina Inc.). All samples were randomized with 
respect to gender and disease status to avoid batch effects. 
Illumina GenomeStudio was used to call genotypes (using the 
HumanOmniExpress-12v1_C.egt cluster file) with the default 
GenCall cut-off of 0.15. To compare the sex predicted by the 
genetic data with the reported sex for each individual previ-
ously published recommendations were followed.67 PLINK 
was used to assess the heterozygosity rate of the probes on the 
X-chromosome68 (see the “Results and Discussion” section). 
Autosomal CNVs were called using PennCNV.69

PCR-based sex-typing assay
A PCR-based sex-typing assay was performed as described pre-

viously.70 In brief, the X and Y amelogenin (AMELX ) sequences 
were amplified, with amplicons distinguished on the basis of 
size; the X-chromosome produces a 977bp amplicon, whereas the 
Y-chromosome produces a 788bp amplicon.

X-Chromosome Inactivation assay
The allelic X-Chromosome Inactivation (XCI) ratios of both 

tissues of the 47,XXY sample were determined by assessing DNA 
methylation in the proximity of a polymorphic repeat (CAG)

n
 

in the human androgen receptor (AR) gene, as described previ-
ously.71,72 In brief, 50 ng of genomic DNA was incubated with 
HpaII, MspI or water in triplicate. The digestion product was 
amplified using fluorescently labeled primers flanking the poly-
morphic repeat (CAG)

n
. An ABI3130 (Life Technologies) was 

used to separate the fluorescently labeled amplification products 
and quantify the peak heights of each allele. The XCI ratio was 
then calculated as previously described.40
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