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As the amount of genome information increases rapidly, there is a correspondingly greater need for
methods that provide accurate and automated annotation of gene function. For example, many high-
throughput technologies – e.g., next-generation sequencing – are being used today to generate lists of
genes associated with specific conditions. However, their functional interpretation remains a challenge
and many tools exist trying to characterize the function of gene-lists. Such systems rely typically in
enrichment analysis and aim to give a quick insight into the underlying biology by presenting it in a form
of a summary-report. While the load of annotation may be alleviated by such computational approaches,
the main challenge in modern annotation remains to develop a systems form of analysis in which a pipe-
line can effectively analyze gene-lists quickly and identify aggregated annotations through computerized
resources. In this article we survey some of the many such tools and methods that have been developed
to automatically interpret the biological functions underlying gene-lists. We overview current functional
annotation aspects from the perspective of their epistemology (i.e., the underlying theories used to orga-
nize information about gene function into a body of verified and documented knowledge) and find that
most of the currently used functional annotation methods fall broadly into one of two categories: they are
based either on ‘known’ formally-structured ontology annotations created by ‘experts’ (e.g., the GO terms
used to describe the function of Entrez Gene entries), or – perhaps more adventurously – on annotations
inferred from literature (e.g., many text-mining methods use computer-aided reasoning to acquire
knowledge represented in natural languages). Overall however, deriving detailed and accurate insight
from such gene lists remains a challenging task, and improved methods are called for. In particular, future
methods need to (1) provide more holistic insight into the underlying molecular systems; (2) provide bet-
ter follow-up experimental testing and treatment options, and (3) better manage gene lists derived from
organisms that are not well-studied. We discuss some promising approaches that may help achieve these
advances, especially the use of extended dictionaries of biomedical concepts and molecular mechanisms,
as well as greater use of annotation benchmarks.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The emergence of high-throughput technologies (such as
expression microarrays and next-generation sequencing)
generates large gene lists measured under a variety of conditions.
While many computational tools have been developed to help biol-
ogists automatically gain insight into the biological processes
underlying such lists, a great deal of them produce summary-
reports in the form of (hypothesized) annotations. Such annotation
tools are primarily designed to provide a quick first insight into the
functional difference between two sets of genes (typically
associated with a specific phenotype or condition), frequently by
mining information from databases and the literature (as discussed
in Section 2).

To help understand these processes, the current article engages
in an epistemological trek through functional annotation, i.e., by
investigating primary aspects (with regard to methods, validity
and scope) and perspectives that refer to the systems employed
to acquire, explore and transform (functional) information into
an organized body of verified and documented knowledge. For
example, a big part of the knowledge contained in gene resources
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(databases and literature) is written by and for human experts. To
transform the representation of knowledge from natural language
into other forms computer-aided reasoning is required; e.g., by
using text mining (TM) methods to analyze all literature related
to a given gene set (as discussed in Sections 2.2 and 3).

For TM-based methods, two key challenges are syntax and
semantics: syntax refers to the definition of symbols that a repre-
sentation method uses and the rules that these symbols may be
combined with, whereas semantics refers to the definition of the
concepts assigned to symbols and the combinations of symbols
that the syntax allows [1]. Regarding syntax, TM in the biosciences
is aided partly by the many efforts towards developing biomedical
term ontologies that describe relationships between concepts via
hierarchies (as discussed in Sections 2.2 and 3). However, a
confounding factor is that biomedical ontologies are generally far
from complete, since the phenomena they attempt to describe
can be overwhelmingly complex and many times are only partly
understood (Section 2.3). Besides syntax, TM has two main difficul-
ties in coping with semantics, namely language ambiguity and
context-dependent interpretation (Section 3.1.2).

In the design of functional annotation and TM tools (as with
other systems for automated knowledge inference), two basic
strategies are common: data-driven reasoning (also known as ‘bot-
tom-up’) and goal-driven reasoning (also known as ‘top-down’) [1].
Data-driven reasoning starts from ‘low level’ data and gradually
seeks to reach ‘high level’ observations – annotation of genes
mostly corresponds to this (Sections 2.4 and 3), beginning from
genes selected through experimental data and aiming to infer
‘higher’-level information (e.g., about phenotype).

In contrast, goal-driven reasoning works in reverse, beginning
from known high-level observations (e.g., a known phenotype) to
find lower level, more detailed information (e.g., the set of genes
or chemicals associated with that given phenotype). To achieve
these goals directly via annotation requires the development of
platforms that can successfully synthesize information in a holistic
‘systems’ perspective (as discussed in Section 2.4), an aspect that
becomes especially important in an era of personal genomics
(Section 5.1).

In Sections 2 and 3, we also frequently contrast the relative
merits of the TM and ontology-based approaches; we expect that
future methods will achieve improved annotation accuracy and
coverage by combining the strengths of the ontology-based
approaches with the increased sensitivity of keywords extracted
directly from the literature (Sections 5.2 and 5.3).

While reviewing features that characterize but also synergisti-
cally effect the development of functional annotation tools is main
objective of Sections 2 and 3, the somewhat overlooked aspect of
systematically measuring performance of such methods is also
examined in Section 4, as quantification of such results is often
difficult. This in turn prevents objective evaluation through
means of metrics such as precision and recall: precision describes
‘how many from the extracted terms have been correct’ whereas
recall measures ‘how many of the terms that should have been
retrieved have indeed been identified’ – i.e., the extent of
‘result-success’, in terms of coverage. To help bridge the gap
between qualitative and quantitative evaluations of annotation
assignments, Section 4 also investigates the features that a proper
benchmark should facilitate.

2. Annotating gene function

While a large range of tools for functional analysis exists ([2,3] –
at least 68 listed by [4] – Table 1) typically the underlying methods
utilize sequence similarity, TM of database annotations or
literature, and keyword hierarchies or ontologies. In this section,
we discuss some of the relative merits of these strategies.
Please cite this article in press as: T.G. Soldatos et al., Methods (2014), http://d
2.1. Functional annotation by homology

It is nowadays easily possible to obtain the complete genome
sequence of an organism but determining the function of gene
products remains highly non-trivial (Supplement, Part [B]) and
often requires experimental validation [5]. The sequence of a gene
is one of its primary properties, and many methods have been
developed to predict gene function based on sequence similarity
to genes of known function (e.g., GOtcha [5], OntoBlast [6], and
GOblet [7]). Such assignments can work very well in the cases that
(a) the two sequences are highly similar to each other and (b) when
the reference product is functionally well studied so that it can
support an adequate description of molecular behavior [5].
Nevertheless, both constraints are often not met for several
reasons, including the following:

� lower sequence similarities may lead to multiple low-quality
candidate reference products;
� various candidate products may have been assigned differing

functions;
� some classes of sequences are similar in sequence but diverse in

function; and
� vice versa, sequences with similar function may belong to dif-

ferent classes.

Such sequence-alignment methods are based on the evolution-
ary concept of homology (i.e., genes with common ancestry share
function). Nevertheless, this concept does not always apply
([5,8]). For example, orthologs (i.e., similar sequences of different
organisms originating from the same species) often, but not
always, have the same function. Paralogs (i.e., duplicated copies
that end up occupying different positions in the same genome)
often have the same or similar function, but sometimes not, since
each copy is free to mutate and acquire new functions or regula-
tory mechanisms independently of the other.

