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In the 60 years since Vague (1) described that an “an-
droid” pattern of adipose tissue (AT) distribution was
associated with diabetes, atherosclerosis, gout, and kid-
ney stones, many of the physiological mechanisms un-
derlying this relationship have been illuminated. To
date, most of the effort has been directed at under-
standing how accumulation of intra-abdominal fat,
also known as visceral AT (VAT), promotes insulin re-
sistance (IR). IR is the common defect underlying
glucose intolerance, central obesity, dyslipidemia, and hy-
pertension. This phenotypic cluster, called the metabolic
syndrome, is associated with a doubling of cardiovascular
disease risk and a fivefold increased risk of type 2
diabetes (2).

VAT is likely to promote IR in several ways. Enlarged
adipocytes in VAT were originally thought to promote
hepatic, and eventually systemic, IR via increased portal
free fatty acid (FFA) flux (3). Other factors are likely to be
involved, however, because although FFA flux from VAT
does increase in obesity, it is not the major determinant
of portal FFA concentrations (4). In obesity, VAT also may
contribute to IR via alterations in its secreted products
(adipokines), as well as proinflammatory molecules such
as tumor necrosis factor-a, interleukin-6 (IL-6), C-reactive
protein (CRP), and monocyte chemoattractant protein-1
(MCP-1) (5).

Independently of VAT, parallel studies have established
that a gynoid pattern of AT distribution, characterized by
greater amounts of subcutaneous AT (SAT) in the lower
body, is associated with improved glucose tolerance and
lipid profile and that this fat pattern may protect against
cardiovascular disease (6,7). These protective effects often
vary with sex, but they are well supported by population-
based studies using simple anthropometry (8). Taken

together, a large body of research shows that VAT and
lower-body SAT exert opposing influences on the risk of
metabolic disease in humans.

How does lower-body SAT protect against metabolic
disease? In women with lower-body obesity, gluteal SAT
(GSAT) takes up more meal-related fatty acids than
in either upper-body obese women or men (9). GSAT is
thought to function as a “metabolic sink,” protecting
nonadipose tissues from excessive FFA exposure and de-
velopment of IR (10). Once sequestered in GSAT, these
lipids are relatively more resistant to mobilization than
when they are stored in other depots (11). Compared
with VAT and abdominal SAT (ASAT), GSAT also pro-
duces greater amounts of palmitoleate, a lipid-signaling
molecule that improves insulin action in liver and skeletal
muscle (12).

Many key studies on GSAT have been performed by
Fredrik Karpe, Keith Frayn, and colleagues at the Univer-
sity of Oxford (reviewed in 13). In this issue of Diabetes,
these investigators extend their previous work by study-
ing relationships between regional adiposity (measured by
DEXA), IR (by HOMA-IR), and fasting plasma concentra-
tions of insulin, triglycerides, HDL cholesterol, and CRP.
Notably, the new study was conducted in a sample of
3,399 healthy adults (14). When overall adiposity was
accounted for, the amount of GSAT in both males and
females was negatively associated with fasting insulin, IR,
and dyslipidemia. In males, GSAT was negatively associ-
ated with CRP concentrations. As in other studies (15),
ASAT mass was positively correlated with both IR and
dyslipidemia.

To further investigate the protective effects of GSAT,
transcriptomic analysis was performed in paired samples
of GSAT and ASAT, an approach that revealed marked
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differences in developmental gene expression, particularly
of Homeobox (HOX) genes. The most differentially
expressed genes were HOXA5 (higher in ASAT) and the
long noncoding RNA HOTAIR (higher in GSAT), which is
known to repress transcription of HOXD genes via chroma-
tin remodeling (16). When all of the differentially expressed
genes were grouped using gene ontology, four sets of genes
were downregulated in GSAT: Two sets were related to
sequence-specific DNA binding, one was related to morpho-
genesis, and the last was related to pattern specification.

