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Opinion
Glossary

Alternative splicing: a regulatory mechanism by which multiple protein-coding

RNA isoforms of the same gene are generated by variations in exon usage.

This process can lead to increased genetic diversity by increasing the products

derived from a single locus.

Alu element: Alu elements are repetitive �300 bp DNA elements that invaded

the primate lineage early in its development. A subset of them are still active

and capable of inserting into new genomic locations by relying on the LINE

retrotransposon machinery. An Alu element harbors a single recognition site

for the restriction enzyme AluI, from which these elements have obtained their

name. Alus are derived from the 7SL RNA gene and are present only in the

primate lineage.

Chromatin: the nuclear complex of DNA, RNA, and protein (histones) that

condense to form the chromosome. Chromatin is a multifaceted complex

whose roles include facilitating DNA packaging to allow cell division and the

regulation of gene expression.

Epigenetic processes: processes that create a chromosomal state change, and

thereby frequently alter gene expression, without altering the underlying DNA

sequence. These processes include DNA methylation, histone modification,

and RNA editing. The effects of many epigenetic processes are heritable.

Hard-wired developmental processes: neurological and behavioral processes

that are innate (i.e., instinctual), and therefore, by definition, not learned. In

healthy humans these processes include pain avoidance and neurological

control of heartbeat and respiration. These processes are critical to develop-

ment, and disturbances (genetic or otherwise) may result in non-viability of the

organism.

Non-coding RNA: non-coding RNAs (ncRNAs) are typically defined as RNA

transcripts that lack protein-coding capacity. They can be broadly divided into

small (<200 bp) and long ncRNAs (>200 bp). Previously thought to be ‘junk’,

ncRNAs have now been shown to be involved in nearly all fundamental

biological pathways.

Proteome: the complete catalogue of proteins that are encoded by a given

organism’s genome. The proteome is often difficult to completely define, given

that many products are produced in specific cellular and environmental

contexts.

RNA editing: a process by which the nucleotide sequence of an RNA molecule

is post-transcriptionally modified. In humans, there are two major forms of

RNA editing, both involving base deamination (removal of an amino group):

cytidine to uridine modifications are carried out by the APOBEC enzymes,

while adenosine to inosine changes are catalyzed by the ADAR enzymes.

RNA transcription: is the method by which an RNA copy of a DNA sequence is

synthesized, either to be utilized as a protein-coding intermediate or as a

regulatory non protein-coding RNA.

Soft-wired developmental processes: neurological and behavioral processes

that are learned. These processes are adaptable, or ‘plastic’, to allow

experience-dependent development. Such behaviors include the acquisition

of fine motor skills associated with artistry.

Transposition (retrotransposition): transfer of a segment of DNA from one

chromosomal location to another. In humans, transposition is most frequently

mediated by endogenous retroviral (retrotransposition) or DNA transposon
The evolution of the human brain has resulted in the
emergence of higher-order cognitive abilities, such as
reasoning, planning and social awareness. Although
there has been a concomitant increase in brain size
and complexity, and component diversification, we ar-
gue that RNA regulation of epigenetic processes, RNA
editing, and the controlled mobilization of transposable
elements have provided the major substrates for cogni-
tive advance. We also suggest that these expanded
capacities and flexibilities have led to the collateral
emergence of psychiatric fragilities and conditions.

The path to cognition
Since the divergence of the human and chimpanzee
lineages approximately 5 million years ago, the human
brain has tripled in size, largely scaling with respect to
numbers of neurons and a roughly equal number of glia [1].
Cortical expansion has involved a number of permitting
mechanisms including increased cranial capacity (e.g.,
through genetic alterations [2]), human-specific metabolic
changes [3], and an increased number of neuronal cells,
possibly through an enhanced capability of progenitor cell
divisions in the outer subventricular zone (OSVZ; [4]).
Humans are not, however, the only species to possess an
enlarged OSVZ [5] and the regulation of this process, if
different from other species, is not known. Interestingly,
the human prefrontal cortex has disproportionately in-
creased in size and it is this area of the brain that is
associated with many of the higher-order cognitive abili-
ties [6,7], which suggests region- and cell-specific advances
contributing to cognitive evolution.