2.2. Functional annotation using text-mining

Some methods that utilize sequence similarity (e.g., GeneQuiz
[9] and PEDANT [10]) try to extract directly, from databases or
from literature, textual descriptions of gene product function. Such
methods have to overcome the complications of TM and interpret-
ing natural language [5]. For example, the same biological function
may be described in different ways by different investigators. In
addition, computational processing of annotations sometimes can-
not determine whether different human curator assignments con-
flict with each other. A key reason underlying these complications
is that two distinct terms may be used to describe the same
function, and it can be difficult for TM to always recognize this sit-
uation. A partial solution for these problems has been the develop-
ment of ontologies (such as Medical Subject Headings (MeSH) [11],
or Gene Ontology (GO) [12]) and their use in systems like GOblet
[7]. Ontologies often describe relationships between terms, and
hence can help address the issues raised above.

2.3. Functional annotation using Gene Ontology

Many of the major gene databases provide, in each gene record,
a description of the gene’s function as a set of GO terms (e.g.,
Entrez Gene [13]; Supplement, Part [B]). The GO initiative was cre-
ated to provide a unifying ontology to describe biological functions
using terms that can be represented as a directed acyclic graph,
where each node represents a clearly defined biological concept
([5,12]) – GO has since become widely adopted. Table 2 summa-
rizes some of the features that make ontologies in general, and
GO in particular, favorable for the development of gene annotation
x.doi.org/10.1016/j.ymeth.2014.07.004
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Table 1
List of tools related to functional annotation (and text-mining; TM) mentioned in the main text of this article. The list includes named (and accessible via the web) annotation and
TM entities contained in the main text of this article (and only those; providing an exhaustive list of such relevant resources is outside of the scope of this article); entities ordered
by citation.

Name Feature (major reason for mention) URL (status) Referencesa; cited also in.

GOtcha Use of sequence similarity searches http://www.compbio.dundee.ac.uk/
gotcha/gotcha.php

[5]; Sections 2.1, 2.2, 2.3, and 4.1

GOblet Use of sequence similarity searches http://goblet.molgen.mpg.de/cgi-bin/
goblet2008/goblet.cgi

[7]; Sections 2.1 and 2.2

PEDANTc Use of sequence similarity searches http://pedant.gsf.de [10]; Section 2.2
GOrillac Analysis and visualization http://cbl-gorilla.cs.technion.ac.il [14]; Section 2.3
GS2c Comparison and similarity http://bioserver.cs.rice.edu/gs2 [15]; Sections 2.3 and 2.4
OATc Analysis and visualization

(interpretation; browsing)
http://bioinfo.ifm.liu.se/services/oat [16]; Section 2.3

TXTGate Literature; within set analysis. http://tomcat.esat.kuleuven.be/txtgate [20]; Table 4
PubMatrix Literature; comparison of term lists

(e.g., gene names)
http://pubmatrix.grc.nia.nih.gov [21]; Table 4

CoPub Literature; expanded dictionary. http://services.nbic.nl/copub5 [47] ([22]); Section 2.4, 3 (Table 4)
Martini Literature; two-set comparison. http://martini.embl.de [23]; Sections 2.4, 3, 4.1, 4.2, 4.3, 5.1

and 5.3; Fig. 3; Tables 4, 5, 7 and 8
FunSpecc Enrichment; yeast (one input list) http://funspec.med.utoronto.ca [24]; Table 4
VAMPIREc Specific data focus (microarray data) http://genome.ucsd.edu/microarray [26]; Table 4
High-Throughput GoMiner Specific data focus (microarray data) http://discover.nci.nih.gov/gominer [27]; Table 4
Onto-Express (of Onto-Tools) Integrated platforms or software suits http://vortex.cs.wayne.edu/projects.htm [28] of [29]; Table 4
DAVIDc Integrated platforms or software suits http://david.abcc.ncifcrf.gov [30]; Section 2.4; Table 4
BABELOMICS Integrated platforms or software suits http://babelomics.org [32]; Table 4
CLICK and EXPANDERc Analysis and visualization http://acgt.cs.tau.ac.il/expander [33]; Table 4
BiNGOc Analysis and visualization http://www.psb.ugent.be/cbd/papers/

BiNGO
[34]; Table 4

NetAffx Gene Ontology Mining Tool Analysis and visualization http://Affymetrix.com/analysis [35]; Table 4
FatiGOc Enrichment; allows two sets as input http://babelomics.bioinfo.cipf.es/

functional.html
[37]; Sections 2.4 and 5.1; Table 4

CoCiter Comparison and similarity http://www.picb.ac.cn/hanlab/cociter/ [38]; Sections 2.4, 3, 3.1.1, 4.1 and
4.2; Table 4

GSFSc toolkit Comparison and similarity http://bioinfo.hrbmu.edu.cn/GSFS [39]; Sections 2.4, 4.1, 4.2; Table 4
GOstat Enrichment; allows two sets as input http://gostat.wehi.edu.au [40]; Section 2.4; Table 4
GSSc Tools for gene set analysis http://bio.ccs.miami.edu/cgi-bin/GSS/

AnalyzeGeneSets.cgi
[41]; Table 4

ProfComc Enrichment; allows two sets as input http://webclu.bio.wzw.tum.de/profcom [43]; Section 2.4; Table 4
PANTHERc Pathway analysis http://pantherdb.org/tools/

compareToRefListForm.jsp
[45]; Sections 2.4 and 5.1

Reactome Pathway analysis http://reactome.org [46]; Sections 2.4 and 5.1
Marmitec Literature-based enrichment analysis http://babelomics.bioinfo.cipf.es/

functional.html
[48]; Sections 2.4 and 3

eTBLAST TM: IRb,d http://etest.vbi.vt.edu/etblast3 [56]; Section 3.1.1
Caipirini TM: IRb,d http://caipirini.org [57]; Section 3.1.1
MedlineRanker TM: IRb,d http://cbdm.mdc-berlin.de/

~medlineranker/cms/medline-ranker
[58]; Section 3.1.1

MScanner TM: IRb,d http://mscanner.stanford.edu [59]; Section 3.1.1
Génie TM: IRb,d http://cbdm.mdc-berlin.de/

~medlineranker/cms/genie
[61]; Section 3.1.1

Peer2ref Suggesting authors, finding experts. http://peer2ref.ogic.ca [62]; Section 3.1.1
Jane Suggesting authors, finding experts. http://biosemantics.org/jane [63]; Section 3.1.1
Reflect TM: ER (highlights terms) http://Reflect.embl.de [66]; Section 3.1.2
Alkemio TM: IRb,d http://cbdm.mdc-berlin.de/

~medlineranker/cms/alkemio
[73]; Section 5.1

Metab2MeSH Compound annotation with MeSH http://Metab2mesh.ncibi.org [74]; Section 5.1

a Reference: citations as in the main text of the article.
b Abbreviations: GO: (Gene Ontology), TM (Text-Mining), IR (Information Retrieval), ER (Entity Recognition).
c Declared software abbreviations (see also Supplement, Part [A]).
d Characteristics and details of TM-IR tools (see also Supplement, Part [A]).
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and enrichment tools (such as GOrilla [14]), gene set similarity
applications (such as GS2 [15]) and gene set browsing and inter-
pretation systems (such as OAT [16]); a comprehensive list of GO
tools is maintained by GO itself ([17,18]). As discussed also in Sec-
tion 4.1 with examples, these ontology- and term-specific charac-
teristics can also provide metrics for direct and objective
comparison, independent of the arbitrary cut-off values that differ-
ent methods may apply. On the other hand, some GO features
impose qualitative difficulties (Table 3).

