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Nitrogen-containing bisphosphonates (N-BPs) such as zoledronic acid (ZOL) are the gold standard treatment for
diseases of excessive bone resorption. N-BPs inactivate osteoclasts via inhibition of farnesyl diphosphate synthase
(FPPS), thereby preventing the prenylation of essential small GTPases. Not all patients respond toN-BP therapy to
the same extent, and some patients, for examplewith tumour-associated bone disease or Paget's disease, appear
to develop resistance to N-BPs. The extent towhich upregulation of FPPSmight contribute to these phenomena is
not clear. Using quantitative PCR andwestern blot analysis we show that levels of FPPSmRNA and protein can be
upregulated in HeLa cells by culturing in lipoprotein deficient serum (LDS) or by over-expression of SREBP-1a.
Upregulated, endogenous FPPS was predominantly localised to the cytosol and did not co-localise with peroxi-
somal or mitochondrial markers. Upregulation of endogenous FPPS conferred resistance to the inhibitory effect
of low concentrations of ZOL on the prenylation of the small GTPase Rap1a. These observations suggest that an
increase in the expression of endogenous FPPS could confer at least partial resistance to the pharmacological
effect of N-BP drugs such as ZOL in vivo.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Over the last 4 decades, nitrogen-containing bisphosphonates
(N-BPs) such as zoledronic acid (ZOL), have become the gold stan-
dard of treatment for post-menopausal osteoporosis as well as
Paget's disease of bone (PDB) and tumour-associated bone diseases
[1–4].

The molecular target of N-BPs is farnesyl diphosphate synthase
(FPPS), a crucial enzyme at the branch point of cholesterol and isopren-
oid synthesis in the mevalonate pathway [5]. Because they bind calcium
ions, N-BPs accumulate quickly in the skeleton and are internalised by
osteoclasts, leading to rapid inhibition of FPPS. The subsequent lack of in-
tracellular isoprenoid lipids prevents the post-translational prenylation
syl diphosphate synthase; HMG
tase; LDS, lipoprotein deficient
BP, sterol regulatory element
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of small GTPase signalling proteins such as Rap1a, leading to disruption
of osteoclast function [5,6]. The accumulation of unprenylated Rap1a can
therefore be used as a biochemical indicator of the pharmacological ac-
tivity of N-BPs [7–11].

Resistance of patients to treatment with N-BPs has been recognized
as a clinical issue in cancer-associated bone disease and PDB [1,12]
where assessment of biochemical remission has been used as ameasure
of unresponsiveness [13]. This phenomenon is observed even in pa-
tients who have received intravenous BP therapy, thus ruling out lack
of adherence to oral N-BP treatment. The molecular mechanism under-
lying this apparent drug resistance is unclear; upregulation ofmultidrug
resistance protein 1, the antiapoptotic bcl-2 gene [14] and heat shock
protein 27 [15] have been observed in tumour cell lines that have devel-
oped N-BP resistance, but these observations have yet to be shown to
be clinically relevant. Given that FPPS is the major molecular target for
N-BP drugs (reviewed in [5]), we explored the possibility, using a cellu-
lar model, that resistance to N-BPs could be acquired as a consequence
of upregulation of this enzyme.

Although prolonged N-BP treatment can result in increased FPPS ex-
pression in cultured cells [16–18], amodel system inwhich endogenous
FPPS expression can be rapidlymodulated,with the intention of altering
responsiveness to N-BPs, has not been examined. Expression of endog-
enous FPPS, as well as other enzymes of the mevalonate pathway, is
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upregulated by sterol regulatory element binding proteins (SREBPs)
under conditions of sterol depletion [19,20], for example by culturing
cells in the presence of lipoprotein deficient serum (LDS) [20,21]. We
therefore examined whether upregulation of endogenous FPPS, by cul-
turing cells in LDS-containingmedium, conferred resistance to the N-BP
ZOL, measuring the accumulation of unprenylated Rap1a as a surrogate
marker for inhibition of protein prenylation.

