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ABSTRACT

Motivation: Comparing transcriptomic data with proteomic data to

identify protein-coding sequences is a long-standing challenge in mo-

lecular biology, one that is exacerbated by the increasing size of

high-throughput datasets. To address this challenge, and thereby to

improve the quality of genome annotation and understanding of

genome biology, we have developed an integrated suite of programs,

called Pinstripe. We demonstrate its application, utility and discovery

power using transcriptomic and proteomic data from publicly available

datasets.

Results: To demonstrate the efficacy of Pinstripe for large-scale ana-

lysis, we applied Pinstripe’s reverse peptide mapping pipeline to a

transcript library including de novo assembled transcriptomes from

the human Illumina Body Atlas (IBA2) and GENCODE v10 gene anno-

tations, and the EBI Proteomics Identifications Database (PRIDE) pep-

tide database. This analysis identified 736 canonical open reading

frames (ORFs) supported by three or more PRIDE peptide fragments

that are positioned outside any known coding DNA sequence (CDS).

Because of the unfiltered nature of the PRIDE database and high

probability of false discovery, we further refined this list using inde-

pendent evidence for translation, including the presence of a Kozak

sequence or functional domains, synonymous/non-synonymous sub-

stitution ratios and ORF length. Using this integrative approach, we

observed evidence of translation from a previously unknown let7e pri-

mary transcript, the archetypical lncRNA H19, and a homolog of RD3.

Reciprocally, by exclusion of transcripts with mapped peptides or sig-

nificant ORFs (480 codon), we identify 32 187 loci with RNAs longer

than 2000 nt that are unlikely to encode proteins.

Availability and implementation: Pinstripe (pinstripe.matticklab.com)

is freely available as source code or a Mono binary. Pinstripe is written

in C# and runs under the Mono framework on Linux or Mac OS X, and

both under Mono and .Net under Windows.
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Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Although the annotation of the human genome has undergone

considerable effort, with420000 protein-coding loci identified,

the extent to which the genome is transcribed and subsequently

translated remains unclear (Clark et al., 2011; Flicek et al., 2010).

As well as mRNAs, long RNAs with little or no protein-coding

capacity (long non-coding RNAs or lncRNAs) are abundantly

expressed from the human genome with410 000 non-coding loci

currently in GENCODE (the most comprehensive annotation of

the human genome). Adding to the known catalog of RNAs,

transcriptomic sequencing experiments are identifying thousands

of new transcripts on an ongoing basis (Trapnell et al., 2010).

Confidently determining which RNAs encode proteins is dif-

ficult. Traditional approaches classify the protein-coding poten-

tial of an RNA based on the presence of long canonical open

reading frames (ORFs), phylogenomic evidence of codon con-

servation (Dinger et al., 2008) and/or recognized functional do-

mains. The former approach is highly dependent on ORF length,

with �100 codons typically used as the threshold for the identi-

fication of mRNAs (Carninci et al., 2005; Imanishi et al., 2004).

However, this approach results in an unknown false negative and

positive rate, as shorter proteins are known to exist, and short

ORFs can occur by chance (Dinger et al., 2011). Phylogenomic

comparisons also have limitations, notably their inability to

detect orphan genes lacking homologs in other lineages (Tautz

and Domazet-Lošo, 2011), and the tendency for recently evolved

genes to encode smaller proteins than older genes (Lipman et al.,

2002). Moreover, data from which evidence of ORF and codon

conservation can be determined are limited, especially at short

evolutionary distances. Annotation of protein-coding genes

is further confounded by factors such as RNA editing,
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genotypic variation, non-canonical start codons and ribosomal
frameshifting.

Although many of the transcripts identified in de novo

assembled transcriptomes can be annotated through comparison
with known reference databases such as GENCODE (Flicek

et al., 2010) or RefSeq (Pruitt et al., 2007), this approach does

not provide a means for classifying novel transcripts and is en-

tirely dependent on the accuracy of the reference database. Even

determining the protein-coding capacity of novel transcript iso-

forms of known genes is not straightforward, as the insertion,
deletion and extension of exons may disrupt the existing ORF or

establish an alternative ORF. Identifying the consequences of

such events to the encoded protein sequence on a genomic

scale is challenging and not addressed by existing tools.

Although the comparison of transcriptomic datasets to identify

overlapping/non-overlapping features is facilitated by applica-

tions such as BEDTools (Quinlan and Hall, 2010), such applica-
tions do not consider the frame of the CDS.