In spite of the potential limitations in GO and its application to
gene annotation, it remains today a widely used standard. In a
GO-based analysis, usually, all annotated GO terms and all other
Please cite this article in press as: T.G. Soldatos et al., Methods (2014), http://d
GO terms that are associated with them (i.e., lower or higher in
the hierarchy) are found. Then, the significantly over-represented
terms for a gene set are considered to be those that describe the
gene set. To identify over-represented terms for one gene set, usu-
ally, the number of appearances of each GO term inside the group
of interest is counted, and compared to that of a group of reference
genes. A number of statistical tests are available, but usually
Fisher’s Exact Test is performed to judge whether the observed dif-
ference is significant or not, and in the end of the analysis a p-value
score for each GO term is calculated that indicates the likelihood
that the observed counts occur by chance ([2,4]); Supplement, Part
[C]. The most significantly overrepresented GO terms are then
x.doi.org/10.1016/j.ymeth.2014.07.004
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Table 2
Advantageous features of GO. GO has a clear advantage over more generic term hierarchies or dictionaries.

Feature Description

Continuously developed GO is continuously being improved and updated
Clear biological meaning Since GO is developed exclusively by the biological community, all terms are given precise biologically relevant definitions
Inter-term relationships In GO, each term is assigned a unique identifier and relationships with other terms are clearly defined. This specification of term

interrelationship can help greatly in TM
Multiple levels of abstraction In the GO hierarchy, genes are annotated at various levels of abstraction. For example, ‘induction of apoptosis by hormones’ is a type

of ‘induction of apoptosis’, which in turn is a part of ‘apoptosis’. ‘Apoptosis’ represents a higher level of abstraction, whereas
‘induction of apoptosis by hormones’ represents a lower level of abstraction. Thus, gene function can be described at varying levels of
abstraction, depending on the needs of the user or the requirements of a particular application

Computational analysis The tree-like organization of GO makes it appropriate for using automated similarity measures that are applicable to quantitative
comparisons

Table 3
Qualitative challenges of GO. The quality and completeness of annotations made using GO is far from perfect for various reasons.

Feature Description

Continuously developed While continuous development of GO in general leads to improved accuracy, it also means that annotations made previously with GO can
become out of date

Incompleteness of the
ontology

Ideally, GO would contain a complete description of all gene functions, organized within ontological hierarchies. Unfortunately, the current
hierarchy in GO is incomplete, although it is constantly being improved

Annotation coverage Many genes currently have few or no GO annotations
Quality of annotations The quality of annotations made using GO may be restricted either due to limitations of specific human annotators, or due to limitations in

accuracy or precision of annotations inferred by computational methods using GO
Annotation consistency Genes are not always consistently annotated at the highest level of detail possible. For example, one gene may be annotated simply as

involved in ‘apoptosis’, while another may be annotated as involved in ‘induction of apoptosis by hormones’, when in fact both relate to the
same function. This can lead to ambiguous or redundant annotations

4 T.G. Soldatos et al. / Methods xxx (2014) xxx–xxx
assumed to describe functional properties shared by the input gene
set.

2.4. Tools for annotation: a combined variety of features

Altogether, there is a large variety of features that can charac-
terize annotation tools and their use (Table 4). Partly this is due
to the fact that biological data integration efforts have so far failed
to efficiently and successfully make available a central data
resource with information for all genes and to standardize the used
data formats. However, this has not prevented the development of
more tools; most recent annotation techniques rely on a combina-
tion of the available resources (Table 4). Special emphasis can be
paid to three recent directions discussed next.

2.4.1. The scope of semantics
The larger variety of concepts represented by the underlying

dictionaries, the more ‘systems applications’ can be derived. Anno-
tation systems have gradually expanded their scope from search-
ing for gene names, biological processes and molecular functions
to diseases and chemical compounds (e.g., Martini [23,44]) as well
as interactions and pathways (e.g., PANTHER [45] or Reactome [46]
tools). This ‘systems innuendo’ denotes a more goal driven approach
– an underlying desire to infer higher-level associations directly
from gene lists. For example, FatiGO [37] and CoPub [47] rely pri-
marily on GO, but also additional information such as pathways,
and by comparison, Marmite [48] and Martini [23] incorporate fur-
ther term categories such as ‘diseases’ and ‘chemicals’ – a large
variety of dictionaries and hierarchies exists that can satisfy this
broader scope, from GO, KEGG and MeSH to ATC [49] and MedDRA
[50]. PANTHER [45] on the other hand provides another permuta-
tion of approaches by incorporating homology, pathway and
ontology analysis comprised of a subset of GO terms (GO slim)
complemented by their own ontology.

2.4.2. The two-set comparison
The systems described earlier typically refer to statistical mea-

sures for comparisons of two groups, such as a treatment group
Please cite this article in press as: T.G. Soldatos et al., Methods (2014), http://d
and a control group that in the case of functional annotation are
gene sets. The choice of the ‘control’ or ‘reference’ list is an impor-
tant consideration when identifying statistically significant terms
and different tools approach this aspect in different ways: CoCiter
[38] and Marmite [48] require that users explicitly upload both
lists of interest, whereas CoPub [47] is based on fixed reference
sets. Also FatiGO [37] and ProfCom [43] use a predefined reference
set, unless the user specifies otherwise, whereas PANTHER [45] (v
9.0) allows for multiple lists to be compared. Usually in functional
annotation, the set of all genes in a genome is used as the refer-
ence, but this may be an inappropriate choice when the selected
list of input genes is derived from a condition the mechanism of
which may possibly involve only a very specific class of genes –
i.e., a part of the genome (e.g., see [2,42] for microarrays). This is
because ideally term significance should be measured against a
gene set that belongs to a related pool ([2,3,42]). Although in many
cases this is not easy (e.g., a second list is not always available), to
avoid contradicting this rule it is in principle best when users
explicitly define the reference set (e.g., genes known to be involved
in same/similar pathway or tested under the same experimental
condition). Explicitly specifying the background also allows
addressing more interesting questions, since the characteristic
annotations derived after the comparison (whether searching for
similarities or for differences between the two sets) are done ‘with
respect to’ an informed reference that also represents an important
topic of interest (e.g., genes measured under a certain other
condition).
2.4.3. Similarity instead of difference
In contrast to the above, some methods for gene set comparison

search for similarities or associations between two input gene sets.
Some of these methods analyze the gene annotation overlap
between gene sets (e.g., GS2 [15], DAVID [30] and GOstat [40]),
but because the degree of overlap between two gene sets can influ-
ence the analysis of functional similarity, newer methods examine
association based on categories identified to be significant for
each set (e.g., GSFS [39]) or via additional features, such as
x.doi.org/10.1016/j.ymeth.2014.07.004
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Table 4
Ten key characteristics of annotation tools. Some of the principle differences include focus, methodology and data source as there is considerable difference in the databases that
tools use as their primary source for deriving annotations.