Cognitive evolution has likely required not only struc-
tural changes to the brain driven by altered developmental
programs, but also the evolution of novel mechanisms to
enable neural circuitry to be structured and re-wired by
experience. This suggests that, in addition to a larger brain
with greater complexity and capacity, a concomitant ex-
pansion of novel functional components and regulatory
systems was necessary to successfully execute these adap-
tive functions. Here we suggest that the RNA-directed
epigenetic mechanisms (see Glossary) that evolved to en-
able human development – the precise, relatively hard-
wired placement of �100 trillion cells in different muscles,
bones and organs – have been expanded and rendered
plastic in the human brain by the superimposition of
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controlled RNA editing and transposon mobilization
(Figure 1). We also suggest that this expanded and mal-
leable regulatory architecture is likely perturbed in human
neuropsychiatric disorders.
molecular machinery. Nearly 50% of the human genome is derived from

transposed repetitive elements.
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Figure 1. Potential mechanisms for increasing functional genomic complexity. The human brain may have evolved rapidly through a number of mechanisms, including

protein innovations, altered epigenetic programs, expansion of regulatory RNAs that direct chromatin modifications, and retrotransposition. Especially relevant for the

evolution of higher-order cognition is the dramatic increase in RNA editing of primate-specific Alu sequences and the human-specific isoforms of APOBEC3 that mediate

retrotransposition during post-developmental cellular responses.
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The proteome: evolving through adaptation
Analysis of the human genome sequence indicates that,
contrary to expectations, the number and repertoire of
encoded proteins are similar to a wide range of other
animals [8,9], although there are significant differences
that undoubtedly account for some of the observed varia-
tion between species. New protein-coding genes can evolve
through duplication, loss, and rearrangement processes
[10] and, as studies investigating orphan genes indicate,
de novo from non-coding sequences [11]. In the case of gene
loss, particular genes may have lost their original function
either due to a lack of necessity, such as various olfactory-
related genes, or to allow relaxation of limiting functions,
such as MYH16 [12], which is involved in cranial expan-
sion.

It is perhaps unsurprising that many protein-coding
genes and promoter regions that have undergone recent
and accelerated positive selection are involved in neural
function [12–14]. For example, accelerated regions include
those that have been shown to influence brain size (e.g.,
microcephaly-related genes [12]), neural development (e.g.,
AHI1 and SHH [12]) and language (e.g., FOXP2 [12]).
Others are involved in enigmatic forms of RNA editing
[15]. Gene duplications have led to, among other things,
functional diversification of key components of the synaptic
receptor and signal transmission complexes that are clearly
related to cognitive advances [16]. Furthermore, copy num-
ber variations (CNVs) in humans may have contributed to
accelerated evolution [17]: compared with other primates,
CNVs are biased toward genes of neuronal function and may
account for subtle gene expression changes resulting in
human cognitive disturbances such as autism [18,19].

Alternative splicing is a powerful means of generating
multifunctional proteins and has been suggested to be a
significant contributor to functional neuronal changes in
humans as compared to other primates [20]. Although this
could account for an increase in functional complexity, and
no doubt contributes, it requires a concomitant increase in
498
regulatory control. Moreover, as we will argue, these pro-
cesses are ultimately controlled by epigenetic mechanisms
that are themselves controlled by non-coding RNA.

The programming of developmental complexity: non-
coding RNA (r)evolution and regulation of epigenetic
processes
In contrast to the relatively modest changes in the prote-
ome through evolution, the amount of non-protein-coding
DNA has increased dramatically and accounts for >98% of
the human genome sequence [21]. The expansion of the
non-coding genome in mammals, and particularly humans,
may have been the consequence of the expansion of a
regulatory RNA network required not simply for placental
reproduction and development but also for brain function,
processes that may themselves be closely linked. Although
specific examples of the involvement of non-coding RNA in
the recent increases in size and complexity of the human
brain have been demonstrated [22,23], the full extent of the
importance of non-coding RNA in higher-order cognition
may not be fully appreciated.