The classification of novel transcripts with a putative ORF can

be discerned with greater confidence using proteomic data.
Mapping of proteomic sequences to transcriptomic data is typic-

ally performed using software such as BLAST (Altschul et al.,

1990) or BLAT (Kent et al., 2002). Use of these programs with

high-throughput transcriptomic datasets requires considerable

pre- and post-processing. Custom nucleotide sequence diction-

aries must be created from spliced genomic coordinates before
BLAST comparisons, and resulting matches are reported with

respect to mRNA coordinates that require transformation into

genomic coordinates. After mapping, each ORF then needs to be

analyzed to determine the extent of supporting proteomic data.

Currently, there is no software to facilitate this process, although

high-throughput proteomic–genomic comparisons inArabidopsis

(Castellana et al., 2008) and proteomic–transcriptomic integra-
tion in mice (Brosch et al., 2011) have been undertaken.

Here, we present an integrated software suite, Pinstripe, which

overcomes many of the difficulties in such tasks, providing
programs (Supplementary Table S1) to analyze transcriptomes,

specifically enabling: (i) ORF-aware comparison with protein-

coding gene annotations identifying CDSs with in-frame overlap,

(ii) mapping of proteomic data to the transcriptome (leveraging

BLASTP and TBLASTN) and reporting results as genomic co-

ordinates and (iii) annotation of ORFs supported by peptides
from proteomic datasets. In addition, Pinstripe features a multi-

tude of tools for analyzing transcriptomes, including intersection

by feature name, identification of best representative transcripts

for loci and extraction of DNA sequence or predicted ORFs

from genomic coordinates. We demonstrate the utility of

Pinstripe by analyzing transcriptomes assembled de novo from
high-throughput RNA sequencing of 16 human tissues and

mass spectrometry from the EMBL-EBI Proteomics

Identifications Database (PRIDE) (Vizcaı́no et al., 2009), finding

previously unidentified protein-coding regions and providing

high-confidence annotations for thousands of long ncRNAs.

2 METHODS

Pinstripe is a multiprocessor-enabled application designed for the rapid

high-throughput analysis of de novo or reference-guided transcriptome

assemblies generated by tools such as Tophat (Trapnell et al., 2009) and

Cufflinks (Trapnell et al., 2010) or Trinity (Grabherr et al., 2011). In

terms of performance, Pinstripe can identify ORFs, the corresponding

amino acid sequence and level of support in �5 min using a single-core

2.27GHz Intel Xeon processor for 1 million transcripts queried against

500000 pre-mapped peptide sequences (pepFrags). Mapped pepFrag files

require580 Mb per 1 million pepFrags. The application is programed in

C#, and the compiled binary runs under Mono on Linux or MacOS X,

and both Mono and .NET under Windows. Here, we demonstrate

its implementation using transcriptomes assembled de novo from

high-throughput RNA sequencing of 16 human tissues and mass spec-

trometry peptide identifications from public databases.

Pinstripe uses the UCSC Browser Extensible Data (BED/BED12)

format to describe the chromosomal positions of input transcripts. This

format is compact, storing information regarding a single transcript’s

exons and CDS in a single row of data. Annotation reference files for

most transcript and gene collections are readily available in BED12

format from the UCSC Table Browser. For compatibility with

Pinstripe, Sequence Alignment/Map (SAM) files can be converted to,

and compared with, BED files using programs such as BEDTools.

Gene Transfer Format (GTF) files can be converted to BED format

using a combination of tools available from UCSC, and basic command

line utilities (refer Supplementary Material).

2.1 Identification of mRNA

mRNA are most easily identified by comparing transcripts with a data-

base of validated gene annotations such as RefSeq (Pruitt et al., 2007) or

GENCODE (Becker, 2011). The difficulty with this approach is that de

novo transcriptomes, such as those assembled from high-throughput

RNA sequencing experiments, can reveal both new transcripts that do

not correspond to any annotation, and variants of known transcripts with

additional exons, alternate splice sites or alternative UTRs, all of which

may result in ORF disruption. Any comparison involving a novel tran-

script isoform requires consideration of the frame in which potential

CDSs are translated. These problems are exacerbated for poorly anno-

tated genomes or where a reference is not available.

To address this challenge, Pinstripe provides two methods for identify-

ing mRNA in CDS-naı̈ve transcripts. First, Pinstripe annotate compares

each transcript with a gene reference, annotating a CDS if the three-frame

conceptual translation of the query transcript yields an ORF coincident

(within tolerances defined by user options) with the reference, and in the

same frame.

