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Review
Glossary

Electronic Health Driven Genome Research (EDGR): utilizing EHRs for the cost-

effective recruitment of a precise and well-annotated patient cohort.

Environment-wide association study (EWAS): a study designed to determine

the association between a specific phenotype and environmental factors.

Exposome: combination of physical, chemical, nutritional, lifestyle, and

psychosocial exposure factors.

Genetic diagnosis: determining the genotype of a known disease marker.

Genetic discrimination: different treatment based on a person’s actual or

assumed genetic makeup.

Genetic screening: obtaining the genomic profile of an individual.

Genome-wide association study (GWAS): a study designed to determine the

association between a specific phenotype and the genotype of common

genetic variants.

Genomic profile: set of genetic variations observed in an individual.

Hospital electronic health records (EHRs): medical data and treatment history

in a machine-readable format shared with all relevant healthcare providers of

the patient.

Personalised nutrition: adapting food and nutritional intake depending on the
Genome sequencing has the potential for stratified can-
cer treatment and improved diagnostics for rare disor-
ders. However, sequencing needs to be utilised in risk
stratification on a population scale to deepen the impact
on the health system by addressing common diseases,
where individual genomic variants have variable pene-
trance and minor impact. As the accuracy of genomic
risk predictors is bounded by heritability, environmental
factors such as diet, lifestyle, and microbiome have to be
considered. Large-scale, longitudinal research pro-
grammes need to study the intrinsic properties between
both genetics and environment to unravel their risk
contribution. During this discovery process, frameworks
need to be established to counteract unrealistic expec-
tations. Sufficient scientific evidence is needed to inter-
pret sources of uncertainty and inform decision making
for clinical management and personal health.

Technological advances propel personalised healthcare
Providing tailored healthcare to optimally cater for the
specific needs of an individual lies at the heart of medical
practice. Today, unprecedented computational capabilities
and high-throughput data collection methods promise a
new era of personalised, evidence-based healthcare, utilis-
ing individual genetic (see Glossary) or genomic testing to
tailor health management. The technological potential has
been demonstrated, among others, for genome-informed
treatment [1], prenatal diagnoses [2], and research relat-
ing lifestyle choices and cancer risk [3]. These successes
have inspired stakeholders with commercial interest to
provide direct-to-consumer (DTC) testing for genetic var-
iants associated with certain health conditions.
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A recent survey in North America estimates the general
interest in DTC genetic testing to be 51–80% [4]. Another
study assessing psychological impact of information
obtained from DTC genetic testing found that there was
no significant change in anxiety up to 12 months after
testing, even in the absence of professional counselling [5].
However, there was also no significant change in diet,
lifestyle, or screening behaviour among those taking the
tests, unless the participants shared their result with their
physician. Those that did so (one-third of the participants)
generally had a higher genetic risk for the 28 conditions
tested by Navigenics and were subsequently more likely to
complete screening tests [5].

As forecasted by Knoppers et al. [6], the growing yet
insufficiently regulated commercial market has let stake-
holders overstate the potential benefits of genetic testing
individual’s genomic profile, life stage, and lifestyle to prevent disease or delay

its onset.

Phenome-wide association study (PheWAS): a study designed to determine

the association between specific genomic regions and the observed pheno-

types.

Prevalence: proportion of a population found to have a specific disease condition.

Receiver operator curve (ROC): visualisation of sensitivity and specificity of a

prediction method.

Risk stratification: subdividing a population into groups based on genetic

profiles.
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without adequate heed to the ethical and social implica-
tions. Simultaneously, policymakers have been put under
substantial pressure to extend public screening pro-
grammes before the scientific merit of such tests has been
adequately demonstrated [7]. This prompted the European
Academies Science Advisory Council (EASAC) to submit a
report to the European Union advising regulation of DTC
genetic testing to exclude diagnostic, presymptomatic, and
prenatal testing. It recommended that policymakers con-
sider the full implications of introducing genomic sequenc-
ing in screening programmes [8]. In the USA, the FDA has
stopped marketing campaigns featuring genetic tests until
claims of their clinical utility are verified and cleared by
the FDA (document number: GEN1300666).