Feature Description

Information resource The used data sources are primarily PubMed [19] for literature based tools like [20–22], and/or GO for ontology based methods
(like [6]). In most cases, a variety of other databases (e.g., KEGG) and keyword hierarchies are co-integrated

Dictionary integration Most tools create their own dictionaries, rely on external keyword hierarchies and ontologies, or integrate previously existing
resources into their own vocabulary

Scope of semantics Most tools for functional annotation utilize keywords that represent molecular components, and biological processes or
mechanisms (e.g., gene names, GO/KEGG), whereas others expand by associating also compounds or diseases (e.g., [23]). The scope
is largely represented by the choice of underlying dictionary

Numbers of species Some tools (such as [24], useful only for Yeast) are restricted to a very small number of species
Specific data focus Some systems build on top of previously published tools and use gene annotation as a method to analyze specialized data sets

(e.g., [25], [26] and [27] are useful for the interpretation of microarray experiments)
Analysis and visualization beyond

annotation
Some tools are integrated in larger projects, pipelines or suite of tools that can perform also other types of analysis; examples
include [28] (part of [29]), [30] (a set of bioinformatics resources some of which perform gene annotation and classification), [31]
(a package of web-based tools for gene annotation), and [32] (suite of tools, some of which can perform functional annotation).
Some (like [33–35]), incorporate further functionalities for analysis (e.g., to cluster or classify the input genes) and also place
emphasis towards visualization expertise that can support and extend the annotation results (e.g., by linking the output to
numerous other databases, or by using enhanced interactivity techniques, such as graph and network analysis). Gene/Protein set
and pathway analysis applications [36] are similar in scope that come however with their own downsides, e.g., gene expression is
often specific to cell type and changes over time; in addition, pathway databases can be incomplete (i.e., not comprehensively
covering all genes known to be involved in a process)

Number of gene lists Many tools focus on describing a single input set of genes, whereas others can take as input two gene sets. Allowing the user to
define a second input gene set (a specific reference set), helps characterize functional differences between exactly these two sets
(two-set comparison) and answer more detailed questions

Comparison of gene-lists Most tools for two-set comparison focus on inferring functional differences between two gene sets (e.g., [37] and [23]) instead of
similarity (e.g., [38] or [39])

Within vs overall analysis Some tools look within the set of genes, either by focusing on the annotation of each gene individually (‘single gene analysis’, e.g.,
[40]), or by interactively dividing a single gene set into functionally related sub-clusters (e.g., [20] and [41]). Most within methods
that ‘group and profile’ (i.e., identify subsets of genes with related function from the input set) aim to do gene set analysis or to
make the resulting group of enhanced keywords or GO terms more interpretable by processing further the results (e.g., by
clustering or displaying GO terms associated with individual genes), whereas by contrast others look at the overall gene set
attempting to derive a functional description for the entire input set (e.g., [37] or [23])

Statistical method While a variety of statistical tests and distributions exist (e.g., Fisher’s exact test, hypergeometric, binomial) to model the
annotation task ([42,2]), most tools rely on enrichment analysis (Supplement, Part [C]) searching for over- and under-represented
associations, or both (e.g., [41]). Other advances include more complex models or heuristics (e.g. [43]) and taking advantage of co-
citation and other (semi-) structured literature features (e.g., [38])

T.G. Soldatos et al. / Methods xxx (2014) xxx–xxx 5
literature co-citation (e.g., CoCiter [38]) or protein network
interactions and pathway overlays (e.g., [51,45]).
3. Functional annotation using literature

A key feature of gene records in the major databases is the list of
literature associated with the gene, typically provided as PubMed
identifiers [19]. The literature associated with a gene provides a
potentially very rich source of information about gene function,
and in some cases can contain information that partly overcomes
problems mentioned above arising from insufficient annotation
with GO terms (Fig. 1; Supplement, Part [B]), or incompleteness
of the GO ontology itself (Section 2.3, Tables 2 and 3). To extract
gene information from literature, a range of TM-based annotation
tools have been developed (e.g., Martini [23], CoCiter [38] and
Marmite [48]). However, TM is not mutually exclusive or necessary
a competing method to GO-based, or other ontology-based,
approaches (Table 5): in fact some TM-based methods are built
using GO as their reference dictionary (e.g., [47]). In some use sce-
narios, GO-based approaches may give better performance than
purely TM-based approaches, and vice versa. For example, TM is
better than GO terms for well-studied organisms, but not for most
organisms (e.g., in SwissProt), due to lack of literature; however,
this limitation of TM could potentially be overcome by using
sequence homology to transfer functional annotation (Fig. 1;
Supplement, Part [B]).

Putting aside implementation details such as storage, indexing,
calculation of relevance, or the algorithms incorporated, an
annotation implementation using literature typically consists of
four components (Fig. 2):
Please cite this article in press as: T.G. Soldatos et al., Methods (2014), http://d
� Defining the topic of interest: mostly the input can be one or
two sets described in accessions, names of genes/proteins, other
query terms, or abstract identifiers.
� Retrieval of literature: usually, any type of input is translated in

a list of PubMed identifiers (e.g., GeneRIFs from Entrez Gene
records).
� Keyword extraction: the next step is to convert each retrieved

result into a list of keywords. Some tools allow term type selec-
tion where a user can optionally select if certain types of terms
should be considered, or not (e.g., as in Martini [23]).
� Statistical analysis: as discussed in Sections 1, 2.3. and 2.4.,

functional annotation approaches are mostly data-driven as
commonly tools start from gene sets and ‘go up’ searching for
significantly over-represented terms. These methods can be
applied to keywords found in the literature associated with
each gene (keyword enhancement) or GO terms associated with
each gene in the input set (GO term enrichment); Supplement,
Part [C].

While defining the topic of interest is a step that precedes the
retrieval of literature, both steps are closely related and their
aspects are commonly discussed together under the data mining
term ‘information retrieval’. Next to information retrieval, keyword
extraction is part of another key TM step, the so called ‘entity rec-
ognition’ task. Each of these TM components poses a variety of
challenges discussed in Section 3.1., below.

3.1. Text mining considerations

Several methods have been proposed for finding literature
related to a gene, a gene set, or a field of specific biomedical
x.doi.org/10.1016/j.ymeth.2014.07.004
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Fig. 1. Comparison of functional annotation depth in SwissProt via GO terms,
publications, and text-mining (TM). For well-studied organisms (e.g., human), a
much richer description of protein function can be obtained via TM of related
publications compared to relying only on GO terms. Conversely, GO-based
functional annotation may be best when studying proteins from most organisms,
since the median number of publication per protein is one, compared with four GO
terms. These data were derived from the December 2013 version of SwissProt; the
median number of GO terms and publications per protein were calculated for the
indicated organisms, as well as for all SwissProt proteins. The number of
biomolecular interactions and TM terms per protein were estimated for each
category as follows: (1) we found all proteins for which both the number of
publications and GO terms were exactly equal to the median values; (2) from these,
we selected 20 proteins randomly and collected all related abstracts into a single
text file that was then sent to the Reflect service to tag either biomolecules
(chemicals and proteins) or Wikipedia terms; (3) the median number for these 20
proteins are reported, with all TM terms equal to the sum of biomolecules plus
Wikipedia terms. The TM measures derived here are an approximate estimate of the
number of terms that can be automatically extracted from publications to describe
protein function – the precise values will vary greatly depending on the method
used. The Reflect method used here has two disadvantages: firstly, it overestimates
to number of terms per abstract, due to using Wikipedia entries as a dictionary;
secondly, it underestimates the number of terms, as it considers only abstracts, not
full-text documents.
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interest (e.g., [53–55] list such tools). Yet, none of the TM compo-
nents of literature-based annotation (describing a topic interest,
identifying matching documents, or extracting keywords) are
straightforward. For example, retrieving relevant literature can
be hindered by the large size of literature related to a given specific
topic in biosciences, by the heterogeneity of the related studies and
by the lack of a clearly predefined categorization of abstracts.
3.1.1. Information retrieval
To ensure that abstracts most related to the input query are not

buried way down in the returned list of results, often evaluation
and ranking by relevance is incorporated. To improve text retrieval
in this way, a wide variety of tools have been implemented, most of
which rely on the content-based philosophy: i.e., that abstracts
sharing more similar annotations or words with the input are likely
to be more related (e.g., eTBLAST [56], Caipirini [57], MedlineRan-
ker [58], MScanner [59]); see Supplement, Part [A]. Others use
structured features of literature to improve inference or prioritiza-
tion, such as co-citations or co-occurrence (e.g., [60]) for a variety
of tasks - from functional annotation (e.g., CoCiter [38]), to ranking
genes instead of literature (e.g., Genie [61]), or even helping editors
find reviewers (e.g., Peer2ref [62] and Jane [63]).