Alternatively, Pinstripe mapPeptides takes peptide fragments

(pepFrags) from mass spectrometry (or other proteomic data) and

maps them to the transcriptome (Fig. 1). mapPeptides creates a BLAST

(Camacho et al., 2009) dictionary from the queried transcript library and

maps the pepFrag amino acid sequences against the dictionary with

user-definable parameters. The resultant BLAST matches are then trans-

lated from local mRNA coordinates to genomic coordinates (including

those pepFrags mapping across splice junctions) and post-processed

to remove redundancy (where pepFrags map to different mRNAs but

resolve to the same genomic position). The original transcript library is

matched to any overlapping pepFrags and potential ORFs (canonical

and non-canonical) identified through in silico translation using

Pinstripe buildProteins. Each transcript is reported with details of which

pepFrags map to it, the amino acid sequence of the ORF and the ORF

length. An example workflow is shown in Figure 2. Workflows for the

main Pinstripe programs, mapPeptides, buildProteins and annotate are

shown in Supplementary Figure S1.

Examples of Pinstripe usage to annotate ORFs from a CDS-naı̈ve

transcriptome are as follows:

(1) Map peptide fragments to a transcriptome: pstr mapPeptides

[options] hg19.fa transcriptome.bed pepFrags.fa 4 pepMap_

results.bedx.
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(2) Optionally remove pepFrags that are contained within another, or

map to multiple locations: pstr deDup –exEncomp –exMisSplice –

exMultiMap pepMap_results.bedx4pepMap_results_uq.bedx.

(3) Identify ORFs containing pepFrags, recording number of

pepFrags in each ORF and the conceptual translation: pstr

buildProteins [options] hg19.fa pepMap_results_uq.bedx transcrip-

tome.bed4 protein_results.bedx.

(4) Annotate ORFs using a reference: pstr annotate [options]

hg19.fa Gencodev10Ref.bed transcriptome.bed 4 transcriptome_

annotated.bed.

2.2 Classification of lncRNAs

lncRNAs are defined as long mRNA-like transcripts that are not known

to encode proteins, and which exhibit little or no protein-coding capacity.

Because of the likelihood of long RNAs containing an ORF by chance

alone, lncRNAs and mRNAs cannot be simply distinguished by the ab-

sence or presence of an ORF (Dinger et al., 2008, 2011). Pinstripe sup-

ports classification of RNAs whose coding status is unresolved using a

combination of programs, and allows the incorporation of data from

other applications for assessing protein-coding potential, such as

PhyloCSF (Lin et al., 2011). The previously described annotate program

not only identifies those RNAs with and without an in-frame CDS over-

lap to a reference but it also identifies RNAs without an ORF satisfying

user-specified criteria—for example, an ORF length580 codons and a

start methionine. Pinstripe overlap identifies transcripts with overlapping

in-frame CDSs at different tolerances, supporting identification of tran-

script isoforms, and characterize calculates the Kozak sequence strength,

genomic context and probability of the ORF occurring by chance

according to transcript length (refer Supplementary Text). Data from

external programs are easily combined with Pinstripe’s files using

Pinstripe join, a BED format-specific program for identifying related

data in different files, similar to a multiprocessor implementation of

UNIX sort and UNIX join. Removal of mRNAs and those RNAs

with uncertain coding potential reveals transcripts most likely to represent

bona fide ncRNAs. An example workflow is shown in Figure 3.

3 RESULTS

To demonstrate the efficacy of Pinstripe for annotating transcrip-
tomic data, we mapped non-redundant human pepFrags from

the PRIDE database (Vizcaı́no et al., 2009) against a composite
transcript library including de novo assembled transcriptomes

from the Illumina Body Atlas of 16 human tissues (IBA2),

ENCODE’s GENCODE gene annotations (comprehensive)
v10 (GCT10) and GenBank’s database of human mRNA

(Benson et al., 2004). The GENCODE and GenBank datasets
were included to provide coverage of transcripts from tissues not

included in the IBA2, an important consideration when deter-

mining whether a pepFrag maps to a single, or multiple tran-
scribed genomic positions.

3.1 Transcriptome assembly of the IBA2

The IBA2 is a collection of RNA sequencing experiments con-

sisting of 2.54 billion reads across 16 human tissues: adipose,
adrenal, breast, brain, colon, heart, kidney, liver, lung, lymph,

ovary, prostate, skeletal muscle, testes, thyroid and white blood

Fig. 1. Overview of the reverse peptide mapping methodology. (a) RNA

sequencing tags from heart tissue (red) are mapped to a reference genome.

