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OBJECTIVEdThe metabolic effects of low-dose prednisolone and optimal management of
glucocorticoid-induced diabetes are poorly characterized. The aims were to investigate the acute
effects of low-dose prednisolone on carbohydrate metabolism and whether long-term low-dose
prednisolone administration increases visceral adiposity, amplifying metabolic perturbations.

RESEARCH DESIGN AND METHODSdSubjects with inflammatory rheumatologic dis-
ease without diabetes mellitus were recruited. Nine subjects (age, 59 6 11 years) not using oral
glucocorticoids were studied before and after a 7- to 10-day course of oral prednisolone 6 mg daily.
Baseline data were compared with 12 subjects (age, 61 6 8 years) using continuous long-term
prednisolone (6.3 6 2.2 mg/day). Basal endogenous glucose production (EGP) was estimated by
6,6-2H2 glucose infusion, insulin sensitivity was estimated by two-step hyperinsulinemic-euglycemic
clamp, insulin secretion was estimated by intravenous glucose tolerance test, and adipose tissue areas
were estimated by computed tomography.

RESULTSdPrednisolone acutely increased basal EGP (2.446 0.46 to 2.656 0.35 mg/min/kg;
P = 0.05) and reduced insulin suppression of EGP (79 6 7 to 67 6 14%; P = 0.03), peripheral
glucose disposal (8.26 2.4 to 7.06 1.6 mg/kg/min; P = 0.01), and first-phase (5.96 2.0 to 3.96
1.6 mU/mmol; P = 0.01) and second-phase (4.6 6 1.7 to 3.6 6 1.4 mU/mmol; P = 0.02) insulin
secretion. Long-term prednisolone users had attenuated insulin suppression of EGP (66 6 14 vs.
796 7%; P = 0.03) and nonoxidative glucose disposal (446 24 vs. 626 8%; P = 0.02) compared
with nonglucocorticoid users, whereas basal EGP, insulin secretion, and adipose tissue areas were
not significantly different.

CONCLUSIONSdLow-dose prednisolone acutely perturbs all aspects of carbohydrate me-
tabolism. Long-term low-dose prednisolone induces hepatic insulin resistance and reduces pe-
ripheral nonoxidative glucose disposal. We conclude that hepatic and peripheral insulin
sensitivity should be targeted by glucose-lowering therapy for glucocorticoid-induced diabetes.
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G lucocorticoids (GCs) are potent
anti-inflammatory agents that are
commonly used to treat a broad

range of inflammatory and autoimmune
conditions. They are prescribed long-
term to ;0.75% of the general popula-
tion, most frequently to patients with
inflammatory rheumatologic disease (1).
Despite the advent of disease-modifying
antirheumatologic drugs and biologic
therapies, long-term GC prescription
rates are still increasing (1). Long-term
prescription of GCs is most prevalent in
the elderly, at prednisolone-equivalent
doses of ,10 mg daily (1,2).

The acute effects of high-dose GCs on
carbohydrate metabolism have been ex-
tensively investigated. High-dose GCs
cause peripheral tissue insulin resistance
(3), because they reduce both oxidative
and nonoxidative glucose disposal (4).
The effects of high-dose GCs on endoge-
nous glucose production (EGP) and he-
patic insulin sensitivity are less clear, but a
number of studies report a deleterious ef-
fect (3,5,6). High-dose GCs also acutely
reduce insulin secretion (7,8), which will
contribute to their hyperglycemic effect.

There are fewer data regarding the
metabolic consequences of typical long-
term (lower) GC doses, which are generally
considered to be modest (9–11). Further-
more, which components of carbohydrate
metabolism are perturbed by low-doseGCs
is not clear. We recently reported that older
patients with inflammatory rheumatologic
disease using long-term low-dose predniso-
lone had a higher postglucose load plasma
glucose concentration but a slightly lower
fasting plasma glucose concentration
than matched controls not using prednis-
olone (12). Our finding of a lower fasting
plasma glucose concentration suggests
that basal EGP was not increased in sub-
jects using low-dose prednisolone. This is
consistent with a previous study by van
Raalte et al. (13) reporting that predniso-
lone 7.5 mg/day for 14 days did not sig-
nificantly change basal EGP. However,
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van Raalte et al. (13) did report a reduction
in hepatic insulin sensitivity, suggesting
that carbohydrate metabolism in the liver
may be adversely affected by low-dose
prednisolone.