However, this widens the gap between what is techno-
logically possible and the current medical practice [9,10].
In light of this, we review the state-of-the-art in persona-
lised healthcare, investigate the continuation to persona-
lised whole-of-life health approaches, discuss technical
issues that may prevent future realisation of these ideas,
and outline how life science in conjunction with technolog-
ical advances can improve clinical practice and enable
people to ‘self-manage in the face of physical, emotional,
and social challenges’ [11].
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health of this high-burden multicausal group optimally.
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Genomic profiles improve personal diagnoses and risk
prediction
Traditional testing for specific genetic aberrations has
been estimated to lead to a diagnosis in 42% of cases
attending a genetic clinic (8% could be diagnosed to have
no genetic disorder), with the majority of diagnoses made
at the time of the first clinician consultation [12]. For the
remaining 50% who could not be diagnosed with the first
test, the cost per diagnosis as the result of sequential
traditional testing has been conservatively estimated at
US $25 000 [12]. A clinically and economically beneficial
alternative for patients with an unknown high penetrance
genetic disorder (Figure 1A) is whole genome/exome se-
quencing as it can identify germline variants from across
the genome simultaneously. Genomic sequencing can lead
to a successful diagnosis in up to 50% of cases where
traditional genetic testing failed [12]. This can provide a
more precise diagnosis in individuals affected by a condi-
tion, which may inform new treatment options. The poten-
tial of this technology is only beginning to be realised with
the majority of genomic variants as yet clinically unchar-
acterised, and therefore of unknown significance [13]. Col-
laborative efforts across genomic laboratories, such as the
Human Variome Project [14] and ClinVar [15], play an
vestment
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Box 2. Missing heritability

The heritability of many complex diseases has escaped explanation

despite extensive genetic studies, primarily through GWAS. This

phenomenon, dubbed as ‘missing heritability’ [61], has been

debated to be the result of various potential mechanisms, including

allelic architecture, rare variants, epistasis, parent of origin effects,

and epigenetics (for reviews, see [62,63]). The latter is exemplified

by twin studies showing variable disease penetrance in genetically

identical individuals. The combination of environment and lifestyle

choices has been shown to contribute at comparable levels to

genetic loci and has been proposed to explain a large fraction of the

observed variance that is not explained by GWAS hits [64].
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important role in documenting genetic variants and their
clinical associations. As these repositories of genotype–
phenotype associations continue to expand, the diagnostic
yield from genome sequencing will continue to grow.

Insights into cellular mechanisms, technological proce-
dures, and clinical treatment from genetic testing are often
directly applicable to somatic variants, such as those that
can lead to the development of cancer. Current cancer
treatments are largely determined by the organ affected;
yet, genomic profiling shows enormous heterogeneity even
among tumours with shared tissue origins [16]. As cancer
is ultimately driven by genetic alterations, genomic tu-
mour profiling is increasingly recognised as a valuable
additional tool to inform treatment. A recent comprehen-
sive survey of cancer genomes demonstrated a correlation
between a patient’s tumour genome and the clinical fea-
tures of disease, drug response, and patient outcomes [16].
The collaborative efforts from The Cancer Genome Atlas
(TCGA) has subsequently identified 291 driver genes act-
ing on 3205 tumours from 12 different cancer types [17],
which paves the way to driver gene-based tumour diagno-
sis and treatment advice in the future.

A third application of genomic testing is the prediction
of future disease in healthy individuals. Currently, geno-
type-based disease risk prediction is limited to highly
penetrant and relatively uncommon inherited diseases.
For example, hereditary breast and ovarian cancer, caused
by dominantly inherited mutations in the BRCA1 and
BRCA2 genes, accounts for only 5% of breast cancer cases
[18]. However, the majority of common conditions are
complex multigene disorders arising from the interplay
of multiple genetic variants. Each variant individually
explains only a small proportion of the risk, but collectively
and in concert with both identifiable and non-identifiable
environmental and stochastic factors define the total risk.
This is known as the ‘liability threshold model’ [19].