To ease the retrieval, sometimes curators associate documents
with categories derived from hierarchically organized ontologies,
such as GO or the MeSH thesaurus; sometimes such ontologies
can be used also as the underlying dictionary from which key-
words can be derived (Section 2.4; Table 4). This allows abstracts
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to be organized into categories, thus defining sets of papers related
to specific topics. Retrieval may be confounded a range of factors:
e.g., when documents refer to several topics simultaneously, or
belong to heterogeneous types (e.g., reviews, laboratory notes, clin-
ical records, patents, etc.), or come in different formats (e.g., PDF,
XML, etc.) or different languages. Most annotation tools discussed
here consider primarily PubMed, for which these issues are usually
manageable.

Queries constructed by keywords can also be difficult and may
still not capture all relevant abstracts. In many cases the user needs
to take into account non-standard nomenclature for very specific
biological fields, and non-expert users can have difficulty in pro-
viding all the relevant keywords. Also, different terms with similar
meaning when used in a query can give different results. To help
users, some systems automatically expand the query by adding
synonyms and alternative expressions that can be interchangeably
assigned (e.g., ‘tagging’ instead of ‘annotation’). Eventually, these
keywords are matched against candidate documents – usually,
those that contain the query terms in their text are returned as
the result.
3.1.2. Entity recognition
Identifying the keywords of a text can be tedious; the two major

tasks involved are first finding the terms and then assigning mean-
ing to the terms (as discussed in Section 1). A wide range of meth-
ods have been developed for identifying terms in a text, the most
elementary of which rely on simple matching of text patterns
(e.g., word strings). Semantics are usually disambiguated with
the use of synonyms or cross-references to clearly defined data-
base records – in that respect, dictionary-based methods have a
crucial advantage over those based only on syntactical features
or patterns, since dictionaries help not only to recognize names
but also to use synonyms and accession numbers for linking to
summaries reported in mapped external records (e.g., for identify-
ing which gene a term refers to). Finally, hybrid approaches com-
bine dictionary matching with rule-based and statistical methods
to reduce the number of false positives.

This is especially important for gene, protein, and drug names,
which constitute a special challenge as often they are comprised
of multiple words (e.g., ‘brentuximab vedotin’), or are referred to
by abbreviations (e.g., ‘FOLFIRI therapy’), often in combination
with alphanumeric symbols (e.g., ‘Sti-571’ instead of ‘imatinib’).
Furthermore, distribution of gene names and detection accuracy
may vary among texts with different length or within different sec-
tions of a full text article [64]. Other arduous aspects of biomedical
entity recognition include: name ambiguity; unclear synonym
relations; typographical errors; misspellings; orthographic and
language variants; domain-specific terminology and styles (e.g.,
non-standard nomenclature for genomic variants); ambiguous
semantics, part-of-speech and grammatical relationships; and
finally, incompleteness in databases, hierarchical vocabularies
and ontologies. A partial solution to some of these issues can be
the use of open dictionaries (e.g., [65] or [66]) that are frequently
updated, edited, and corrected by the scientific community; how-
ever, the most reliable approach to tagging of biologically relevant
terms remains manual curation from trained experts. However,
this is not feasible for all biomedical literature corpora.
4. Functional annotation assessment

While significant effort that has gone into benchmarking the
performance of pure TM tasks applied to life science literature
(especially the BioCreAtIvE initiative [67]), annotation tasks have
not undergone the same scrutiny. Typically, function assignment
methods are assessed against incompletely annotated datasets.
x.doi.org/10.1016/j.ymeth.2014.07.004
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Table 5
TM vs GO: summary of relative merits. The reliability of GO-based approaches has different strengths compared with the increased sensitivity of keywords extracted directly from
the literature.

Challenge Description

Quality of terms The performance of methods that rely on specific keyword lists depends on the quality of the terms incorporated in these ontologies,
hierarchies, or dictionaries. Moreover, reliance on a specific ontology or dictionary may lead to over-representation of certain functional
aspects. By contrast, TM techniques are typically not restricted only to the biological knowledge incorporated in a specific ontology – however,
TM has the disadvantage that it relies on keyword-based dictionaries that may not describe biological functions as coherently and clearly as
ontologies. For example, a keyword-based dictionary may instead contain many ‘noise’ terms, with limited biomedical meaning or interest

Coverage Compared to ontology-based methods, approaches that rely on literature can sometimes retrieve more information related to the function of
genes, since ontologies often contain terms related to a specific functional aspect, whereas literature is not as focused in scope (e.g.,
[23,44,52]). For example, GO does not contain drug names, whereas an article may in addition refer to clinical aspects of the expression of a
gene, or to the structure of its products, and so on

Biological relevance Significant keywords extracted from literature may sometimes not describe a gene’s function, whereas GO-terms have in comparison a clear
biological meaning. However, the number of GO-terms associated with a gene is often not as large as the number of keywords extracted from
prose

Method complexity Although TM can potentially extract a wealth of functional information for a gene set from biomedical literature, the complexity of natural
language often limits such methods. For example, the quality of the underlying keyword dictionary may make the analysis prone to biased
results, or may introduce a high number of artificial associations

Custom level of
abstraction

In the hierarchical structure of GO, genes are annotated at various levels of abstraction – while this organization facilitates direct quantitative
metrics for comparing functional annotation tools more objectively than when using keywords, it can also lead to ambiguous, incomplete, or
redundant annotations

Terminology Several systems rely on dictionaries compiled from a combination of different hierarchies and ontologies, thus helping enhance results and
compatibility with other tools. Nevertheless, ontologies and dictionaries do not always correspond exactly with the personal terminology used
by an author of a scientific article

Annotation quality Not all genes have been annotated with GO terms, annotations may not be always up-to-date, and annotation quality depends on a curator’s
expertise or on a method’s accuracy

Implementation TM, as well as ontology-based systems and their combinations, can become complex and hard to maintain, especially with respect to
coordinating the updates of the underlying resources

Pre-computation A drawback of literature-based methods is that unless pre-processing is carried out, the large volumes of information make it difficult to
develop online, interactive applications, such as web-based tools, services, or desktop applications. The use of GO-terms in this perspective can
have advantages
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Fig. 2. Major components of literature-aided functional annotation tools. The user
may specify as input the topic(s) of interest, typically genes. When a second set is
not specified, the systems automatically assign a reference set to compare with. The
input (usually expressed in terms of words or identifiers) is then translated into a
list of matching (categories of) documents. In turn, their context is represented via
the underlying dictionary terms contained in the text of the matched documents
and significant keywords are compiled in a report that summarizes the findings of
the annotation.
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Substantially more research efforts are needed to develop useful,
generic benchmarks for functional annotations – particularly, since
it is clear that this will be a difficult goal to achieve.