It is now clear that the vast majority of the human
genome is dynamically transcribed [24,25], especially in
the brain [26,27], to produce a myriad of small and long
non-coding RNAs (lncRNAs; >200 bp) that appear to con-
stitute previously hidden layers of gene regulation ([28–
30]; Figure 2). Moreover, it has been shown that a major
function of lncRNAs, and perhaps some subclasses of small
RNAs, is to direct relatively generic chromatin-modifying
complexes to their sites of action [31,32], thereby control-
ling epigenetic processes that regulate chromatin architec-
ture and the epigenetic trajectories that supervise human
differentiation and development [33,34].

Epigenetic processes are, perhaps not surprisingly,
central not only to development but also to learning and
memory [35]. lncRNAs form a crucial layer of regulation in
neuronal function, including learning and memory [36].
lncRNAs are widely expressed in dynamic temporal and
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Figure 2. Non-coding RNAs are involved in diverse pathways that affect neuronal function. In response to neuronal activation, coding and non-coding RNAs are transcribed

and potentially modified post-transcriptionally through mechanisms such as RNA editing. This early RNA editing step is likely crucial in determining sequence-dependent

RNA guidance. Following RNA editing, non-coding RNAs direct multiple functions to allow cellular response. (a) Long non-coding RNA (lncRNA) guide generic epigenetic

complexes to their sites of activity [91]. (b) Alternative splicing is an essential response following neuronal activation and is disrupted in cognitive disorders [82]. lncRNAs

are emerging as key factors through their ability to sequester splicing factors thereby regulating their levels at active sites [81]. (c) Insertion rates of Alu elements into genes

of neuronal function have increased in the human lineage [76] and may prove to have essential functions in cognition through their ability to mobilize in the human brain

[90] through an LINE-1 (L1)-dependent mechanism [63]. Step 1: L1 and Alu elements are transcribed and exported to the cytoplasm. Step 2: L1-derived proteins ORF1 and

ORF2 are translated into the L1 enzyme complex. Steps 3–5: This complex then combines with the Alu RNA and re-enters the nucleus to perform reverse transcription and

site-specific integration. (d) In addition to lncRNAs discussed above, a wide range of non-coding RNAs has been demonstrated to regulate gene expression such as

enhancer RNA [92], antisense RNA [93], various small RNAs [40–42] and RNA-DNA triplexes [94].
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spatial patterns in the brain [26] and are involved during
neuronal cell differentiation and fate determination [37].
Accumulating evidence of the extensive range of regula-
tory RNA mechanisms coupled with the scaling of non-
coding sequence and species complexity [30] provides a
compelling argument for non-coding RNA as the basis
for the evolution of higher-order cognition. Studies
investigating the underlying genetic basis responsible
for human evolution since branching from the chimpanzee
have shown that non-coding RNA is a major target for
these changes through sequence deletions [22] and accel-
erated nucleotide substitution rates [38].

Small non-coding RNAs also regulate gene expression
through a number of different mechanisms. Various clas-
ses of small RNAs, such as microRNAs [39,40], small
interfering RNAs [40], piwi-interacting RNAs [40], and
small nucleolar RNAs [41], have all been shown to regulate
cell differentiation and function. More recently, new clas-
ses of small RNA have been described [42], some of which
may regulate nucleosome positioning [43,44], thus poten-
tially directing alternative splicing [45], and it is reason-
able to assume that there may be other, yet to be identified,
classes of small RNA with significant functions in mam-
malian cells. Small regulatory RNAs have been implicated
in normal and pathological brain function [46,47] and it
seems likely that they will be shown to have wider and
essential roles in neural processes.

These data strongly suggest that classes of non-coding
RNAs are temporally and spatially regulated to control
both feedback (‘hard-wired’) processes during development
and feed-forward (‘soft-wired’) processes during post-devel-
opmental cellular function.