To provide informative testing for multiple variants for
common complex disorders, large-scale studies are needed
to assess the strength of the association between a specific
combination of variants and the disease, as well as to
determine the predictive value of the profile. However,
making predictions from genomic profiles about an indi-
vidual’s complex disease risk to inform outcome or treat-
ment will not be possible on currently feasible sample sizes
[16,20] due to the ‘curse of dimensionality’ (Box 1). This is
especially the case for complex diseases, as these are not
Box 1. Curse of dimensionality

In particular for inherited genetic disorders, meta-analyses of GWAS

with genomic profiles of 10 000 samples demonstrate that the sample

size would have to be orders of magnitude higher to accurately train a

predictor for individual disease risks [60]. This is known as the ‘curse

of dimensionality’ (the P >> n problem), which states that prediction

accuracy requires a training set to have a sufficiently large number of

samples (individuals, n) to learn the contribution from each of the

measured features (e.g., single nucleotide polymorphisms, P). Note,

GWAS interrogate common variants and are hence, by design,

powered to detect association with causal variants that are relatively

common in the population [20] and therefore have little predictive

value. Although sequencing studies can identify novel disease

associations, the overall risk for common disorders explained by

these low frequency variants is not expected to be major.
determined by genetic profiles alone (discussed as ‘missing
heritability’ in Box 2), requiring even more dimensions to
be factored into the risk calculation [21].

Accordingly, more studies are needed to better under-
stand the multifactorial contribution to disease of individ-
ual variants, interacting variants, and exposure risk
factors before we can start to provide advice based on risk
profiles. Efforts are currently underway with the initiation
of the ‘Human Phenome Project’ [14] and the ‘Evaluation of
Genomic Applications in Practice and Prevention’
(EGAPP) [22].

Personal preventative strategies need to be based on
risk stratification
Predicting an individual’s disease risk is desirable for early
intervention and preventive strategies. Assessing the in-
dividual risk is currently only feasible for rare diseases
where biomarker or genetic tests are highly predictive.
Some authors argue that technological progress will sub-
stantially increase sample sizes and computational ability,
which will make risk prediction feasible for more common
diseases where multiple loci contribute to the genetic
burden [10].

However, to achieve higher precision of prediction, it will
be necessary to incorporate the environmental exposure
factors into risk calculations (Figure 1D). A recent environ-
ment-wide association study (EWAS) on type 2 diabetes
mellitus (T2D) discovered a significant association with a
wide range of exposure factors such as the pesticide-deriva-
tive heptachlor epoxide, polychlorinated biphenyls, and
vitamins E and A [23]. Ashley et al. [24] extended this work
to study adverse drug reactions. Despite difficulty in ascer-
taining causality, the potential for novel exposure factors of
large effect associated with T2D justify the use of EWAS
given that environmental factors can be found with effect
sizes comparable to the best loci found by genome-wide
association studies (GWAS) [25]. EWAS will become even
more important once the capacity to define and quantify the
complete exposome (i.e., the combination of physical, chem-
ical, nutritional, lifestyle, and psychosocial exposure factors)
becomes feasible [26–28].

Therefore, applying genetic testing as a screening rath-
er than a diagnostic tool can identify people at high risk
and focus preventative strategies, known as risk stratifi-
cation. Take, for example, a genotype risk score for type 1
diabetes (T1D) based on a model using known loci. This
score needs to be calibrated typically by means of a receiver
operator curve (ROC) showing the proportion of cases
detected versus the proportion of the population classified
3



Review Trends in Molecular Medicine xxx xxxx, Vol. xxx, No. x

TRMOME-949; No. of Pages 8
as positive by the test. If the threshold is set so that it
returns a positive result for 18% of the population, as T1D
has a prevalence of 0.004, this means that for every 50 who
receive preventative intervention one T1D case can be
prevented, an improvement from originally one for every
250. In this way, a weak diagnostic test can be repurposed
as a useful risk stratification tool [29].