4.1. Limitations to overcome

One key issue is lack of annotation completeness, since the
current state of knowledge for any specific biological process or
function is generally incomplete. For example, even for human
and well-studied model organisms, only a fraction of all genes
currently has GO annotations (see also Supplement, Part [B]). This
fact imposes severe restrictions on the ability to objectively assess
the performance of functional prediction methods, and to compare
tools. Thus it is typically the case that, when assessing functional
prediction methods, only an estimated, lower bound on accuracy
can be used to describe performance [5].

Comparison of annotation tools is also complicated due to the
different database or dictionary resources upon which they are
built. In addition, the presentation of results from GO-based meth-
ods may be very different compared to that of keyword-based
methods. Finally, each system can retrieve only information
related to the source databases or dictionaries they are built upon.
Thus, different systems may characterize different aspects of the
functions associated with a gene set.

Moreover, GO- and literature-based methods can pose
computational challenges, and incompatibility issues arise when
comparing them. For example, different GO-based methods may
use a set of terms from its hierarchy that is less specific than that
of another method. In that respect, compared with literature-based
methods, GO shows computational advantages (Table 2) as it can
facilitate quantitative metrics for direct comparison (e.g., counting
common nodes present among different annotations, or measuring
distances within the hierarchy). While calculating such metrics can
be simple (e.g., counting of common ancestors in the hierarchy, or
using graph-theory to compute the length of the shortest path
between terms), more advanced semantic similarity measures
Please cite this article in press as: T.G. Soldatos et al., Methods (2014), http://d
have been developed that rely not only on the organization of
the hierarchy (e.g., measuring distance from the root of the graph),
but may also utilize probabilities to weight nodes and edges based
on content-information extracted from the literature or the
GO-topology itself (e.g., [68,69]).

Still, comparing GO terms with literature keywords remains dif-
ficult and may need human involvement ([23,52]). Sometimes, cat-
egorical evaluations regarding the results, the computational
performance, or the features of each annotation method are used
x.doi.org/10.1016/j.ymeth.2014.07.004
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Table 6
Key reasons for unreliable judgements without benchmarking. Comparing keyword enhancement methods with each other is not straightforward because each relies on
keywords from different sources and using directly the terms for assessing performance poses several analytical challenges.

Qualitative
Semantics of terms In many cases, terms isolated from their context can have unspecific and ambiguous meaning. Clear and potential synonyms may help

overcome context-dependent interpretation in these cases
Term redundancy Different terms may refer to the same or similar processes – redundancy can have an impact on a tool’s evaluation since it is possible that

certain functional concepts may be over or under-represented. Some such cases can be managed by mapping two different terms to a single
concept, when both terms refer to the same external database record; but for many redundant terms, no such cross-references are available.
Alternatively, automated mapping of identified keywords onto a standard ontological structure may help in describing results within a
common functional space

Term-relationships Direct counting may be misleading because many terms are semantically related with each other (particularly within hierarchies). In
comparison to free text keywords, quantifying such relationships with GO is more straightforward

Quantitative
True positives Identifying true positives can be difficult:

(a) prior knowledge whether a term can be considered as correct, or not, is necessary;
(b) in general, it is not always the case that such knowledge is available; and
(c) this knowledge may include subjective evaluations

False positives Comparisons based only on false positives can be unfair as some systems may give no results – i.e., no terms
Precision When measured on the actual number of terms extracted from each method does not depict appropriately how successful the method has

been, because one method may have retrieved more terms than another one. However, few successful terms may describe better the
biological processes

Recall Generally cannot be computed, as the number of false negative terms is often unbounded
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to assess quality instead. Other times, evaluations may be based
upon a previously published data set with annotations (e.g., [38]
or [39]), but the current lack of a standard methodology for
quantitative assessment of such methods leaves some comparison
studies open to the criticism of subjectivity (Table 6).

4.2. Features of a gold standard

As discussed above, direct comparison of annotation tools is not
credible as the function space over which the evaluation is per-
formed (e.g., GO terms or other dictionary compilations) is differ-
ent for each program (Table 6). While the lack of high-quality
‘gold standards’ is a generic issue [70], to the knowledge of this
and other previous work (e.g., [23], [38] or [39]), there is no
accepted data set upon which a fair comparison among different
keyword enhancement systems can take place. The issue has been
dealt with multiple times by developing ways that produce map-
pings between different systems of keywords helpful to serve as
common platform to compare and re-annotate heterogeneous gene
lists (e.g., [71] or [72]).

Another proposed solution for encoding annotations in a struc-
tured format suggests that the extracted from each method terms
should be projected to those of an accepted benchmark that
describes the minimum performance of a method with respect to
a specified data set [23]. This would allow comparisons and data
exchange be based on the same reference and be described in a
common ‘level-play field’ by unifying terms regarding ‘quality’
and ‘definition’, and by describing results without redundancies.
To achieve that, the definition of a benchmark should consider
the following aspects:

- Benchmark-terms. The benchmark should provide a definition of
the minimum requirements (terms expected to be extracted by
any tool), described in a common space of terms in order to
assess upon. These benchmark-terms should be selected care-
fully so that they have specific and unambiguous meaning,
and so that they are all exclusively related to the task at hand.
Based on these non-redundant concepts true and false positives
can be counted and terms without specific biological meaning
or relevance for the examined data set can be discarded.
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- Coverage of content. The construction of an annotation bench-
mark should be primarily guided by its purpose to be used as
a common reference. For this it should not be restricted to the
completeness of results that only a subset of tools could
achieve. Although some terms may not have chance be mapped
in this way, the benchmark should indicate a minimum perfor-
mance estimate allowing both for quantification of results and
comparison of methods.

While attention to such considerations should be paid for the
creation of a Benchmark, Martini [23] proposed using a Benchmark
Table and a methodology that allowed comparing different tools
using a specific Cell Cycle dataset of human genes (Fig. 3). In spe-
cific, this example offers the mentioned benefits (level-playing-
comparisons, defining min-performance, counting non-redundant
matches) and the use of its Benchmark Table also facilitates further
analytical computations, as one can systematically describe the
results with quantitative measures (like precision and recall) and
effectively compare.

The usual approach without benchmarking is annotating
whether the identified keywords are indeed correct or relevant
(Fig. 3). However, comparing performance across tools using mea-
surements that rely only on the results of each (such as number of
terms) – independent from each other – are not fair to compute
and in many cases the result-terms should be ‘normalized’
(Table 6). Instead, with a benchmark, one can describe for each sys-
tem individually how many from the expected result-terms
(defined in the benchmark) have been identified, and thus quanti-
tatively assess the performance (Fig. 3). Table 7 summarizes the
features of the benchmark mechanism and how it helps quantify
the performance of each method without bias, allowing calculate
both precision and recall.