The effects of GCs on carbohydrate
metabolism predominantly have been
studied after short courses in healthy
young adults. Findings in younger pa-
tients may not be translatable to older
patients in whom increased visceral adi-
posity is likely to increase susceptibility to
the diabetogenic effects of GCs (14). In
addition, long-term GC therapy may fur-
ther increase visceral adiposity and en-
hance the effects of GCs on carbohydrate
metabolism (15,16).

The aim of this study was to investi-
gate the acute effects of low-dose pred-
nisolone on carbohydrate metabolism in
an older population typical of patients for
whom prednisolone is most frequently
prescribed. An additional aim was to
assess whether there is an increase in
visceral adiposity that further amplifies
metabolic perturbations during long-term
low-dose prednisolone administration.
This information will provide a foundation
for future studies targeting therapy for GC-
induced hyperglycemia at the major met-
abolic abnormalities induced by low-dose
prednisolone.

RESEARCH DESIGN AND
METHODS

Subjects and study design
Subjects aged 40 years or older with
inflammatory rheumatologic disease
were recruited from the outpatient clinic
of our institution. We studied 9 subjects
who had not been administered any oral
GC for at least 6 months (non-GC users)
and 12 subjects using a stable continuous
oral prednisolone dose of 4–10 mg/day
for at least 6 months (GC users). The
two groups were matched for sex, age,
BMI, inflammatory disease activity (as-
sessed by C-reactive protein) and physical
activity (assessed by modified Baecke
physical activity score) (17). Subjects
were excluded from the study if they
had known diabetes mellitus, significant
hepatic disease (liver transaminases more
than three-times the upper limit of nor-
mal, known cirrhosis, or chronic hepati-
tis), severe renal disease (serum creatinine
.200 mmol/L), severe congestive cardiac
failure (New York Heart Association class
IV), or were using medications known to
significantly affect carbohydrate metabo-
lism. Undiagnosed diabetes mellitus was

excluded at a screening visit with an oral
glucose tolerance test. One subject in the
GC users group was omitted from the
EGP and rate of glucose disposal (Rd)
analysis because of a technical problem
with the basal 6,6-2H2 glucose infusion.

To determine the acute effects of pred-
nisolone, non-GC users were studied be-
fore and after a 7- to 10-day course of oral
prednisolone 6 mg daily. To assess the
long-term effects of prednisolone, baseline
data from non-GC users were compared
with baseline data from the matched GC
users. The study was approved by the
Southern Adelaide Clinical Human Re-
search Ethics Committee, Flinders Medical
Centre, and all subjects provided written
informed consent in accordance with the
Declaration of Helsinki.

Study protocol
Carbohydrate metabolism and body
composition were assessed using a stan-
dardized 2-day protocol. At each visit,
subjects presented to the Endocrine Re-
search Unit of the Repatriation General
Hospital at 0800 h after an overnight fast.
The day 1 study protocol involved assess-
ment of basal EGP, followed by a two-
step hyperinsulinemic-euglycemic clamp
study. On day 2, subjects underwent a
frequently sampled intravenous glucose
tolerance test, dual-energy X-ray absorp-
tiometry scan, and abdominal computed
tomography (CT) scan. Subjectswere asked
to refrain from alcohol and exercise for 2
days before the study visits, and no subject
smoked during study visits. Subjects con-
sumed all regular medications with water in
the morning before the study visits, includ-
ing their prescribed prednisolone dose.

Basal endogenous glucose production
and two-step hyperinsulinemic-
euglycemic clamp
An intravenous cannula was inserted into
the antecubital fossa of one arm for ad-
ministration of infusions. A distally sited
cannula was inserted into the contralat-
eral arm for blood sampling and was
heated for the duration of the study to
achieve arterialization of venous blood.
After baseline blood samples were drawn,
subjects were administered a primed (5
mg/kg) continuous (3 mg/kg/h) infusion
of 6,6-2H2 glucose (Cambridge Isotopes
Laboratories, Andover, MA) for 120 min
to estimate basal EGP. Steady state was
defined as 90 to 120min after completion
of the priming bolus.