(b) Mapped tags are assembled into a transcript. (c) pepFrags are mapped

to the same 198-codon ORF (RD3LP shown) using Pinstripe

mapPeptides. (d) Full ORF is identified and annotated using Pinstripe

buildProteins

Fig. 2. Identification of mRNA and ncRNA using experimental data

(Pinstripe mapPeptides, deDup and buildProteins), and by in-frame com-

parison to an annotation (Pinstripe annotate). Detailed flowcharts for

these applications are included in Supplementary Fig. S1
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cells (see Supplementary Text). We mapped the sequence reads

using Tophat (Trapnell et al., 2009) and assembled transcrip-

tomes for each tissue with Cufflinks (Trapnell et al., 2010)

guided by GENCODE v10, finding 59.5% of the genome was

transcribed across the aggregate of tissues, with an average of

39.4% transcribed in each individual tissue, varying from 31.7%

(white blood) to 48.2% (testis) (Supplementary Tables S1 and S2,

Supplementary Fig. S2). Our mapping of this dataset revealed

broadly similar results to those reported by Cabili et al. (2011)

who constructed transcriptomes from the same datasets in a

genome-wide study of lincRNAs (Cabili et al., 2011). However,

in our analysis, we report only proper pairs (paired end) or

aligned reads (single end) in our results leading to a lower map-

ping yield averaging 77.6% across both sets (Supplementary

Table S1).
Of the 28380 RefSeq-annotated protein-coding transcripts

expressed, 56.6% (16 052) were found in 14 or more of the

16 tissues, and 14.7% (4187) were present only in a single

tissue, the largest fraction (42.4%; 1775) of which were found

in testis.

3.2 Peptide mapping

We mapped 421466 non-redundant pepFrags derived from the

PRIDE database (Vizcaı́no et al., 2009) against the composite

transcriptome library using Pinstripe mapPeptides, successfully

positioning 290 104 pepFrags (no mismatch, deletion or inser-

tions), 255 825 of which mapped to a single genomic location

(allowing for up to three mismatches). A further 256 pepFrags

mapped to unpositioned contigs or haplotypes but were not used

in subsequent analyses.
The 131106 pepFrags that could not be positioned demon-

strate the unreliable nature of data from the PRIDE repository.

Although the differing quality of individual submissions makes

an aggregated assessment of the entire database impossible with-

out reanalysis of the original spectra, even an estimate based on

the number of pepFrags that can be positioned on the human

genome demonstrates that PRIDE data alone provides unreli-

able evidence of a protein’s existence. With a 31.1% chance that

any entry from the database does not map to the human genome

or transcriptome, even a superficial assessment requires an indi-

vidual ORF to be supported by three pepFrags for a 5% False

Discovery Rate (FDR) or four pepFrags to achieve 1% FDR.

As a result, even ORFs with multiple matching pepFrags can

only be considered to have a ‘line of evidence’ that an ORF

may be translated, requiring additional support from other in

silico analysis techniques such as conservation analysis, ORF

probability or functional predictions, or biological validation.
For our analysis, we aimed to determine whether there was

evidence of ORFs with pepFrag support and additional pre-

dictors of protein-coding potential, which remain unannotated

in GENCODE v10. To identify these ORFs, we used the

Pinstripe ORF-aware overlap program to identify 14 630

pepFrags with no in-frame overlap to a known GCT10 CDS

from the 255 825 uniquely mapping pepFrags. We then ran

buildProteins with only these 14 630 non-CDS coincident

GCT10 pepFrags revealing a set of 12471 unannotated ORFs.

We selected the most highly supported ORF from each locus in

terms of proteomic support and ORF length using Pinstripe

findBest, (default parameters) resulting in 5561 non-overlapping

CDS-annotated transcripts.
Pinstripe overlap revealed that 1130 of the 5561 CDSs contain