Evolution of RNA plasticity in the brain
As discussed above, non-coding RNA-based regulatory net-
works may underpin epigenetic trajectories that control
development and thereby ensure the cogent assembly of a
functional multicellular organism. It also appears that
499
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evolution has superimposed plasticity on these processes
to provide the epigenetic flexibility required for learning
and memory, primarily by innovation and expansion of
enzymes involved in nucleotide editing, which is emerging
as the key basis of molecular plasticity in the primate brain
[31,48].

The major form of RNA editing is the conversion of
adenosine to inosine (A>I) by base deamination. There
are three enzymes (ADARs; adenosine deaminases that act
on RNA) involved, the third of which (ADAR3) is verte-
brate-specific and brain-enriched [49], although little is
known about its RNA targets or its role in cognitive
function. Single nucleotide changes and consequent codon
changes in particular neurotransmitter receptors through
the process of RNA editing, ostensibly to change their
structure-function relationships and the electrophysiolog-
ical properties of the synapse, were demonstrated almost
two decades ago [50,51]. However a number of recent
papers comparing large-scale cDNA libraries with genomic
DNA have indicated that A>I editing is far more wide-
spread than previously suspected, and occurs in thousands
of transcripts [52–55]. Most of the edited sites occur in non-
coding regions, implying that editing is not only modifying
the structure-function properties of neuronal proteins, but
also RNA-based regulatory circuits, and therefore poten-
tially epigenetic processes.

There is a massive increase (�35�) in the intensity of
RNA editing in humans compared to mouse [54]. Most
(>90%) of this editing occurs in primate-specific Alu
sequences [52–55], which invaded the primate lineage in
three successive waves, and now comprise �1.2 million
copies that collectively occupy �10.5% of our genome
[8,56]. Moreover, the amount of editing has also increased
during primate evolution, correlating with new human-
specific Alu insertions enriched in genes of neuronal func-
tion [57], strongly suggesting that the expansion of RNA
editing in the human lineage was central to the molecular
events underpinning increased cognitive capacity.

Evolution of genomic plasticity in the brain
A second editing mechanism deaminates cytosine to pro-
duce uracil, and is carried out by vertebrate-specific
enzymes called APOBECs, which may act on RNA or
DNA or both. There are 5 families of APOBECs, two of
which (APOBEC 1 and 3) are mammal-specific [58,59]. The
best characterized is AID, which is involved in somatic
rearrangements and hypermutation of immunoglobulins
in the immune system [58]. Interestingly, there are many
parallels between the nervous and adaptive immune sys-
tems, including the presence of immunoglobulin domains
in many neuronal cell surface receptors [60,61], indicating
that both may use similar mechanisms to tune cell receptor
interactions. Moreover, the existence of many unusual
DNA repair enzymes, many of which appear to be linked
to reverse transcriptase activity, suggests that RNA-di-
rected DNA recoding may play a role in long-term memory
formation [48]. Intriguingly, APOBECs have also been
shown to deaminate methylated cytosine to thymine, a
mechanism important in developmental processes [62],
suggesting that cytosine methylation and conversion
to thymine by deamination may not simply occur in
500
evolutionary time, but be a pre-programmed aspect of real
time human developmental biology.

The APOBEC3 family appears to be especially impor-
tant in human evolution. It originated after the divergence
of the marsupial and placental lineages and has greatly
expanded in the primate lineage, with very strong signa-
tures of positive selection [15,58]. At least some appear to
be involved in the control of exogenous and endogenous
retrotransposition [63,64].

Sequences derived from transposable elements encom-
pass almost half of the human genome. Retrotransposons
are pervasively transcribed and may be of critical impor-
tance in genome-wide gene regulation [65]. Although most
are rendered immobile through various mechanisms
[66,67], active mobile elements nevertheless remain wide-
spread in the human genome [68]. This activity has been
traditionally regarded as a problem, which enzymes such
as APOBECs have evolved to control.