A two-step hyperinsulinemic-euglycemic
clamp study followed immediately. In the

first step, the low-dose clamp study,
human neutral insulin (Actrapid; Novo
Nordisk Pharmaceuticals, New South
Wales, Australia) was infused for 120
min at 15 mU/m2/min. The basal 6,6-2H2

glucose infusion was continued at 50% of
the initial rate (1.5 mg/kg/h) during this
step. In the second step, the high-dose
clamp study, the basal 6,6-2H2 glucose
infusionwas ceased and subjects were ad-
ministered a primed (320mU/m2/min for
2 min followed by 160 mU/m2/min for
2 min) human neutral insulin infusion
at 80 mU/m2/min for 120 min. During
both the low-dose and high-dose clamp
studies, subjects were administered a var-
iable infusion of 25% glucose (Baxter
Healthcare, New South Wales, Australia)
enriched to 2.6% with 6,6-2H2 glucose
to maintain euglycemia with a target glu-
cose concentration of 5 mmol/L. Blood
samples were drawn every 5 to 10 min to
titrate the variable glucose infusion and
steady state was defined as the last 30
min of each step of the clamp study.

EGP was calculated using the Steele
equation (18) as modified by Finegood
et al. (19) assuming a pool fraction of
0.65 and a volume of distribution of 20%
of bodyweight. The calculations accounted
for the background natural abundance of
13C and other isomers with the same gas
chromatography–mass spectrometry re-
tention time and mass as 6,6-2H2 glucose.
Negative EGP values during the high-dose
clamp were assigned to zero as previously
described (19,20). The percentage of
EGP suppression during the low-dose
clamp study was considered a marker
of hepatic insulin sensitivity. The Rd
was calculated using nonsteady-state
calculations as previously described
(18,19). The mean glucose infusion rates
during steady state corrected for fat-free
mass (FFM) and for serum insulin con-
centration (I) during the high-dose
clamp study were used as a measure of
peripheral tissue insulin sensitivity.

Indirect calorimetry
Indirect calorimetry was performed using
a ventilated hood technique (ParvoMedics
TrueOne 2400 Metabolic Measurement
System; ParvoMedics, Sandy, UT) during
the final 30 min of assessment of basal
EGP and during each step of the two-step
hyperinsulinemic-euglycemic clamp study.
After an equilibrium period of 10 min,
oxidative glucose disposal was calculated
using data from the final 20 min of in-
direct calorimetry recordings and the
equations of Frayn (21).
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Frequently sampled intravenous
glucose tolerance test
After placement of an intravenous can-
nula in each arm and collection of base-
line blood samples to measure glucose
and insulin concentration, a 25% glucose
(Baxter HealthCare) bolus (300 mg/kg,
maximum 25 g) was administered over
60 s. Further blood samples were then
drawn from the contralateral arm at mi-
nutes 1, 2, 3, 4, 6, 8, 10, and then every
10min until 60min after the glucose bolus.
The areas under the curve for glucose and
insulin were calculated using the trapezoi-
dal method (22). Insulin secretion was cal-
culated from the ratio of area under the
curve for insulin to area under the curve
for glucose, with first-phase insulin secre-
tion from minutes 0 to 10 after the glucose
bolus and second-phase insulin secretion
from minutes 10 to 60 after the glucose
bolus.

Body composition
CT was used to assess hepatic fat content
and subcutaneous and visceral adipose
tissue volumes. All CT images were 1 cm
thick and taken on a GE Lightspeed Pro
16 (GEHealthcare, General Electric Com-
pany, Pewaukee, WI). Scans were ana-
lyzed by a single operator who was
blinded to patient visit and group. He-
patic fat content was quantified from a CT
slice centered at the T12/L1 disc space,
with the average Hounsfield units deter-
mined from three regions of interest
manually placed in the liver, avoiding
major vessels. Subcutaneous and visceral
adipose tissue areas were obtained from a
CT slice centered at the L4/L5 disc space.
Separation lines were manually plotted at
the outside margin of the skin and the
abdominal wall musculature in continu-
ity with fascia of the paraspinal muscles.
Adipose tissue was defined as tissuewith a
density between and including 250 to
2150 Hounsfield units. Total fat mass
and FFM were measured by dual energy
X-ray absorptiometry on a GE Medical
Systems Lunar Prodigy (GE Healthcare,
General Electric Company).