an in-frame overlap to a GCT10 transcript, 129 of which had

three or more mapping pepFrags. These ORFs arise from tran-

script isoforms of known genes that potentially encode novel

protein variants, many of which are larger than the annotated

product. For example, GIPC3 is a 312-amino acid protein

encoded from chromosome 19 in which a previously unanno-

tated splice site in the second last exon (PCR validation results

in Supplementary Fig. S3) changes the reading frame of the final

exon, extending the length of the ORF4400% to 1350 amino

acids (Fig. 4a) and incorporating six pepFrags. Although the

ORF extension partially matches the 584-amino acid Uniprot

record Q8N7K9, there is no independent GENCODE-annotated

transcript that would encode the ORF, and there are no histone

Fig. 3. Identification of different classes of novel CDSs using Pinstripe

overlap, and annotation using characterize, findBest and join. Setting par-

ameters to require a 100% match identifies annotated genes (Dataset 1);

lower settings represent potential novel transcript isoforms of annotated

genes (Datasets 2 and 3). Comparing mapped pepFrags with an annota-

tion identifies those not included in an existing CDS. These non-CDS

pepFrags can be compared with the novel isoforms to identify those with

novel pepFrag support (Dataset 3) and those without (Dataset 2). The –v

option of overlap reports non-overlapping CDSs (Dataset 4) representing

completely novel ORFs. Additional processing with characterize anno-

tates ORFs to include Kozak sequence, ORF probability and genomic

context. The results of other publicly available applications such as

PhyloCSF, IPRScan and Signalp can be directly appended to the anno-

tated BED file using Pinstripe join
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modifications indicative of the transcription initiation necessary

for an independent Q8N7K9 transcript.
Similarly, AAK1 exhibits novel splicing variants resulting in

omission of between one and five exons and a 9-kb region of the

30-UTR (Fig. 4b). The resultant novel transcript isoform (see

Supplementary Fig. S3 for PCR) substitutes up to 210 amino

acids of the canonical protein’s N-terminus with a completely

different 307 amino acids and is supported by 11 pepFrags

attributed to the 355-amino acid Uniprot protein Q6ZSR9,

which, similarly to Q8N7K9, has no evidence to support its tran-

scription except as the 30-UTR of AAK1.
The reverse peptide mapping technique can also be used to

provide experimental support for RefSeq genes whose status is

annotated as either ‘predicted’, ‘provisional’, ‘inferred’ or ‘un-

known’. We interrogated 2213 such RefSeq genes and intersected

these with the mapped PRIDE pepFrags, identifying 1100

(49.7%) ORFs having four or more pepFrags mapping to the

ORF. Nineteen of these were not annotated in GENCODE v11.

3.3 Potentially novel protein-coding genes

After excluding novel isoforms of known genes, we identified

4432 canonical ORFs containing at least one uniquely mapping

non-GCT10 pepFrag, of which 736 and 358 were supported by

three and four or more non-GCT10 pepFrags, respectively.
The majority (81.8%) of the unannotated canonical ORFs

identified (excluding isoforms) are5200 codons (Fig. 5), consist-

ent with larger ORFs being more easily identified by both la-

boratory and informatic techniques. Indeed, the impact of

minimum size criteria applied by in silico gene prediction projects

such as FANTOM (Carninci et al., 2005) (100 codons) and

H-Invitational (Imanishi et al., 2004) (80 codons) is evident in

the size distributions with a difference in the distribution of ORF

size where prediction algorithm cutoffs apply (Fig. 5).
As previously noted, matched pepFrags alone provide insuffi-

cient evidence for the identification of proteins. To identify

which of these ORFs most likely represent bona fide protein-

coding genes, and to demonstrate the Pinstripe join and charac-

terize programs, we integrated data from other analyses includ-

ing (i) protein-coding likelihood score across 29 mammal species

from PhyloCSF (Lin et al., 2011), (ii) the probability of the ORF

occurring by chance (Dinger et al., 2011), (iii) presence in the

pseudogenes.org pseudogene database (Karro et al., 2007),

(iv) signal peptide potential (Bendtsen et al., 2004), (v) similarity

to known human and non-human proteins (Camacho et al.,

2009; Zdobnov and Apweiler, 2001) and (vi) Kozak se-

quence strength (Kozak, 1987). This data are available in

Supplementary Table S5.
Each candidate was also annotated by its genomic context

relative to GCT10-annotated genes identifying: (i) genes anno-

tated as non-coding yet coincident with pepFrag mapping sites,

(ii) coding regions within the 30 or 50-UTR of known

protein-coding genes, (iii) genes with no overlap to known

Fig. 4. Novel isoforms encoding new proteins. (a) A novel splice junction

in the second last exon (royal blue) changes the reading frame in the last

exon of GIPC3, extending the RefSeq ORF (dark blue)4400% through

the UTR and incorporating the six pepFrags (light blue), predicting a

novel protein coding region. (b) Several novel splicing events (royal blue)