The certain approach followed in Martini [23] makes it thus a
quite good example as it satisfies the criteria mentioned above,
although differences between hierarchical, strictly defined terms,
and non-hierarchical, context-free keywords with respect to their
mapping onto the benchmark-terms were not explored in detail.
Moreover, the organization of Martini’s Cell Cycle Benchmark
Table [23] is one only such example of how the benchmark-terms
can be used to define a ‘score-card’ in this way.
x.doi.org/10.1016/j.ymeth.2014.07.004
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Fig. 3. Measuring performance with and without benchmark. Assessment without benchmark (upper middle and right part) can be misleading. On the contrary,
benchmarking (lower middle and right part) can be more descriptive: notably the recall measure is also essential for a fair comparison as it shows ‘how much of the expected
knowledge has been identified’ by each system, next to the precision that shows ‘how much of the retrieved knowledge has been expected (correct)’. While defining a set of
true negatives is difficult (since they can be uncountable), the Martini [23] approach (left part) overcomes this problem when testing for one cell cycle phase by using the
matches to descriptions of the other phases as false positives.

Table 7
Benchmarking for objective comparison. Benchmarking can be critical for the fair comparison of different systems in a uniform way; measures for reliable quantification of
performance can be facilitated this way.

Feature Description

Non-automated definition Best approach when creating a benchmark is that the expected terms to be found significant for the examined data set be identified and
listed manually. Extracting terms in an automated way from various resources would not comply with the principles that feature a
benchmark: content should be selected so as to facilitate the opportunity that any system assessed against it has chance to identify any of
the benchmarked concepts

Semantics of terms The terms of the compiled list of benchmark-terms should be carefully selected so that they have specific meaning and so that they are all
exclusively related to the topic at hand (e.g., the Cell Cycle Phases in [23]) – for a benchmark to be as appropriate as possible, the mapping
should either consider the contexts in which a keyword has been extracted from, or be unambiguous (i.e., rely on terms that have a
clearly defined meaning, independent of context)

Term-redundancy Term-redundancy is removed by projecting the keywords of each method on the terms of the Benchmark Table. This minimizes
redundant representation and brings the comparison over a ‘level playing field’

Common functional space. Mapping of the identified keywords onto the same ontological structure, i.e., the Benchmark Table, assists in both an objective but also
fair comparison. This happens by bringing the quantitative measures to rely on a uniform background: multiple terms from the extracted
results may map to the same term from the Benchmark Table. This makes the comparison rely on a same ‘unit’ – the non-uniform results
of different systems are projected to the shared, common and closed space of the terms listed in the Benchmark

Analytical benefits Key benefit is that individual precision and recall for each candidate method can be calculated with respect to the requirements defined
by the Benchmark Table. This can facilitate an objective comparison among tools, unaffected from the individual advantages and
disadvantages of each method

Precision With the projection to the benchmark table, the terms of the different methods are brought to a common functional space: e.g., precision
should not be defined as the number of true positives divided by the total numbers of terms retrieved (since non-mapped terms have to
be discarded and multiple true positives may map to the same term); more ‘properly’, precision calculation can be equivalently defined
instead by the ratio between the number of true positives and the sum of the true and false positives, this time as defined over the
uniform and concrete space of the benchmark-terms

Recall Benchmarking allows facilitating the recall measure as well, i.e., ratio between the number of true positive terms and the number of
terms expected to be extracted
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4.3. Downsides and further implications

Even when a benchmark is available, it is required that over-
sights that can result in imbalanced performance estimates are
avoided. For example, when the compared tools are applied with
their default settings (e.g., statistical configuration or selection of
concept types to be used) some results may not favor equivalence
of the analysis. Other difficulties, such as context implications and
unambiguous mapping of terms to the benchmark, also support
the view that such a methodology should be nurtured further.
Please cite this article in press as: T.G. Soldatos et al., Methods (2014), http://d
While the benchmark-terms are clearly defined in meaning, the
keywords extracted by the various tools remain mostly puzzling:
whether it is appropriate to map a keyword to a given bench-
mark-term is not always straightforward, just as in previous times
some of the decisions about what terms are correct and informa-
tive, or not, may appear somewhat arbitrary due to context-depen-
dent interpretation and the different nature of terms extracted per
method. For example, in GO there are terms that belong to differ-
ent levels of abstraction but belong to the same process while
simultaneously different free text terms may be represented by
x.doi.org/10.1016/j.ymeth.2014.07.004
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Table 8
Human intervention for better benchmarking. The help of experts may be involved in benchmark tasks in order to be able to assess the accuracy of a method appropriately: from
creating content, to its organization and the detailed handling of terms (selection, interpreting meaning, mapping and projection).

Aspect of benchmark Discussion

Topic and content A benchmark data set must be acceptable by the broader life sciences community and also be able to overcome the complexities
discussed. For example, the proposed data set by [23] met key criteria:

- Human cell cycle is both sufficiently well studied and of interest to a large spectrum of life scientists
- The human cell cycle gene set is well characterized either with GO terms or with extended literature
- Nevertheless, more data sets have to be proposed in order to satisfy a broader range of scope efficiently. For that, community

based expertise and knowledge should be incorporated
Size and completeness Lack of broad coverage by neglecting to compensate for possible spread of results may prevent performing a level play comparison

as not all methods may end up having an equal opportunity to achieve maximal recall. Whilst most tools to be compared are
assumed to be able to identify benchmark-terms, it may be the case that none identifies all of them. Also, it is difficult to grasp how
many keywords are missed when there is no way of knowing what the annotations are that have been missed. Human experts can
help identify these cases and constrain such pitfalls or flaws

Context interpretation and
mapping of terms

Curation may have to take place for the projection of the terms of each method to the common level playing field that is defined by
the benchmark. This is because in general keyword enhancement strips extracted terms from their context and a given keyword
that may appear significant (and be mapped to a benchmark-term), may when context is included not be significant at all. In
comparison the strength of GO is that the meaning of its terms is very strictly defined so that mappings to benchmark-terms are
not in doubt. Failure to account for such idiosyncrasies could lead to overstating the performance of a tool

Objectivity via criticism The main benefit from manually examining results relies on a human’s expertise. However, when only one annotator is available
an assessment may be subjective no matter how explicit some criteria may be. Reasons for that include that these criteria may
eventually be relatively unclear, as their interpretation can vary considerably from one annotator to another, e.g., one may be
‘optimist’, ‘pessimist’ or neutral. This observation underscores the importance of using several independent annotators

Up-to-datedness A benchmark cannot remain static as the knowledge over a certain field expands. Human experts should adapt content regularly

(a)

(b)
(c)

Fig. 4. Personalized approaches file clinical annotation within the rest of the modern genomics scene. Functional annotation this time embodies not (a) a single gene-set vs a
‘representative’ human genome comparison at a time, but (b) multiple ones that may be considered for each patient individually or(c) across larger population cohorts – e.g.,
gene groups observed in different tumour variations, gene profiles with somatic vs germline mutations, or driver vs passenger mutation carrier genes can be further
compared – beyond the residue level – via enrichment association studies.
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the same GO term. In practice, such an effect is much more acute
for keywords extracted from the literature since the clearly defined
GO terms can possibly be mapped ‘more unambiguously’ onto a
benchmark, whereas for other keywords (especially when stripped
off their context) there may be doubt.