Laboratory analysis
Glucose samples were analyzed immedi-
ately at the bedside on a glucose analyzer
(Yellow Springs Instrumentation, Yellow
Springs, OH). Glycosylated hemoglobin
wasmeasured using boronate affinity chro-
matography on a Primus PDQ (Immuno,
Sydney, Australia) with a between-run co-
efficient of variation (CV),3%. C-reactive
protein was measured using a Tina-quant

immunoturbidimetric assay (Roche Diag-
nostics GMBH, Mannheim, Germany)
on a Roche/Hitachi Modular Analyzer
(Hitachi High-Technologies Corporation,
Tokyo, Japan) with a CV ,4%. Urine
urea was analyzed by kinetic ultraviolet
spectrophotometric assay (Roche Diagnos-
tics GMBH) on a Roche/Hitachi Modular
Analyzer (Hitachi High-Technologies Cor-
poration). The between-run CV for urine
urea is 2.9% at 1,456 mmol/L and 3.1% at
279 mmol/L. Serum insulin was analyzed
by radioimmunoassay (Linco Research, St
Charles, MO) with a between-run CV of
9.1% at 12.5 mU/L, 2.8% at 50 mU/L,
and 4.9% at 200 mU/L. Nonesterified fatty
acids were measured by enzymatic colori-
metric assay (Wako, Osaka, Japan). The
between-run nonesterified fatty acids CVs
were 4.5% at 0.0625 mmol/L and 1.7% at
0.25 mmol/L.

To perform isotope ratio glucose
analysis, serum 6,6-2H2 glucose samples
underwent protein precipitation using ac-
etone, followed by a two-step derivatiza-
tion with hydroxylamine hydrochloride
and then acetic anhydride (23,24). The
glucose and 6,6-2H2 glucose derivatives
were assayed by gas chromatography–
mass spectrometry (a 6890 gas chro-
matograph was interfaced to an Agilent
5973Mass Selective Detector; Agilent Tech-
nologies, New South Wales, Australia).
Single ion monitoring was used to max-
imize sensitivity, with acquisition of ions
m/z 328 (glucose) and m/z 330 (6,6-2H2

glucose). Baseline 6,6-2H2 glucose sam-
ples were performed in duplicate with a
mean CV of 0.4%. The between-run CV
of unenriched 25% glucose was 0.8%.

Statistical analysis
Statistical analysis was performed using
IBM SPSS version 19 for Windows (IBM,
New York, NY). Data are presented as
mean6 SD for normally distributed data
and as median (interquartile range) if the
distribution was not normal. P , 0.05
was considered statistically significant.
The effects of acute prednisolone admin-
istration in non-GC users were analyzed
with a Wilcoxon signed-rank test,
whereas the effects of long-term prednis-
olone therapy in GC users compared with
non-GC users were analyzed using the
Mann-Whitney U test. A sample size of
12 per group had 78% power to detect a
change of 3.6 mg/kg FFM per minute dif-
ference in FFM value between GC users
and non-GC users at the 0.05 significance
level.

RESULTS

Subject characteristics
GC users were using a mean predniso-
lone dose of 6.3 6 2.2 mg/day, with the
mean duration of continuous predniso-
lone therapy being 81 6 62 months. All
non-GC users and 11 of the 12 GC users
had a diagnosis of either rheumatoid ar-
thritis or seronegative arthritis (Table 1).
There were no significant differences in
sex, age, BMI, waist circumference, fam-
ily history of diabetes, physical activity
score, or C-reactive protein between
non-GC users and GC users (Table 1).
Whereas fasting plasma glucose concen-
tration was significantly higher in the GC
users during the screening oral glucose
tolerance test, there was no significant
difference in 2-h postglucose load plasma
glucose concentration (Table 1). Glyco-
sylated hemoglobin was not significantly
different between non-GC users and GC
users (Table 1).