integrate a novel 30 exon and substituting different RefSeq exons (dark

blue) in AAK1. The novel 30 exon is supported by 11 pepFrags (light

blue). Expression data for brain (red) and testes (light green) shows differ-

ent configurations are dominant in different tissues

Fig. 5. Comparison of novel genes and RefSeq genes. Size distribution of

ORFs in RefSeq known genes (dashed) and the novel gene candidates

(solid). The distribution profile of the novel gene candidates clearly shows

the 80-codon and 100-codon detection limits imposed by previous protein

coding gene ORF detection methodologies
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transcripts (intergenic) and (iv) genes located within the introns

of other genes.

3.4 Novel ORFs

To provide examples of potential results of Pinstripe analysis, we

characterized selected potential proteins using bioinformatic and

experimental tools. A BLAST (Camacho et al., 2009) compari-

son of the 4431 non-GCT10 canonical ORFs (excluding iso-

forms) against the full UniProt (Uniprot Consortium, 2010)

non-redundant database of known and predicted proteins re-

vealed significant (E-value510�10) matches for 2604 (58.8%),

601 of which had UniProt annotations of ‘hypothetical’ or ‘pre-

dicted’. In two cases [PRAC2; (Olsson et al., 2003) and a

50-UTR-derived isoform of MYC (Choi et al., 2008)], literature

searches revealed candidates matching experimentally validated

proteins not recorded in UniProt. PhyloCSF scored 926 (20.9%)

of the ORFs as 10 or greater, a result indicating the product is

considered 10 times more likely to represent a coding RNA than

an ncRNA. Signal3p (Bendtsen et al., 2004) identified 226 of the

novel ORFs as having strongly predicted secretion signals,

whereas the Pinstripe specificator program annotated 940 as spe-

cific to a single tissue (see Supplementary Text). Tissue-specific

protein candidates are most frequently observed in testis (46.5%)

in accordance with previously reported enrichments for novel

and recently evolved genes in Drosophila testes (Begun et al.,

2007; Levine et al., 2006).
Analyzing the output identified a number of novel ORFs

for which translation was supported by multiple lines of evidence

including RD3-like protein (RD3L; Fig. 6a), a 198-amino acid

protein encoded at 14q32.33, which is conserved in tetrapods

and exhibits some similarity to RD3 (27% identity,

E-value¼ 4� 10�15), a protein expressed in the eye and asso-

ciated with retinal degeneration (Friedman et al., 2006). Within

the IBA2, RD3L is expressed in heart (the eye was not included

in IBA2) at relatively low levels, whereas RD3 is not observed at

all. A western blot was performed using antibodies raised against

RD3L revealing the bands at the expected size (Supplementary

Fig. S4). High expression of the protein in the mouse eye (vitre-

ous humor and retina) was confirmed by immunofluorescence

imaging (Supplementary Fig. S4). RD3L was not detected in

heart by either western blot or immunofluorescence, a result pos-

sibly attributable to the lower levels of protein expression in that

tissue. Subsequent to our analysis, a predicted protein sequence

for RD3L was added to Uniprot.
We also identified a transcript, which within its first intron

hosts the well-studied microRNAs let7e, miR-125A and

miR-99B. This transcript, which we term LET7EH (Let-7e

host), contains a 283-codon ORF (Fig. 6c), which is conserved

in mammals and encodes immunoglobulin-like and transmem-

brane domains. This ORF was revealed by the identification of a

previously unrecognized 50 exon of NCRNA00085, which con-

tains a canonical start codon with a strong Kozak sequence, and

is supported by H3K4me3 peaks signaling transcription initi-

ation. The novel splice junction that encompasses the miRNAs

was confirmed by PCR (Supplementary Fig. S3).
Our analysis revealed previously unannotated putative protein

products larger than 600 amino acids. This includes a protein

sequence with similarity (55% by BLASTP) to CROCC, a

structural component of the ciliary rootlet, which contributes

to centrosome cohesion before mitosis (Bahe et al., 2005), that

we term CROCC2 (Fig. 6b). CROCC2 encodes a 1480-amino

acid putative protein from a large conserved ORF adjacent to

SNED1. Orthologs of CROCC2 are present in mammals and

amphibians, with both CROCC2 and SNED1 remaining adja-

cent in mouse. Similarly, we identified another transcript

expressed exclusively in testes that is predicted to encode a

638-amino acid protein with a helix–loop–helix DNA-binding

domain and HMG-box domain that is conserved in mammals.