Translating successful methodologies for cancer and
rare genetic diseases to predict individual risk for common
diseases remains challenging. However, utilising genetic
profiles and whole-of-life exposure to stratify the popula-
tion into risk groups will inform individual life-long pre-
ventative strategies.

Personalised nutrition needs to be underpinned with
more evidence
Adapting food and nutritional intake to individual needs,
depending on the individual’s life stage, lifestyle, and life
situation is desirable for disease prevention (Figure 1E)
[30]. Although lifestyle interventions are effective for pre-
venting T2D at any level of genetic risk, the benefit
increases for individuals at high genetic susceptibility
[31]. Hence, disease risk may be reduced by changing
health behaviour in response to better understanding of
all aspects that have an influence, such as an individual’s
genome, diet, and the human gut microbiota, which encom-
passes a complex ecosystem in the intestine with a pro-
found impact on the host metabolism [30]. An attack on the
entirety of this problem is likely to run directly into the
‘curse of dimensionality’. It is hence not surprising that
only modest progress has been made in this field [32].
Nevertheless, personalised nutrition has proven to be
important and successful in the case of inherited or ac-
quired metabolic disorders in which the molecular mecha-
nisms are well established, such as in phenylketonuria,
lactose intolerance, and coeliac disease [33–35].

Establishing robust dietary recommendations to pro-
long presymptomatic states is specifically complicated as
emerging properties from this complex system can have
unpredictable negative effects. For example, an increased
intake of riboflavin may be recommended to lower blood
pressure in those homozygous for the methylenetetrahy-
drofolate reductase (MTHFR) C677T polymorphism [36],
yet increasing riboflavin in a low-folate physiological back-
ground can increase genomic instability and thus cancer
risk [37]. Only long-term large-scale scientific studies can
investigate which risk is higher and what intervention
should be undertaken depending on genotype, lifestyle,
or disease state (e.g., cancer survivor, smoker). In the
interim, in the absence of reliable mathematical predictive
models of nutrient–gene interactive effects of personalised
intervention outcomes, it remains possible to utilise
nutriome/nutrient array in vitro test systems to determine
the optimal nutrient combinations to deliver a desired
health outcome at the cellular level (e.g., genome stability,
mitochondrial function) for an individual utilising their
own cells (e.g., lymphocytes, fibroblasts, stem cells) [37].

Therefore, to tailor dietary advice around a person’s
genetic profile, well-designed studies interrogating specific
hypotheses are necessary, as planned by the ‘Micronutri-
ents Genomics Project’ [38].
4

Uptake of genomics
Genetic testing results for highly penetrant ‘pathogenic’
variants (mutations) have been used in clinical practice for
several decades. These tests include preimplantation and
prenatal diagnoses, paediatric and adult-onset genetic
conditions, and predictive testing for highly penetrant
adult-onset conditions and treatment of cancer [12]. Ge-
netic testing has also been applied in screening programs
of the general population (i.e., newborn screening) and of
high-risk populations (e.g., Tay Sachs screening in the
Jewish community). However, the application of high-
throughput genomic technologies for these purposes is in
its infancy. Currently, whole genome/exome sequencing is
used for diagnoses, where other tests have failed to identify
the causative mutation [39]. Recently, the National Insti-
tutes of Health (NIH) announced funding of research
programmes to investigate the use of genomic sequencing
in newborn screening presaging the use of these tests in
population health programmes [40].

Realising the potential for better diagnosis and preven-
tion will have challenges, however. Some of these chal-
lenges relate to the nature of genetic information, whereas
others arise specifically from genomics.