Body composition
In non-GC users, acute prednisolone ad-
ministration did not significantly alter he-
patic (606 4 vs. 606 5 Hounsfield units;
P = 0.86), subcutaneous (257 6 130 vs.
261 6 129 cm2; P = 0.31), or visceral
(108 6 82 vs. 111 6 80 cm2; P = 0.31)
adipose tissue. There were no significant
differences in total fat mass, hepatic adipos-
ity, subcutaneous adipose tissue area, or
visceral adipose tissue area between non-
GC users and GC users (Table 1).

Endogenous glucose production and
hepatic insulin sensitivity
In non-GCusers, basal EGPwas increased
by 8% after acute administration of pred-
nisolone (P = 0.050; Fig. 1). Basal EGP
was 14% higher in GC users compared
with non-GC users, although this did
not reach statistical significance (P =
0.16; Fig. 1). Acute prednisolone admin-
istration in non-GC users significantly at-
tenuated insulin suppression of EGP
during the low-dose clamp from 79 6 7
to 67 6 14% (P = 0.03; Fig. 1). Insulin
suppression of EGP during the low-dose
clamp was lower in GC users than in non-
GC users (666 14 vs. 796 7%; P = 0.03,
Fig. 1). EGPwas not significantly different
from zero during the high-dose clamp
study in all groups. Glucose and insulin
concentrations and 6,6-2H2 glucose en-
richment during the clamp studies are re-
ported in the Supplementary Materials
(Supplementary Figs. A–C and Supple-
mentary Table 2).
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Peripheral tissue insulin sensitivity
In non-GC users, mean glucose infusion
rates during steady state corrected for
FFM and for serum insulin concentration
was reduced by 14% after acute admin-
istration of prednisolone (P = 0.04; Fig.
2A). Although mean glucose infusion
rates during steady state corrected for
FFM and for serum insulin concentration
was 14% lower in GC users compared
with non-GC users, this difference was

not statistically significant (P = 0.32;
Fig. 2A). In non-GC users, the Rd was
reduced by 15% after acute prednisolone
administration (P = 0.01; Fig. 2B). The Rd
was 17% lower in GC users than in non-
GC users, although this difference did
not reach statistical significance (P =
0.27; Fig. 2B). In non-GC users, there
was no significant change in the percent-
age of nonoxidative glucose disposal af-
ter acute prednisolone administration

(62 6 8 vs. 59 6 15%; P = 0.44; Fig.
2B). However, nonoxidative glucose dis-
posal was reduced in GC users compared
with non-GC users (446 24 vs. 626 8%;
P = 0.02; Fig. 2B).

Neither acute nor long-term predniso-
lone administration significantly changed
basal nonesterified fatty acids concen-
tration or suppression of lipolysis in the
low-dose or high-dose clamp study (Sup-
plementary Table 1).

Insulin secretion
In non-GC users, after acute prednisolone
administration, first-phase insulin secre-
tion (5.9 6 2.0 vs. 3.9 6 1.6 mU/mmol;
P = 0.01; Fig. 3A) and second-phase in-
sulin secretion (4.6 6 1.7 vs. 3.6 6 1.4
mU/mmol; P = 0.02; Fig. 3B) were re-
duced. In contrast, there was no differ-
ence in first-phase insulin secretion
(5.7 6 3.5 vs. 5.9 6 2.0 mU/mmol; P =
0.57; Fig. 3A) or second phase insulin se-
cretion (5.16 3.1 vs. 4.66 1.7mU/mmol;
P = 0.94; Fig. 3B) in GC users and in non-
GC users.