However, recent evidence suggests that this system may
constitute a strategy for generating somatic mosaicism in
neuronal cells, to generate another level of complexity in
the brain. ABOBEC-mediated editing is involved in the
modification and likely domestication of retrotransposons
[69]. Active retrotransposition has been observed in neu-
ronal precursor cells in culture [70] and has very recently
been shown to occur in the human brain [71]. Retrotran-
sposition is in part controlled by methyl-CpG-binding pro-
tein 2 (MeCP2; [66]), a protein involved in widespread
methylation and is the causative genetic defect in Rett
syndrome [72]. These results indicate that epigenetic reg-
ulatory systems are involved in retrotransposition and
that non-coding RNA may also underpin retrotransposi-
tion in the brain, given that non-coding RNA directs ge-
neric epigenetic machinery. These considerations lead to
the prediction that each neuron will have a unique geno-
mic, epigenomic, and transcriptomic signature depending
on intrinsic and extrinsic experiences, and that all will
modulated by non-coding RNA-mediated plasticity. This
supposition can be tested by exposing individual groups of
neurons to various stimuli prior to performing single cell
sequencing and determining whether unique experiences
are reflected in a common genomic response.

There is mounting evidence that transposition events
cause a significant number of heritable disorders [73], but
these are more likely to be detected than non-pathological,
but nonetheless significant, events. Positive events are
likely to be widespread and could result in positive out-
comes, such as activation and strengthening of a system.
For example, retrotransposition events were detected in
the mouse brain upon voluntary exercise [74], suggesting
that these events may occur as a specific response to a
positive stimulus as opposed to being solely random and
ultimately pathogenic. Retrotransposons have undoubted-
ly shaped our genome and continue to do so through active
elements, mainly Alu sequences [75], that have markedly
increased in insertion rate in the human genome since the
split from chimpanzees [76] (Box 1).

New flexibility, new fragility
Although the increase in mammalian cognitive ability has
provided unique mechanisms to evolve exceptional skills,



Box 1. What makes human brains unique?

To determine how humans differ cognitively from all other primates,

including chimpanzees (our closest relatives), we need to establish

key human-specific variation. We hypothesize that four mechanisms

have combined to afford humans the ability to respond to extrinsic

stimuli in a heightened and multifarious manner (Figure I):

(i) There are thousands of unique Alu insertions in genes of

neuronal function present in the human genome [57] that may

result in enhanced brain functionality.

(ii) RNA editing has increased dramatically in humans, especially

in the brain and predominantly in Alu elements [57]

amplifying the potential repertoire of human-specific Alu

transcripts.

(iii) Recent studies have suggested that active retrotransposition

occurs in the human neurons [70] and likely in the brain [71],

displaying individual-specific patterns most likely reflecting

responses to individual-specific experiences.

(iv) Examples of both gain [23] and loss [22] of neural human-specific

functional non-coding RNAs have been demonstrated although

the true extent of human-specific non-coding transcripts has yet

to be uncovered.
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Figure I. Four mechanisms that may have combined to make human brains unique.
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such as reasoning and awareness, it would also seem likely
that a relatively new and increasingly complex regulatory
system would have weaknesses and be vulnerable to
stressors. Drug abuse, for example, is an example of an
environmental stressor that exposes cognitive vulnerabili-
ty, especially as epigenetic mechanisms have been demon-
strated to be dysregulated in the brain following chronic
drug use [77]. However, external pressures may not be the
entire reason for exposing fragilities. More simplistically,
primates and especially humans may currently be in a
stage of evolution where the advancement of cognitive
processing, and related pathways, is the primary focus.
This could underlie psychiatric disorders, such as autism
spectrum disorder (ASD) that have a broad range of genetic
variation and cognitive phenotypes. Indeed, ASD arises
from an extensive suite of genomic variants [78], but may
encompass common pathways [79], providing mechanistic
insight to the manner in which cognitive evolution is
taking place.

Proteins form the core of basic cellular functioning, but
we suggest that it has been the increased sophistication,
complexity, and plasticity of the regulatory RNA superstruc-
ture that has been at the heart of human cognitive advance.
By contrast, we suggest that the trade-off has been an
increased fragility and spectrum of neural disorders, includ-
ing schizophrenia, anxiety, depression, and ASD, induced by
genetic defects, environmental stressors, or a combination
thereof. For example, lncRNAs are involved in regulating
widespread alternative splicing [80,81] and this process
is commonly dysregulated in psychiatric disorders [82].
Furthermore, microRNAs have been linked with anxiety
pathways [83] and psychiatric disorders [84–86], and RNA
editing has recently been linked with psychiatric disorders
[87] and is an efficient method of altering genome-wide
function rapidly upon external stimuli.