Use of genomic sequencing by clinicians

The barriers to the use of genetic tests by healthcare
practitioners have been reiterated in numerous studies
[5,41,42]. Foremost among these is familiarity with genetic
tests and their interpretation. For instance, a recent sur-
vey identified the uncertainty among clinicians about the
available genetic tests, as well as lack of training and
guidelines as the largest influences on the decision to
include genetic testing into patient care when assessing
predisposition to diseases and/or drug response [43]. Al-
though it can be anticipated that this will be a barrier to
genomic sequencing, the impact is likely to be compounded
by characteristics specific to genomic technologies.

Traditionally, a patient sample is tested for specific
somatic variants or heritable mutations in a specific gene
(or set of genes). Identification of ‘all’ variants present in
an individual requires sequencing of the genome or exome,
followed by meticulous interrogation, curation, and clini-
cal interpretation, with prioritisation of relevant variants
with regard to the patient’s clinical presentation. This
task is complicated by the many variants found of poten-
tial but unknown significance, particularly if probands are
considered in isolation. Patients who have most benefitted
from genome sequencing have typically been subjects of
gene identification studies attempting to identify causa-
tive variants that have not previously been described in
association with the patient’s clinical presentation [1].
Generally, these cases are examples of novel genetic dis-
orders or due to atypical phenotypic presentations of
known genetic disorders. Although this blurs the bound-
aries between clinical service and research, virtually all
medical diagnoses are made with the support of laboratory
evidence. The EGAPP initiative provides a framework for
evaluating evidence for the transition of genomic tests
from research to clinical practice [26]. Thereafter, clear
guidelines for clinicians are necessary so that they can
provide evidence-based advice to patients on therapeutic
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choice or reduction of the risk attributable to genetic
variants.

In single gene testing, the results generally relate only
to the patient’s condition or concern. Chromosomal micro-
arrays were the first instance of a genomic test that was
simultaneously a diagnostic and (potentially) predictive
test. Genomic sequencing is an extension of this with
potentially greater numbers of variants identified, some
of which may be predictive of diseases or risks unrelated to
the original clinical indication for which the test was
performed. This introduces ethical dilemmas regarding
the reporting of these ‘incidental’ findings and recommen-
dations that known causative variants for 37 adult-onset,
treatable diseases should always be reported in clinical
testing have proven highly contentious [44].

Although preliminary data indicate that over 93% of
patients choose to receive secondary incidental find-
ings from genomic sequencing [45], further genetic
counselling studies are required in this area to inform
academic debate prior to widespread adoption of genomic
sequencing.

Adoption by laboratories

The clinical use of whole exome or genome sequencing
requires validated, robust, and reproducible methods for
sequence generation and analysis. The complexity of high-
throughput sequence data does not easily fit within exist-
ing laboratory standards for quality management, refer-
ence material development, and independent measures of
test performance. Additionally, rapid changes and devel-
opments in analytical components including chemistry,
instrumentation, and bioinformatics protocols present
challenges in maintaining best practice whilst simulta-
neously complying with more rigid regulatory and quality
management system requirements and standards [46].
Another challenge for laboratories is the significant in-
crease in the number of identified variants and the scaling
of current interpretive practices to meet the increase of
variant data. Sharing of experience, data, and interpreta-
tion across laboratories is essential for consistent and
improved clinical interpretation of variants. Standards
for interpretation, access to quality international data,
and guidelines for actionable variants will facilitate the
uptake of advances in capabilities and quality improve-
ments in pathology services.

In Australia, Europe, and the USA, guidelines are
currently under development to equip pathology services
with the necessary skills and protocols [44].