CONCLUSIONSdThis study repre-
sents a systematic assessment in the older
patient of the effect of typical long-term
therapeutic prednisolone doses on carbo-
hydrate metabolism using gold standard
metabolic techniques. We have demon-
strated that acute low-dose prednisolone
significantly reduces hepatic insulin sen-
sitivity and appears to increase basal EGP.
A reduction in hepatic insulin sensitivity
also was present in patients using similar
doses of prednisolone long-term. Low-
dose prednisolone acutely reduces periph-
eral insulin sensitivity and the percentage
of glucose undergoing nonoxidative glucose
disposal is lower in patients using long-term
low-dose prednisolone. Insulin secretion is
reduced after acute, but not long-term low-
dose prednisolone administration. Visceral
adiposity was not increased in subjects
using short-term or long-term predniso-
lone, suggesting that GCs did not alter body
composition and thus did not amplify
perturbations of carbohydrate metabolism.
These findings provide insight into the
temporal effects of low-dose prednisolone
on components of carbohydrate metabo-
lism and the potential metabolic perturba-
tions that could be targeted to reverse these
effects.

There is emerging support for target-
ing diabetes therapy at its specific un-
derlying pathophysiology (25). The
paradigm for this is monogenic diabetes,
in which an understanding of the

Figure 1dEndogenous glucose production in non-GC users before and after administration of
low-dose prednisolone for 7–10 days and in long-term GC users. Data are mean6 SD. B, basal
EGP; LDC, low-dose clamp; HDC, high-dose clamp. *P = 0.05 compared with basal EGP in non-
GC users at baseline. #P, 0.05 compared with percentage of insulin suppression of EGP in non-
GC users at baseline.

Table 1dSubject baseline characteristics and baseline body composition data

Non-GC users GC users P

n 9 12
RA/SNA/other, n 3/6/0 8/3/1 0.14
Female, n (%) 4 (44) 6 (50) 0.80
Age, years 59 6 11 61 6 8 0.29
BMI, kg/m2 27.5 6 5.8 27.4 6 3.3 0.92
Waist circumference, cm 95 6 18 95 6 11 0.97
Family history of diabetes, n (%) 1 (11) 3 (25) 0.60
Physical activity score 19 6 11 17 6 7 0.94
C-reactive protein, mg/L* 3.9 (1.2–7.3) 4.2 (1.8–14.8) 0.41
Fasting plasma glucose, mmol/L 4.7 6 0.3 5.1 6 0.6 0.01
2-h plasma glucose, mmol/L 6.7 6 1.1 7.2 6 1.5 0.39
Glycosylated hemoglobin,
% (mmol/mol) 5.6 6 0.2 (38 6 2) 5.6 6 0.3 (38 6 3) 0.72

Total fat mass, kg 26 6 12 28 6 10 0.78
Liver attenuation, Hounsfield units* 59 (56–64) 60 (52–64) 0.83
Visceral adipose tissue volume, cm2 108 6 82 97 6 38 1.00
Subcutaneous adipose
tissue volume, cm2* 218 (173–381) 257 (157–357) 0.94

Data are mean6 SD unless otherwise noted. *Median (interquartile range). RA, rheumatoid arthritis; SNA,
seronegative arthritis.
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derangements of carbohydrate metabolism
has led to the use of directed therapies and
improved glycemic control (26). It is hoped
that targeting therapy at the metabolic per-
turbations underlying hyperglycemia in pa-
tientswith type 2 diabeteswill have a similar
benefit (27). Although low-dose GCs are
associated with an increased odds ratio of
development of new-onset diabetes, there
remains a dearth of evidence regarding op-
timal treatment forGC-inducedhyperglyce-
mia (28).We have thus sought to define the
changes in carbohydrate metabolism in-
duced by low-dose prednisolone in older
patients to enable a specific therapeutic ap-
proach in this setting.

In this study, basal EGP was 8%
higher after short-term low-dose prednis-
olone administration (P = 0.050).

Previous reports of GC-mediated effects
on basal EGP have been inconsistent,
with van Raalte et al. (13) finding no
change in basal EGP after low-dose pred-
nisolone; however, withdrawal of a low
GC dose in patients with Addison’s dis-
ease markedly reduced basal EGP (29). It
is likely that differing patient character-
istics alter their susceptibility to the met-
abolic effects of low-dose GCs and
underlie the variability in the literature.
In subjects using long-term low-dose pred-
nisolone, basal EGP was 14% higher, al-
though this result did not reach statistical
significance. The lack of statistical signifi-
cancemay represent the variability inherent
in a cross-sectional study. Confirmation of
our findings with a larger sample size
should be performed in the patient

population for whom low-dose GCs are
usually prescribed.