Immortalized preadipocytes grown and differentiated
in culture maintain intrinsic properties such as replica-
tion, adipogenesis, and susceptibility to apoptosis that are
determined by their depot of origin (17). In the newly
published report, Pinnick et al. (14) refined the concept
of depot-specific transcriptional “memory” by identifying
differences in gene expression between ASAT and GSAT
(sequence-specific DNA binding genes such as HOXA5,
HOTAIR, IRX2, TBX5, HOXA6, HOXC11, and SHOX2) that
persisted in adipocytes differentiated in vitro (Fig. 1).
Examination of the promoter regions of two genes,
TBX5 and HOTAIR, revealed depot-specific patterns of
DNA methylation that were consistent with altered ex-
pression. In adipocytes derived from ASAT, knockdown of
TBX5 (which was normally more highly expressed in ASAT
than GSAT) reduced cellular proliferation, lipid content,

and expression of mature adipocyte genes. Greater un-
derstanding of these depot-specific factors may allow us
to manipulate regional adiposity and, in turn, influence an
individual’s risk of obesity-related metabolic diseases.

The pathways by which GSAT confers its protective
effects also are explored in the current study by cor-
relating gene expression with individual metabolic syn-
drome components. In both GSAT and ASAT, obesity was
positively associated with inflammatory gene expression,
while being negatively associated with energy-generating
gene expression. Notably, these relationships were much
stronger in ASAT, which led the authors to conclude that
in obesity GSAT may resist the shift toward a proinflam-
matory, hypometabolic state. Similarly, measurements of
arteriovenous differences in cytokine concentrations in
ASAT and GSAT showed that despite comparable adipocyte
size distribution and leptin production, ASAT released
more than four times as much proinflammatory IL-6 per
gram of tissue and tended to produce more MCP-1. A
variety of AT-immune cells (macrophages, T cells, B cells)
have been implicated in the pathogenesis of IR, and all of
them can produce IL-6. Immune cell profiling of ASAT and
GSAT in this study might have revealed the major source
of IL-6 in ASAT. Further studies are certainly warranted.

The study by Pinnick et al. (14) adds considerably to
our understanding of how AT distribution influences

Figure 1—A depot-specific transcriptional “memory” contributes to the opposing effects of GSAT and ASAT depots on metabolism.
Independently of total fat mass, GSAT and ASAT masses display opposing relationships with fasting insulinemia, insulin resistance, and
dyslipidemia (gluteal, beneficial; abdominal, detrimental). Pinnick et al. (14) identify depot-specific gene expression signatures in a number
of developmental genes (increased expression of HOTAIR, SHOX2, and HOXC11 in GSAT and HOXA5, IRX2, TBX5, and HOXA6 in ASAT)
that are maintained in preadipocytes isolated from these depots and in mature adipocytes differentiated in vitro. In obesity, these intrinsic
differences between depots are thought to enable GSAT to resist many of the deleterious changes in gene expression (inflammation and
hypometabolism) that occur in ASAT. Arteriovenous measurements from these depots revealed that ASAT secreted more than four times
as much proinflammatory IL-6 as GSAT, despite comparable leptin production and adipocyte size distribution.
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metabolism. Determining how GSAT resists metabolic
dysfunction in obesity may reveal new therapeutic tar-
gets for glucose intolerance, IR, and dyslipidemia. In
individuals with android obesity or partial lipodystrophy,
for example, a selective expansion of GSAT could divert
lipids away from deleterious AT depots, sparing liver
and skeletal muscle from lipotoxicity. This idea is remi-
niscent of the hyperplasia in SAT observed following
thiazolidinedione treatment (18) and in transgenic ob/ob
mice overexpressing adiponectin (19). Similarly, intra-
abdominal transplantation of SAT, but not VAT, pre-
vents high-fat diet–induced inflammation and glucose
intolerance in mice (20). Diverting energy into GSAT
therefore could improve metabolism, possibly giving a
positive meaning to the old saying: “A moment on the
lips, a lifetime on the hips.”
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