Community concerns

Public concern about the misuse of genetic information has
been longstanding (http://pathwiki.rcpaqap.com.au/pathwiki/
index.php/Introduction), particularly relating to the potential
for ‘genetic discrimination’. The National Health and Medical
Research Council (NHMRC) of Australia defines this as
occurring when ‘a person, such as an employer, or company
treats another person or their relatives differently on the basis
of their actual or assumed genetic makeup’ (http://
www.nhmrc.gov.au/your-health/egenetics/ethics-and-legal-
issues/genetic-discrimination). Genetic discrimination is
unusual in that it can occur even when a person has not
yet developed a condition, if that person’s status is assessed
as ‘at risk’. In Australia, discrimination on the grounds of
genetic status is dealt within existing Commonwealth,
state, and territory anti-discrimination laws, which gener-
ally cover circumstances where discrimination occurs in a
public domain such as employment, life insurance, educa-
tion, or access to other services. In Australia, there is no
legislation specifically prohibiting genetic discrimination in
particular, unlike, for example, Belgium, France, Germany,
and Sweden [47], or the USA.

Commonly, concerns about genetic discrimination focus
on access to, and affordability of, health and life insurance.
Australia provides an example of a country with estab-
lished government-funded and private healthcare systems.
Although private health insurance premiums in Australia
are not determined by personal health status, family his-
tory, or genetic test results, life and income insurance
applications are assessed on the basis of the applicant’s
risk. This includes personal medical history, family histo-
ry, and genetic test results. Applicants for life or income
insurance are also expected to disclose participation in
studies which return genetic or genomic information to
participants. Importantly, therefore, policies governing
access of insurance underwriters to results of genomic
sequencing can have implications for access to and afford-
ability of life insurance products. However, as it is to be
expected that the majority of people have some deleterious
variants [13], the governance of their access to results from
genomic sequencing in prevention and public health also
presents a challenge for insurance underwriters. As a
partial response to this challenge, the representative body
of Australian life insurance providers (the Investment and
Financial Services Association) issued a statement of cur-
rent industry practice in response to a pilot haemochro-
matosis screening program stating that, for people who
tested positive there will be no impact on their life,
disability, and trauma insurance as long as there is no
evidence of the disease (http://www.fsc.org.au/downloads/
file/MediaReleaseFile/2001_0906_HaemScreenIFSARelease.
pdf).Thisisausefulprecedentshowinggeneticservicesandthe
insuranceindustryworkingtogethertodevelopguidancerelating
topopulationscreeningforageneticcondition.

Genomic information is clearly sensitive, in part be-
cause it can be used to predict future risk, although with
currently limited accuracy. Another source of sensitivity
is the fact that genomic information is shared among
family members (see Box 3 for an example of privacy
issues in research). A trade-off therefore arises between
the need to protect individual privacy and the benefits
that can be realised through international data sharing to
ensure high quality interpretation about the significance
of an individual’s genomic profile. Practices and measures
that permit confidential data sharing and use whilst
protecting confidentiality are needed by pathology
services, researchers, policy analysts, and others (see,
e.g., [48,49]).

Clearly, there is more research required to understand
and quantify the privacy risks in genomic data, and to
enable an informed trade-off with access and use for re-
search. Despite this, it is heartening that there have been
no major privacy breaches in this area to date.
5
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Box 3. Privacy concerns in genomic research

A recent analysis found that 6.8% of GWAS had the unforeseen

potential for misuse by exposing an ‘individual research partici-

pants’ information, including revealing disease status, predicted

future likelihood or past presence of other traits, or attempts to link

another DNA result with a participant, for example, to determine

presence or absence in a research cohort, ancestry, and relatedness

(e.g., paternity/non-paternity)’ [65]. In another study, Gymrek et al.

[66] were able to infer the identity of a minority of male participants

(12% with false discovery rate of 5%) in public sequencing projects

by linking Y chromosome markers with available user-provided

information (e.g., surname) from recreational ancestry databases.