The putative protein, which we term HMGDC (HMG domain

containing, Fig. 6d), incorporates the predicted and unreviewed

Uniprot entry C9JSJ3_HUMAN, adding two additional exons

that form the HMG-box domain.

Our Pinstripe analysis highlighted possible examples of under-

appreciated proteome complexity. For example, we identified a

transcript that overlaps with the protein-coding gene, FIP1L1,

that introduces a previously unknown ORF that is supported by

four pepFrags. The putative protein encoded by this alternate

reading frame, which we term FIP1L1ARF (F1P1L1 alternate

reading frame), is also predicted to contain a probable sig-

nal peptide (D-score¼ 0.908, P¼ 0.99) and a neuroendocrine

domain. Although such examples of multiple proteins originating

from different ORFs are rare with only a small number previ-

ously reported in mammals (Clark et al., 2007; Nekrutenko et al.,

2005), recent studies suggest this may be a much more common

phenomenon (Ingolia et al., 2011).

3.5 Non-coding, coding or dual function RNA

We examined 5325 transcripts (including isoforms) from the set

of RefSeq-annotated genes with no annotated CDS. Intersecting

these putatively non-coding transcripts with our uniquely map-

ping pepFrags identified 785 (14.7%) genes with pepFrags map-

ping within a canonical ORF, of which 341 had multiple

pepFrag support.
Although this analysis identifies those genes that may be trans-

lated, the analysis of candidates without a CDS includes, in the

majority, genes whose classification as non-coding is attributable

solely to a lack of evidence supporting translation. To classify

genes with demonstrated or purported non-coding function, we

analyzed 99 manually curated candidates from lncRNAdb

(Amaral et al., 2011) revealing that 10 of these non-coding genes

H19,HAR1A,MALAT1, TUG1, MEG3, HOTTIP, LOC285194,

ST7OT,WT1-as andSOX2OT have isoforms with uniquelymap-

ping pepFrags contained within canonical ORFs, although only

H19 and H19AS had three or more pepFrags, suggesting the

remainder are most likely false positives.
We selected four of the ncRNAs with pepFrag support, of

which two were well supported (H19 and an antisense transcript

to H19 and H19AS) and two poorly supported (MALAT1 and

TUG1), and created antibodies against the putative proteins. The

best supported of these was H19 with a large ORF (298 codons)

matching seven uniquely mapping pepFrags (Supplementary

Fig. S6). H19 was the first long regulatory non-coding RNA

described in mammals, classified as non-coding because of the

absence of a detectable translated protein in mouse, along with

poor ORF conservation between mouse and human compared

with high overall DNA sequence identity (Brannan et al., 1990).
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The RNA is thought to be bifunctional, acting as both a miRNA

and lncRNA (Smits et al., 2008).
Western blots revealed no bands at the expected size for

MALAT1, TUG1 orH19AS, but the predicted�26-kDa product

for H19 was identified in fetal liver, K562 cells and testes

(Supplementary Fig. S5a) and appears to localize to the cyto-

plasm of T47D breast cancer cells (Supplementary Fig. S5b). As

there is only limited evidence for H19 action as a regulatory

lncRNA (Runge et al., 2000; Zhao et al., 2010), its translation

suggests H19 is dual functional but possibly as a miRNA and

mRNA, rather than lncRNA and miRNA. Although we did not

successfully identify any of the other three candidates, H19AS

has subsequently been identified by others as encoding the pro-

tein HOTS (Onyango and Feinberg, 2011).
Although the lack of confirmation for MALAT1 and TUG1

is unsurprising given the lack of quality controls on the PRIDE

peptide database, and only single pepFrag support, the protein-

coding evidence of H19 and HOTS supports the hypothesis

that the binary delineation of long RNA transcripts as either

ncRNA or mRNA is an oversimplification, and that genes

may exhibit a range of protein-coding and non-coding function-

ality as either small ncRNAs, long ncRNAs, mRNAs or a com-

bination thereof (Dinger et al., 2011). On the other hand, the vast

majority of spliced transcripts from the IBA2 show no evidence

of translation after integrating current transcriptomic and prote-

omic datasets. A total of 44843 loci were composed only of tran-

scripts that do not contain pepFrags, compared with 34 803 loci

with at least one transcript containing one or more pepFrags.

This result is consistent with recent datasets produced by

GENCODE (Becker, 2011).