The exact subcellular location of endogenous FPPS is not clear,
with evidence for both cytosolic and peroxisomal locations [22–25]. In
2007, an isoform of FPPS was identified that contains a mitochondrial
targeting sequence, raising the possibility of a mitochondrial location
for the enzyme [26].We therefore examined the subcellular localisation
of LDS-induced endogenous FPPS in peroxisomes, mitochondria or the
cytosol. Since HeLa cells are reported to have intact peroxisomal import
pathways [27], these cells are an ideal model with which to study the
subcellular localisation of FPPS.

2. Materials and methods

2.1. Reagents

All reagents were purchased from Sigma Aldrich (Poole, UK), unless
otherwise stated. Zoledronic acid (ZOL, hydrated disodium salt), pro-
vided by Novartis Pharma AG (Basel, Switzerland), was dissolved in
PBS, adjusted to pH 7.4 and sterilized with 0.2 μm filter. Other reagents
were MitoTracker-CMX-ROS 579–599 (Cat. No. M7512, Invitrogen),
anti-myc antibody (9B11, mouse monoclonal antibody, Cat. No. 2276,
Cell signalling), anti-PMP 70 antibody (Cat. No. ABT12, Millipore) and
pDsRed2-Peroxi vector (Cat. No. 632418, Clontech). The 1470 bp cDNA
encoding human SREBP-1a was cloned into the pcDNA3.1 vector
to create the SREBP-1a-FLAG plasmid, kindly provided by Dr T. Osborne,
University of California.

2.2. Cell culture

HeLa cells were maintained in DMEM (Life Technologies, Paisley,
UK), containing 10% [v/v] foetal calf serum (FCS) and 1 mM glutamine.
For each set of experiments, FPPS expression was manipulated by cul-
turing cells in medium containing either 10% [v/v] foetal calf serum
(FCS) or batch-matched lipoprotein-deficient foetal calf serum (LDS),
or by transfecting the cells with FLAG-tagged SREBP-1a.

2.3. Quantitative RT-PCR

Cells were seeded into 6-well plates at a density of 2 × 105 cells per
well and incubated overnight. The cells were washed once with PBS,
fresh medium with 10% [v/v] FCS or LDS was added and the plates
were incubated for 24 h. The cells were then treated with 0–50 μM
ZOL for a further 24 h. Total RNA was extracted using TRIzol®. cDNA
was reverse transcribed using SuperScript ™ II Reverse Transcriptase
(18064-022, Invitrogen). In a 20 μL reaction volume, 2 μg of RNA,
2 μMof randomprimer and 200 U of SuperScript™ II reverse transcrip-
tase were mixed and incubated at 70 °C for 10 min, 42 °C for 50 min
and finally 95 °C for 5 min.

For quantitative real time PCR, 3 μL of cDNA was added to 10 μL of
LightCycler® 480 Probe Master (Roche), 0.2 μL of TaqMan® probe
(Probe no. 46, Universal Probe Library), 0.2 μL of forward and reverse
primers (20 μM) each and 1 μL of human GAPDH probe dye VIC-MGB
(Applied Biosystems, 4326317E). The human FPPS gene specific intron
spanning primers between exons 2 and 3 were designed using Univer-
sal Probe library software and purchased from Sigma-GenoSys (forward
primer: 5′-CAGCTTTCTACTCCTTCTACCTTCC-3′, reverse primer: 5′-GCTC
CTTCTCGCCATCAAT-3′). The results were analysed using LightCycler®
480 software 1.5 and FPPS was normalised to GAPDH and presented
as a ratio (Ratio = EtargetΔCT(treated-control) / EGAPDHΔCT(treated-control)).
2.4. Western blot analysis