Additional public databases were used to narrow down the list of

possible individuals with surnames segregating with the Y chromo-

some markers. The information available in public research

databases has since been limited to reduce this risk.
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Investing in a technological healthcare area
Unlike mortality caused by injuries, genetic disorders, or
infectious diseases, premature deaths caused by hazardous
lifestyle choices are missed prevention opportunities [50].
Modifiable risk factors such as smoking and poor diet were
found to be responsible for 33% of all US deaths in 2000
[51]. Danaei et al. [52], who extended the analysis to
include other dietary and metabolic risk factors, argue
that influencing behaviour to mitigate dietary, lifestyle,
and metabolic risk factors can substantially avert more
deaths than further improving the healthcare system.
Based on the notion that improved lifestyle can reduce
morbidity and significantly extend the productive lifespan
of individuals, investment in patient education and long-
term engagement strategies is likely to have a higher
return on investment and save more lives than extending
the exclusive investment in traditional health provision
(Box 4).
Box 4. Digital products and services

Although much of the information available to individuals will come

from medical doctors and health services, social networking shows

great potential to enable individuals to self-manage and receive peer

support from the community without the intervention of overly

stretched health services [67].

Examples include services such as Patients Like Me (PLM),

where patients themselves provide information and ideas to one

other to manage their diseases [68]. PLM also provides the

opportunity for researchers to recruit patients to specific trials,

including GWAS. However, while PLM is a specific social network,

general services such as Facebook and Twitter can also be utilised

to provide health information to consumers. A recent trial used

Facebook for a web-based diet survey and recruited a representa-

tive cohort for minimal cost [69]. Meanwhile, Twitter feeds can be

monitored for signals indicative of disease outbreaks, the pro-

gression of the flu season, or reports of adverse drug events

[70,71].

There is an increasing trend away from personal computers to

mobile devices and the use of applications (Apps) in particular, as the

vehicle by which to interact with information from the World Wide

Web. Apps provide the opportunity to capture biological data [72] and

enable service providers to reach patients, and vice versa, in a

ubiquitous manner. Mobile applications for health typically deliver

location-based information and interactive tools to record progress

and reward health behaviours. Personalised, adaptive technologies

that support individual preferences or knowledge and that respond to

6

Electronic health and medical records

Currently, most of the health and medical history of
patients is collected on paper or in silos of electronic clinical
information systems either at the patient’s general practi-
tioner or the admitting hospital [53]. Recognising the need
for interoperability, many international initiatives are
aimed at sharing this information among relevant specia-
lists and to provide patients with the ability to access and
integrate their own clinical information [42]. This drives a
paradigm shift from evidence-based practice to practice-
based evidence where treatment decisions are based on the
aggregation of historical patient outcomes with similar
clinical presentation, and comparable genetic profiles,
rather than a small number of clinical trials where only
limited parameters are typically controlled for [54].

Electronic records are a key enabler in the cost-effective
development of evidence for practice. For instance, a num-
ber of recent initiatives (eMERGE, BioVu) aim to exploit
hospital electronic health records (EHRs) for the recruit-
ment of patient cohorts and for undertaking Electronic
Health Driven Genome Research (EDGR). The rationale
for EDGR is the dramatic efficiencies that can be attained
by recruiting patients and mining phenotypic data by
searching already existing EHRs. A number of EDGR
studies undertaken to date illustrate the spectacular suc-
cess of this approach [53]. For example, analysis of EHRs
coupled with microarray genotyping data from 1317 cases
of hypothyroidism and 5053 controls was able to identify
four novel genetic variants associated with this disease
[55]. Such studies can be undertaken at a fraction (�10%)
of the cost of conventionally recruited targeted GWAS.

EDGR also enables phenome-wide association studies
(PheWAS). A PheWAS is effectively a reverse GWAS to
associate genomic regions with patient phenotypes, a gen-
eralisation, which is outside the scope of traditional, dis-
individual behaviours can be expected to be more powerful than

generic one size fits all applications.

An emerging trend in the health technology space is the popularity

of personal sensing through mobile phones and standalone com-

mercial products. These generic, cheap, often wearable, devices, that

include FitBit, Jawbone, and Nike Fuelband, have the ability to

monitor location, movement, heart rate, blood pressure, oxygen

levels via skin coloration, temperature, and more throughout the day

to provide an opportunity for building personalised models of an

individual’s health or health needs and detect abnormalities that are

predictive of disease. As research has demonstrated that simple

physiological measurements, such as heart rate, can be independent

predictors of overall health outcome and general mortality [73], there

are enormous opportunities to exploit user profiles in targeting

information, services, and interactions with individuals to further

personalise existing services and increase their impact.