We have demonstrated that both
acute and long-term low-dose predniso-
lone robustly induce hepatic insulin re-
sistance, consistent with a previous report
(13). Hepatic insulin resistance was not
secondary to increased hepatic adiposity,
because we did not find a change in he-
patic fat content. Our results suggest that
adverse changes in hepatic carbohydrate
metabolism induced by low-dose pred-
nisolone will increase both fasting and
postprandial glucose concentration. As
such, metformin, a drug that primarily tar-
gets hepatic glucose regulation (30), should
be a cornerstone of glucose-lowering ther-
apy to reverse these pathophysiologic
changes.

In our study, low-dose prednisolone
acutely reduced peripheral insulin sensi-
tivity. Although it is well-established that
high-dose GCs acutely induce peripheral
insulin resistance (3,4,6,31), few studies
have characterized the effect of typical
lower GC doses. van Raalte et al. (13) re-
ported that a 2-week course of predniso-
lone 7.5 mg daily did not significantly
reduce peripheral insulin sensitivity in
healthy youngmen. Our contrasting find-
ings suggest that older subjects with an
underlying long-term inflammatory dis-
ease comprise a group of patients who
have increased vulnerability to the ad-
verse metabolic effects of low-dose GCs.

The degree of peripheral insulin resis-
tance in subjects using long-term low-dose
prednisolone therapy was similar to that
seen after acute low-dose prednisolone.
However, this reduction in insulin sensitiv-
ity did not reach statistical significance. We
do report that long-term low-dose prednis-
olone significantly reduces the percentage
of nonoxidative glucose disposal. Our re-
sults suggest that increasing peripheral in-
sulin sensitivity is likely to be important if
the effects of low-dose prednisolone are to
be reversed. However, current pharmaco-
logic options to improve peripheral tissue
insulin sensitivity in GC users are limited
because thiazolidinediones have a similar
adverse effect profile as GCs, including
increasing fat mass (32) and reduction of
bone density (33). Although exercise may
improve peripheral insulin sensitivity, the
underlying disease state could limit its ther-
apeutic applicability.

In this study, neither acute nor long-
term low-dose prednisolone influenced
basal or insulin-suppressed lipolysis. It
has been previously demonstrated that a
cortisol infusion yielding a higher GC

Figure 2dA: Mean glucose infusion rate at steady state during high-dose clamp study corrected
for FFM and for serum insulin concentration (M/I) in non-GC users before and after adminis-
tration of low-dose prednisolone for 7–10 days and in long-term GC users. Data are mean6 SD.
*P , 0.05 compared with non-GC users at baseline. B: Rate of oxidative (white bars) and non-
oxidative (black bars) Rd at steady state during high-dose clamp study in non-GCusers before and
after administration of low-dose prednisolone for 7–10 days and in long-term GC users. Data are
mean6 SD. *P, 0.05 compared with total Rd in non-GC users at baseline. #P, 0.05 compared
with percentage of nonoxidative glucose disposal in non-GC users at baseline.
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dose than that used in this study increased
lipolysis (34). However, lower GC doses
did not increase lipolysis (13), and Kauh
et al. (35) reported a dose-dependent ef-
fect of prednisolone on lipolysis. We hy-
pothesize that the lack of effect on
lipolysis in our study reflects the low GC
dose studied.

We found a disparate effect of acute
and long-term low-dose prednisolone on
insulin secretion. Acute low-dose predniso-
lone administration reducedfirst-phase and
second-phase insulin secretion, consistent
with previous reports of acute b-cell dys-
function after exposure to medium-dose
and high-dose GCs (8,36,37). However,
insulin secretion was not reduced in pa-
tients using long-term prednisolone.
Whereas this may represent a type II error,
first-phase and second-phase insulin

secretion results are very similar in the
GC users and non-GC users before pred-
nisolone. Furthermore, van Raalte et al.
(8) raised the possibility that the acute re-
duction in insulin secretion is not sus-
tained with longer administration of
GCs, although the prednisolone doses
used were different in their short-term
and medium-term studies. Our study
does not provide insight into the possible
mechanisms or the exact timing underly-
ing the apparent recovery of insulin secre-
tion. There are potentially multiple
mechanisms involved, including a com-
pensatory b-cell response to GC-induced
insulin resistance. Nevertheless, the clini-
cal implications of our results are that
if insulin secretion is only transiently
reduced by low-dose prednisolone, then
insulin secretagogues are not required

long-term to reverse this pathophysiologic
change.