Cells were seeded into 6-well plates at a density of 2 × 105 cells per
well and incubated overnight. The cells were washed once with PBS,
freshmediumwith 10% [v/v] FCS or LDSwas added. The cellswere incu-
bated for 24 h then treatedwith 0–50 μMZOL for a further 24 h and cell
lysates were analysed by western blotting with antibodies specific for
unprenylated Rap1a (goat polyclonal, Santa Cruz Biotechnology; SC-
1482) and total Rap1 (rabbit monoclonal, Cell Signalling Technologies;
2399) as previously described [28], or for FPPS (1/1000 dilution of af-
finity-purified rabbit anti-serum), FLAG-SREBP1a using M2-antiFLAG
antibody (1/1000 dilution; Sigma, Poole, UK) together with infrared-
labelled secondary antibodies (LI-COR, Cambridge, UK). The blots
were analysed on an infrared scanner (LI-COR, Cambridge, UK) with
Odyssey software.

2.5. Immunofluorescence staining of FPPS

FPPS cDNA containing an apparentmitochondrial targeting sequence
in exon 2 [26] (Ensembl, transcript: FDPS-001 (ENST00000356657))
was inserted into pcDNA™ 3.1/myc-His A vector (Invitrogen) using T4
DNA ligase. The ligated product was transformed into XL-1 Blue super-
competent Escherichia coli and the plasmid was purified and sequence
verified.

Hela cells were seeded on coverslips into 48 well plates. After over-
night incubation they were either treated with medium containing 10%
[v/v] LDS or 10% [v/v] FCS. Some cultures were transfected with the
FPPS-encoding plasmid using jetPRIME™ transfection reagent. To label
peroxisomes, cells were also transfected with pDsRed2-Peroxi vector.
Following transfections, cells were incubated for 24 h before transfer-
ring to LDS or FCS containing medium for a further 24 h. Mitochondria
were labelled by incubating cells with 100 nM MitoTracker® Red
CMXRos for 30 min at 37 °C at the end of the culture period. The
cells were fixed in 4% [v/v] paraformaldehyde, washed and then
permeabilised with 0.1% [v/v] Triton-X-100 for 20 min. The cells were
incubated with 10% [v/v] normal goat serum in PBS for 30 min and
then with affinity-purified rabbit polyclonal FPPS anti-serum ([29];
1/1000 dilution) followed by goat anti-rabbit 488 antibody (1/150
dilution; Invitrogen). To confirm that the pDsRed2-Peroxi vector la-
belled peroxisomes, some cells were co-stained with anti-PMP70 anti-
body (1/1000 dilution). Cells were analysed and images captured on a
Carl Zeiss LSM510 META Confocal microscope with Zen 2009 software.

2.6. Transfection with SREBP-1a plasmid

HeLa cellswere seeded in 6well plates at a density of 2 × 105 cells per
well and incubated overnight in DMEM containing 10% [v/v] FCS. Cells
were then transfected with FLAG-tagged SREBP-1a (a generous gift
from Dr Timothy Osborne, University of California) using jetPRIME™
transfection kit (114–15, Polyplus transfection™). The culture medium
was replaced after 4 h and cells were incubated for 18 h. The medium
was replaced with fresh medium containing 0–25 μM ZOL and cultures
were incubated for a further 6 h with or without ZOL, after which the
cells were lysed for western blot analysis.

2.7. Statistical analysis

Mean densitometric measurements from western blots of FCS-
and LDS-treated cells were compared using an unpaired t-test (SPSS,
version 20).