Future directions
RNA-mediated mechanisms are attractive candidates for
underpinning the rapidly evolving plastic brain. However,
the considerations above make several predictions and
suggest several important directions for future research
that only upon testing will ultimately reveal the true
extent of the role of regulatory RNA in cognitive adaptation
and function. In summary, it is known that cognitive
processes are dependent on epigenetic mechanisms. Evi-
dence is accumulating that the site-specificity of epigenetic
modifications is controlled by regulatory RNAs that are, in
turn, subject to context-dependent A>I editing, which
occurs at high levels in the brain and increases in intensity
with cognitive evolution, reaching its zenith in primates.
We conclude that RNA editing is the primary source of the
molecular plasticity that underpins the epigenomic and
ultimately network plasticity in the brain. It has been
shown in a Drosophila model that RNA editing is a plausi-
ble mechanism for inter-individual experience-dependent
cognitive differences [88], but investigations in higher
species are required for any conclusions to be drawn. We
predict that RNA editing is involved in cognitive processes
and this can be explored in mammalian systems using
mouse genetics. ADAR3 may have a critical role in brain
501
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cognition, but formal testing of cognitive abilities in
ADAR3 knockout mice has not yet been completed. Simi-
larly, ADAR1 and ADAR2 knockout mice are lethal, but the
use of cell- and region-specific conditional knockout mice
could reveal their involvement in cognition. Moreover, if
cognitive defects can be detected in mice lacking ADAR1, 2
and/or 3, the nature of the defect and the genetic back-
ground in which it is observed should enable identification
of the region(s) most critically affected, allowing focused
deep sequencing analyses to compare the nature of the
editing changes observed in the transcriptome under con-
ditions of ADAR deficiency in the presence or absence of the
relevant cognitive stimulus or task.

The other type of editing (C>U) also shows a strong link
with cognitive evolution. The enzymes involved are verte-
brate-specific, with two new families emerging in mam-
mals, one of which (APOBEC3) expands enormously in
primates under positive selection. These enzymes are more
enigmatic and it is uncertain whether they act on RNA
and/or DNA, but they are involved in complex genomic
rearrangements and, in the case of APOBEC3, in the
control of exogenous and endogenous retrotransposition.
Our interpretation is that these processes have not evolved
simply to protect against retrotransposition, but rather to
domesticate it as part of neuronal plasticity [31]. This
notion is supported by the demonstrations of active retro-
transposition in neuronal cells in culture [89] and in hu-
man brains in vivo [90], a process that is in part regulated
by MeCP2, the protein whose function is impaired in Rett
syndrome [66]. This leads to the prediction that interfer-
ence with APOBEC activity, especially APOBEC3s, will
impair cognitive function. Testing this prediction is more
difficult, as mice only have one orthologue of APOBEC3,
but could provide a lead in the right direction.

Concluding remarks
We regard the observations and suggestions made here as
the tip of a very large iceberg, as human-specific neural
disorders will most likely include evolutionarily recent, or
enhanced versions of more established, mechanisms (see
also Box 2). Only by understanding the molecular basis of
these newly developed systems will we be able to accurate-
ly diagnose and appropriately treat patients with distur-
bances in specifically affected neural pathways. We predict
that a focus on RNA regulatory systems and the transcrip-
tomic and genomic plasticity that underpin brain function
will significantly advance our understanding of neuropsy-
chiatric disorders.
Box 2. Outstanding questions

� Are human-specific Alu element-derived transcripts involved in

cognition?

� Does Alu retrotransposition occur in the human brain in response

to neuronal activity and, if so, does it target specific genomic

regions?

� Does ADAR3 play a role in human cognition?

� Does dysregulation of RNA editing and retrotransposition, during

development or in response to extrinsic stimuli, underlie aspects

of psychiatric illness?
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