We hypothesized that visceral adi-
posity would be increased in patients
using long-term prednisolone and that
this would further exacerbate its effects
on carbohydrate metabolism. However,
there was not an increase in visceral
adiposity in this patient group and per-
turbations of carbohydrate metabolism
were not amplified. We chose to match
our subjects for BMI based on a previous
report that patients using long-term GC
therapy have increased abdominal fat
without a significant increase in BMI
(15). A prospective study would be re-
quired to fully quantify the effect of
body compositional change. However, it
would be extremely challenging to recruit
patients requiring initiation of GCs to
achieve inflammatory disease control for
these complex metabolic investigations.

Low-dose GCs are prescribed as treat-
ment for a variety of inflammatory and
autoimmune conditions, and our results
are likely to apply to other patient groups.
However, van Raalte et al. (13) reported
that low-dose prednisolone induced less
metabolic effects in healthy young adults
than we have demonstrated in an older
patient population with chronic inflam-
matory disease. Metabolic studies in
younger subjects with chronic inflamma-
tory diseases treated with similar GC
doses would be useful to confirm the
widespread applicability of our findings.

This study’s strengths lie in the use of
gold standard metabolic investigations
and the study of patients with an under-
lying chronic disease rather than healthy
volunteers. However, we acknowledge
that the study is subject to limitations.
Complex metabolic studies such as this
are often limited by a small sample size,
which reduced our power to detect signif-
icant changes across all comparators. In
particular, this patient group was frail and
difficult to recruit. Insulin secretion was
quantified by measuring insulin during
the intravenous glucose tolerance test
and, unlike C-peptide, insulin concentra-
tions can be affected by hepatic clearance.
However, the consistent insulin concen-
trations across all groups during the eu-
glycemic clamp studies suggest that
insulin clearance is not altered by low-
dose GC administration. Furthermore,
an intravenous glucose tolerance test
does not assess the incretin effect on in-
sulin secretion, which has been shown
previously to be reduced by acute GC ad-
ministration (38). Finally, we did not

Figure 3dA: First-phase insulin secretion (area under the curve [AUC] insulin:AUC glucose) in
non-GC users before and after administration of low-dose prednisolone for 7–10 days and in long-
term GC users. Data are mean 6 SD. *P , 0.05 compared with non-GC users at baseline.
B: Second-phase insulin secretion (AUC insulin:AUC glucose) in non-GC users before and after
administration of low-dose prednisolone for 7–10 days and in long-term GC users. Data are
mean 6 SD. *P , 0.05 compared with non-GC users at baseline.
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assess whether changes in glucagon con-
centration mediated changes in EGP.
However, the effect of glucagon predom-
inates at low glucose concentrations, not
those found during a hyperinsulinemic-
euglycemic clamp study (39), and previ-
ous studies have reported that low-dose
prednisolone does not alter serum gluca-
gon concentration (6,40),

In summary, we have demonstrated
that acute low-dose prednisolone impairs
multiple components of carbohydrate
metabolism. In patients using long-term
low-dose prednisolone, visceral adiposity
was not increased and perturbations of
carbohydrate metabolism were not am-
plified. Patients using long-term low-dose
prednisolone have hepatic insulin resis-
tance and reduced peripheral nonoxida-
tive glucose disposal, but no change in
insulin secretion. Our findings demon-
strate that low-dose prednisolone exerts a
major deleterious effect on carbohydrate
metabolism. When prescribing GCs,
careful consideration should be given to
these potential adverse metabolic effects,
and alternative anti-inflammatory agents
should be considered. Treatment for GC-
induced diabetes should increase hepatic
insulin sensitivity and peripheral non-
oxidative glucose disposal to reverse the
pathophysiologic changes induced by
low-dose prednisolone.
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