While automatically mapping terms to the benchmark can be
an ambiguous process due to the difficulty coping with the seman-
tic interpretation of terms, yet another aspect of reducing the
number of terms to the canonical ‘benchmark set’ is that it is a
much smaller number of terms. Thus, it is possible that the
reported counts used to compute precision and recall are biased.
For these reasons, Martini [23] proposes that the mapping of the
Please cite this article in press as: T.G. Soldatos et al., Methods (2014), http://d
terms (extracted by a method) to those of the benchmark should
be performed by an expert. Although, there are considerations with
respect to objectivity of human-based annotations, curation by
experts can be considered as one from the best ways to perform
the mapping to the benchmark-terms (Table 8).
5. Discussion

Automated functional annotation methods are important since
function prediction can be used to give a focused direction towards
verification experiments. While gene annotation is mostly used to
x.doi.org/10.1016/j.ymeth.2014.07.004
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refer to the process of consolidating various sources of information
regarding gene function into a concise record for each gene, this
work focused also on the closely related and equally important
problem in modern biology, namely the analysis of groups of genes
produced from high-throughput experiments (e.g., microarrays,
etc.). The importance of addressing these problems (gene annota-
tion and functional inference of gene sets) is indicated by the large
variety of methodologies proposed to address them (Table 1).

5.1. Modern and future dimensions: clinical (meta-) annotation

Although the functional annotation task has relied on a plethora
of methods and data sources, yet it is still in an actively improving
and growing state today, as similar techniques can be used not
only for inferring function (in the form of terms or biological
pathways and interactions, like from Martini [23], FatiGO [37],
PANTHER [45] or Reactome [46] analysis) but also to annotate phe-
notypes (medical conditions, diseases, side effects) or even com-
pounds (e.g., Alkemio [73] or Metab2MeSH [74]). This is not only
attributable to the modern biomedical research relying increas-
ingly on the combination of disciplines previously considered as
distinct (medicine, chemistry, and biology), but also to the rise of
the personalized ‘-omics’ era. As personalized medicine promises
using genomic profiles of individuals to assign the right treatment,
the focus shifts from the functional impact of single variants (e.g.,
as discussed in [75]) to elements from the annotation paradigm
again (Fig. 4): expectations suggest that we need to start asking
not only what is in a genome but also for such composite reports
that can quickly raise some clinically oriented awareness regarding
observed gene clusters.

Though there are still several scientific and technical limitations
that make the direct implementation of such strategies unfeasible,
modern treatment decision support systems for precision medicine
(based already today on genomic analyses of patients; e.g., [76])
often compare tumors with both control tissue and the available
database information to provide an output that consists of priori-
tized lists of genes or treatment regimens – in turn, these may
be analyzed in follow-up experiments by researchers or in clinical
studies by physicians to test their actual role in a person’s cancer.
Translating such findings in ‘holistic’ knowledge and distilled
‘reductionist’ views [70] is not yet straightforward and requires
expert domain rules. Thus, broader annotation questions rise and
with the advent of personal genomics identifying the systems that
are perturbed (and their entities) by gene-sets of specific aberra-
tion profiles becomes not only highly of interest but soon also
the norm. Integral part among these developments, modern func-
tional annotation (even at the ‘simplified’ gene level) remains a
key player with central role in the advances towards this direction.

5.2. Clash of annotations: democracy or aristocracy?

Finally, the epistemological perspective taken in this work with
regard to the functional annotation of genes was not only
restricted to comparing the different knowledge acquisition
systems used, but also considered some conflicting beliefs and
opinions, especially regarding the topic of where the information
comes from – with the main two at least theories revolving around
core GO- and TM-based approaches. While major conflicting points
cover most qualities of each (substance, forms, resources, capabil-
ities, value and limits) the contrast lies on a dominant impression
that GO refers mostly to an ‘oligarchy by experts’ whereas TM rep-
resents a ‘vox populi’ approach for annotation. The former argue
that curated GO annotations are better than automated TM infer-
ences, and emphasize that the latter may coincidentally identify
terms (which just arise by chance and are noisy and uninforma-
tive) or can sometimes be based on literature that is only general
Please cite this article in press as: T.G. Soldatos et al., Methods (2014), http://d
(and not specific to a gene or function). Arguments against a
strictly GO-based annotation strategy (curated or inferred) include
that it remains both limited in extent and restricted in scope, jus-
tifying claims from scientists such as that ‘‘sometimes feels as if
the annotation stopped half-way through’’. Indeed, both observa-
tions apply as TM approaches can potentially give better recall
(potentially retrieving all relevant literature descriptions of a pro-
tein’s function), whereas GO terms are likely to be more precise
(delivering generally fewer but more reliable annotations). While
we have contrasted the differences between these two approaches
in this work, they can also be perceived as complementary rather
than competing, and indeed we believe that the most accurate
and useful methods would ultimately combine the strengths of
both approaches.

5.3. Concluding remarks

Although performing an exhaustive overview of produced geno-
mic data to gain understanding is frequently not possible, current
analytical methods for functional annotation and careful integra-
tion continue to improve our ability to extract knowledge and gen-
erate new hypotheses. Inspired by these developments this article
highlights that:

� Recent tools rely on synthesized integration towards a ‘systems’
perspective. Modern computational methods for functional
annotation seek to aid understanding about the synergistic bio-
logical functions that genes perform together. An emerging
trend to do this is by elucidating large-scale systems and effects,
revealing connections to system components, especially molec-
ular actors such as proteins, other genes, and chemicals. Doing
this in a systemic way requires an extensive vocabulary of
terms that represent a broad ensemble of clearly defined bio-
medical concepts. To improve performance of functional anno-
tation in this respect many tools incorporate keywords that rely
on a plethora of dictionaries derived from multiple resources
(e.g., GO, pathways, etc.) enabling thus keywords to belong in
a broad range of semantic categories (Section 2.4).
� TM plays a central role in the task of functional annotation. Many

methods mine the text of database annotations and of the liter-
ature to extract annotations (Section 2.2). In comparison, mining
of literature can provide more sensitive results and has better
potential capturing specific keywords that describe gene func-
tion because it is more information rich in content (Section 3;
Table 5). Finally, data suggest more than one ways forward (Sup-
plement, Part [B]) and annotation improvements can be accom-
plished when the mining is combined with homology based
expansion and sequence similarity ranking.
� Main methods combine mining of literature and the use of

ontologies. Studying gene properties using information
extracted directly from the biomedical literature, or from the
GO, still poses drawbacks (Table 5). While compiling a struc-
tured vocabulary from unstructured or semi-structured
resources remains a challenge today, typically, many tools
derive their dictionary primarily from GO, while others rely
on literature itself in order to extract keywords (Section 3).
Yet, combining the powers of GO-based approaches with the
increased sensitivity of keywords extracted directly from the
literature has been shown to be a viable solution that can be
well performing (e.g., [23]).
� Two set comparison can help addressing more interesting ques-

tions. Commonly, for the functional annotation of gene lists,
keyword enhancement is applied, often for genes from only a
limited number of organisms (see Table 4). To improve func-
tional annotation performance, using two sets for input allows
asking questions that are more specific by enabling users to
x.doi.org/10.1016/j.ymeth.2014.07.004
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control the reference set (see Section 2.4), and comes with fur-
ther data management advantages (e.g., handling smaller vol-
umes of data).
� Existence of proper benchmarks can help objectively assess

functional annotation performance. In spite of its downsides,
it is emphasized that using benchmarks like that of [23] pre-
sents analytical opportunities for objective (non-biased and
quantifiable) performance comparison of results over a com-
mon functional space that is otherwise non-applicable (Section
4.2). However, the data set of Martini’s experience [23] is one
only such example and very specific. What is required is a set
of reliable benchmarks tailored specifically for both qualitative
and quantitative evaluation, ideally spanning a wide range of
functions and organisms.
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