Mobile and telehealth services such as rehabilitation and chronic

disease care can also greatly benefit from the use of mobile sensors.

Current research is trialling applications with specific patients, such as

those with a chronic disease or those undergoing secondary

rehabilitation [74,75]. These approaches pave the way for the health

service industry to provide whole-of-life care to patients. Increasingly,

this approach will move to being preventative in nature [76]. For

example, a recent randomised controlled trial showed that secondary

cardiac rehabilitation services offered via a mobile phone rather than

a clinic showed an 80% increase in uptake and adherence [77].
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ease-focused GWAS. One recent example illustrating the
utility of this approach mined EHRs from 1290 cases of
rheumatoid arthritis with 1236 controls to identify a pre-
viously unknown association of autoantibodies with auto-
immune risk alleles and clinical diagnoses [56]. Another
application of EDGR is to detect drug–gene interactions
(pharmacogenomics). For example, to test if concurrent use
of tamoxifen and antidepressants (that function by inhibit-
ing cytochrome P450 2D6) is associated with increased
breast cancer recurrence, EHRs of 1962 patients using
tamoxifen were analysed [57]. The investigators concluded
that despite the biological rationale, there was no in-
creased breast cancer recurrence in concomitant use of
cytochrome P450 2D6 inhibitors with tamoxifen.

The need for electronic decision tools becomes apparent
to support physicians in assessing large volumes of inci-
dental or uncertain genomic information and communicat-
ing realistic risk profiles [58]. The potential and benefits of
such systems was recently demonstrated in a study on
immunosuppressive treatment during organ transplanta-
tion [59].

Concluding remarks
Currently, reported cases where an individual’s genomic
information has played a central role clinically in the
diagnosis or treatment of disease is limited to rare genetic
diseases. EDGR on larger, better curated study cohorts
could enable polygenic predictors of some complex genetic
traits on a population level as rapidly as within the next 5
years [10]. With a better understanding of the genomic
variability and a library of clinically annotated variants,
extending risk prediction to include environmental factors
will further improve early detection, diagnosis, and inter-
vention in complex diseases. However, the largest impact
on the common multicausal diseases that form the largest
Box 5. Outstanding questions

� What are the relevant genotype–phenotype associations for

diagnostic applications?

Genomes annotated with clinical information that are shared

across hospitals and international research groups will provide

the basis for identifying causative variants for rare diseases and

improve risk predictors for common disorders. This information

helps in developing a personal and precision medicine system

that is primarily geared to health optimisation rather than crisis

management.

� What level of data interoperability is needed to future-proof

health research?

Collecting and providing data from genomic profiling and

environmental risk factors needs to be done in a way which is

machine readable, uses common language (ontology), and shows

relationships between data items. This will ensure future use of

this expensive resource in studies with cohort sizes that can cope

with the added complexity from multivariate environmental risk

factors.

� Can longitudinal individual health monitoring improve health

outcome?

New studies are needed to build baseline models that enable

the development of personalised early detection warning sys-

tems, which will form the foundation of interventions to prevent

disease and delivery of whole-of-life healthcare. Careful consid-

eration will need to be given to ensure the effective delivery of

personalised risk prediction and stratification of disease screening

and prevention based on this risk.
burden on the health system will be gained from a whole-
of-life approach, where population-based risk stratification
forms the basis for ongoing health monitoring and auto-
mated personalised health advice. To achieve this, we
recommend that research should focus on three priority
areas: (i) genotype–phenotype annotation for diagnostic
applications; (ii) data interoperability to future-proof
health research; and (iii) longitudinal individual health
monitoring in clinical trials (Box 5).
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