4 DISCUSSION

Differentiating between ncRNA and mRNA is far from trivial,

with traditional strategies relying on characteristics or features of

known mRNAs such as codon conservation, ORF length or

homology. Such strategies are effective at identifying mRNA

that are well conserved, contain large canonical ORFs, are simi-

lar to known mRNA or encode known protein domains, but

less reliable for detecting small poorly conserved proteins

with specific non-redundant function. As a supplement to such

approaches, Pinstripe provides a suite of tools designed to inte-

grate and aggregate large sets of proteomic and transcriptomic

experimental data, providing not only new tools for the identifi-

cation of RNA potentially encoding proteins but also for

Fig. 6. Novel protein coding genes. (a) RD3L encodes a 198-amino acid protein with some similarity to RD3. (b) CROCC2 encodes a 1480-amino

acid protein and is supported by 40 pepFrags. Orthologs are identifiable in mammals and amphibians. (c) LET7EH encodes a 283-amino acid protein

and is the primary transcript for miR-LET7E, miR-125A and miR-99B. It is conserved in mammals and contains a immunoglobulin-like and trans-

membrane domain. The start of transcription is supported by H3K4me3 modifications indicative of initiation. (d) HMGDC encodes a 638-amino acid

testis-specific protein with helix–loop–helix DNA binding and HMG-box domains. The protein is conserved in mammals and extends a predicted

Ensembl gene
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integrating data from in silico genomic comparisons by existing

applications such as PhyloCSF, SignalP and IPRScan.

There is growing evidence that large numbers of RNAs with-

out well-conserved long canonical ORFs are actually translated.

For example, the Humanin genes encode short ORFs (24–30

amino acids) and are found only in humans (Hashimoto et al.,

2001); translation of upstream ORFs is a demonstrated regula-

tory mechanism (Baek et al., 2009; Wen et al., 2009), and

non-canonical start sites are common in mouse embryonic

stem cells (Ingolia et al., 2011). As a result, algorithms dependent

on ORF length, canonical start codons, conservation or syn-

onymous/non-synonymous substitution rates will not always be

sufficient to identify and differentiate between coding and

non-coding genes. This is especially true in the case of short

proteins, which are challenging to identify as ORFs 5100

codons regularly occur by chance (Dinger et al., 2008). As

other methods including conservation analysis and dinucleotide

content are only predictive and have shortcomings, the integra-

tion of experimental evidence supporting translation is often

required for confident annotation of novel proteins.

Pinstripe is designed to allow users to integrate any available

experimental data in the form of gene annotations, peptide iden-

tifications or external analyses using applications such as

PhyloCSF (Lin et al., 2011) or SignalP (Bendtsen et al., 2004).

Although Pinstripe is entirely dependent on the integrity of the

pepFrags, annotations and transcriptomes used for analysis,

users can adjust the thresholds for identification to improve

the probability of correct classification. The appropriate thresh-

olds will largely depend on the quality of the data, notably the

accuracy of pepFrag identifications. Most commonly, the pro-

cess of correctly identifying pepFrags from spectra relies on the

statistically robust concordance of the queried peptide fragment

with predicted spectra from a target database. Although using

pepFrags that have already been sequenced dramatically reduces

the computational task, the fidelity of the original identification

is lost. This can be addressed by pre-screening of spectra selecting

only those with a set level of confidence, using peptides from

quality-controlled sources such as the PeptideAtlas (Deutsch

et al., 2008), or at the protein identification stage by requiring

an increased number of coincident pepFrags, or other supporting

information such as conservation or functional prediction to

identify coding genes.
Our analysis of the IBA2 data demonstrates that application

of Pinstripe’s programs accurately maps pepFrags and integrates

them with transcripts to identify supported ORFs and identifies

RNA with little or no protein-coding capacity. Although not all

ORFs containing mapped pepFrags represent genuine

protein-coding genes, additional lines of evidence including

signal peptide potential, positive PhyloCSF scores and multiple

pepFrags identify potential protein-coding genes, including the

validated protein RD3LP, variants of GIPC3 and AAK1 and a

protein translated from the putative ncRNA H19. Pinstripe

allows researchers to identify transcripts with little or no

protein-coding potential, and which have no pepFrags mapping

to putative ORFs, regardless of size. This is especially important,

as knowledge of whether a given transcript is coding or

non-coding will guide the design of any subsequent experimental

work to characterize its function.

Pinstripe is freely available for download at pinstripe.

matticklab.com.
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