3. Results and discussion

The expression of FPPS is upregulated in the absence of sterols via
binding of SREBP-1 protein to the FPPS promoter [30–32]. Consistent
with this, in Hela cells, as in other cell lines such as THP-1, HepG2 and
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Fig. 1. Culturing Hela cells in 10% LDS upregulates FPPS. A) HeLa cells were cultured in 10% LDS or 10% FCS for 48 h then FPPS expression and GAPDH expressionweremeasured using real
time qPCR. B) HeLa cells were cultured in 10% FCS or 10% LDS for 48 h then FPPS expression was assessed by western blotting. Markers show molecular mass (kDa). C) Band intensities
were quantified using Licor Odyssey software and normalised to β-actin. Data are representative of at least 2 independent experiments, * p b 0.05, values significantly different from cells
cultured in 10% FCS (Student's unpaired t-test).
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Huh7 [20,21], the absence of extracellular sterols (by culturing cells in
LDS) led to an increase in the expression of endogenous FPPS (mRNA
and protein). After 48 h of culture in 10% [v/v] LDS, FPPS mRNA in-
creased approximately 3.4-fold in HeLa cells compared to cells cultured
in 10% [v/v] FCS, when assessed by quantitative RT-PCR (Fig. 1A).
Densitometric analysis of western blots (Fig. 1B) demonstrated a
5-fold increase in 39 kDa FPPS protein, when normalised to β-actin
(Fig. 1C). The LDS-induced increase in FPPS was confirmed by immuno-
fluorescence staining. FPPS was barely detectable in HeLa cells that
had been cultured in 10% FCS (Fig. 2B), whereas in cells that had been
i
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By measuring the accumulation of unprenylated Rap1a as a sur-
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Fig. 3. Culture in LDS reduces the inhibitory effect of ZOL on Rap1a prenylation. HeLa cells were cultured in A) 10% FCS or B) 10% LDS for 24 h then treated with 0–50 μM ZOL. The cells
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cells treated with 5 μM ZOL and was barely detectable in cells treated
with 10 μM ZOL (Fig. 3D). Hence, the upregulation of endogenous
FPPS conferred partial resistance to the pharmacological effect of ZOL.
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caused upregulation of endogenous FPPS (Figs. 4A,B), similar to the ef-
fect of culturing cells in LDS. Furthermore, the inhibitory effect of ZOL
on Rap1a prenylation was reduced in HeLa cells overexpressing
SREBP-1a compared to untransfected cells (Figs. 4A,C). Together, these
studies demonstrate that increasing the level of endogenous FPPS (ei-
ther by removal of exogenous sterols, or by overexpression of SREBP-
1a) can confer at least partial resistance to the pharmacologic effects
of N-BP drug.

A single nucleotide polymorphism(rs2297480)within thepromoter
region of FPPS was recently reported to be associated with low BMD
[34] and reduced response to BP treatment in post-menopausal
women [34,35], with carriers of the rare allele demonstrating signif-
icantly less improvement in BMD with long term BP treatment com-
pared to homozygous carriers of the common allele [35]. It was
suggested that the variant allele creates a Runx1 binding site, likely
leading to reduced FPPS transcription [34] although this was not
studied. Our observations indicate that reduced expression of FPPS
would actually lead to increased sensitivity to BP therapy rather than
decreased responsiveness. Consequently the relevance of this polymor-
phism to BP treatment remains to be determined.

Despite the punctate appearance of FPPS following immunofluores-
cence staining, the LDS-induced, endogenous FPPS did not colocalise
to peroxisomes (Fig. 2C), which were labelled in cells transfected with
the pDsRed2-Peroxi vector (the product of which colocalised with the
peroxisomal marker PMP-70; Fig. 2A). A myc-tagged isoform of FPPS
that includes exon 2 (containing an apparent mitochondrial targeting
sequence; [26]) colocalised with MitoTracker (Fig. 2D). However, by
comparison with the distribution of MitoTracker, the LDS-induced
endogenous FPPS did not localise to mitochondria (Fig. 2E). This is con-
sistent with a previous study in Trypanosoma species [25], in which the
presence of FPPS was not detected in mitochondria. Taken together,
these results suggest that endogenous FPPS is predominantly cytosolic,
consistent with a proposed model of the mevalonate pathway in which
FPPS, together with other enzymes of the mevalonate pathway, is pre-
dominantly cytosolic rather than peroxisomal [23].

In conclusion, we demonstrate that increases in the level of endoge-
nous cytosolic FPPS in cultured cells decrease the effectiveness of N-BPs
for inhibiting protein prenylation, the major pharmacological action of
these drugs. If such variations in FPPS levels occur in human osteoclasts
in vivo, thismay contribute to the variability in clinical response to these
drugs, and to the phenomenon of resistance to BP therapy.
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