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Pancreatic cancer genomes reveal
aberrations in axon guidance pathway genes
A list of authors and their affiliations appears at the end of the paper

Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy
number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n 5 142) of early (stage I and II)
sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial
heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated
genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover
novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage
repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro
functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in
carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling
pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also
identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon
guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated
somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement
of axon guidance genes in pancreatic carcinogenesis.

Pancreatic cancer is the fourth leading cause of cancer death, with an
overall 5-year survival rate of ,5%, statistics that have not changed in
almost 50 years1. Advances in neoadjuvant and adjuvant chemothera-
peutic regimens have resulted in some improvement in outcome, but
pancreatectomy remains the single most effective treatment modality
for pancreatic cancer, and offers the only potential for cure. Only 20% of
patients present with localized, non-metastatic disease which is suitable
for resection2. Those who undergo resection and receive adjuvant
therapy have a median survival of 12–22 months and a 5-year survival
of 20–25%3. Existing systemic therapies are only modestly effective and
the median survival for patients with metastatic disease remains
6 months. Genomic characterization of pancreatic ductal adenocarci-
noma (PDAC), which accounts for over 90% of pancreatic cancer, has
so far focused on targeted polymerase chain reaction (PCR)-based
exome sequencing of primary and metastatic lesions propagated as
xenografts or cell lines4. A deeper understanding of the underlying
molecular pathophysiology of the clinical disease is needed to advance
the development of effective therapeutic and early detection strategies.

Clinical cohort
A cohort of 142 consecutive patients with primary operable, untreated
PDAC who underwent pancreatectomy with curative intent (pre-
operative clinical stages I and II) were recruited, and consent was
obtained for genomic sequencing through the Australian Pancreatic
Cancer Genome Initiative (APGI), the Baylor College of Medicine
Pancreatic Cancer Genome Project and the Ontario Institute for
Cancer Research Pancreatic Cancer Genome Study (ABO collabora-
tion) between June 2005 and June 2011 as part of the International
Cancer Genome Consortium (ICGC)5. Detailed clinico-pathological
characteristics of the cohort demonstrated features typical of resected
PDAC with regard to tumour size, grade, lymph node metastasis
and survival when compared to multiple retrospectively acquired
cohorts6–8, defining the accrued population as representative of
the clinical disease in the community (Supplementary Table 1 and
Supplementary Fig. 1).

Cellularity and mutation detection
A major challenge in genomic sequencing is the low malignant epithe-
lial cell content of many cancers, which can adversely impact on the
sensitivity of mutation detection. Most sequencing studies so far have
used samples with .70% tumour cellularity, or cell lines/xenografts4,9.
To implement genomic sequencing approaches in clinical practice, it is
imperative to efficiently and accurately detect actionable mutations in
diagnostic clinical samples. We devised methodologies to overcome
the challenges associated with extensive desmoplastic stroma that is
characteristic of the majority of PDAC, and these strategies facilitated
the discovery of novel molecular mechanisms in the pathophysiology
of this disease. The cellularity of each primary sample was estimated
through pathological review, deep amplicon-based sequencing of
exons 2 and 3 of KRAS (average depth of 1,0003), and single nucleo-
tide polymorphism (SNP) array-based cellularity estimates using a
novel algorithm (qpure)10. KRAS mutations were identified in 93%
of 142 cases and tumour cellularity ranged from 5% to 85% with a
mean of 38% (Supplementary Table 2, Supplementary Figs 2 and 3, and
Supplementary Methods).

To inform cellularity thresholds for subsequent analyses, we defined
the impact of stromal DNA content on mutation detection by exome
capturing and sequencing different mixtures of cancer cell line and
matched germline DNA (100%, 80%, 60%, 40%, 20% and 10% cell line
DNA) when sequenced to a depth of 703 coverage. Using these data as
a standard, the median sensitivity to detect true positives across all
samples in the cohort with greater than 20% epithelial cellularity was
estimated at 45% (Supplementary Table 3). An informative cohort of
99 patients who had greater than 20% cellularity and/or $10 validated
somatic mutations was taken forward for further analysis.

Mutation detection and CNV analysis
We performed hybrid-selection-based capture and sequencing of the
entire exomes of tumour and matched normal DNA derived from all
142 patients using a combination of capture systems and next-
generation sequencing platforms (see Supplementary Methods). The
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sequence depths at each site (APGI 653, BCM 1043 and OICR 2053)
were adopted to ensure suitable sensitivity across their respective
cohorts (Supplementary Table 3). In the informative 99 samples, we
detected 2,627 high-confidence mutations, 2,016 of which were non-
silent (Table 1). A total of 1,502 of these events (1,350 non-silent) were
independently validated via an orthogonal sequencing method (see
Supplementary Methods). The average number of mutations detected
per patient was 26 (range 1–116), consistent with the expected sen-
sitivity based on cellularity estimates and previous studies4,11 (Sup-
plementary Table 2). We confirmed the high prevalence of genetic
aberrations known to be important in PDAC and observed mutations
in 38 of the 79 genes (48% overlap) that occurred more than once
previously reported by ref. 4, and 186 of all 998 mutated genes (19%
overlap) in that study. We also defined a large number of novel muta-
tions (1,456 genes), most of which occurred at low frequency (see
Supplementary Tables 4– 6 and Supplementary Fig. 4 for detailed
comparisons). The observed transversion/transition rates in the cohort
correlated closely with those previously reported in PDAC cell lines
and xenografts (Supplementary Table 7).

Significant mutated gene analysis12 of genes with non-silent muta-
tions that occurred in 2 or more individual cancers identified 16 genes
in the top 20 mutated genes in 2 of 3 stringent analytical approaches
(Table 2, Supplementary Table 8 and Supplementary Methods) and
reaffirmed the importance of mutations known to occur in PDAC:
KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and
SF3B1. Novel significantly mutated genes included additional genes
involved in chromatin modification (EPC1 and ARID2) and ATM,
recently implicated as a PDAC susceptibility gene through bi-allelic
inactivation in a case of familial PDAC (germline mutation and loss
of heterozygosity (LOH) in the tumour)13. Aberrations of ATM
occurred in 8% of our cohort (mutated in 5%, LOH or loss in 5%,
with two patients exhibiting both mutation and LOH or loss) and
mutations detected in other genes not previously reported: ZIM2,
MAP2K4, NALCN, SLC16A4 and MAGEA6 (Table 2). GISTIC2.014

identified 30 genes affected by copy-number alterations (Q value
,0.0001) and included losses of CDKN2A and SMAD4 (Supplemen-
tary Table 4).

Pathways in pancreatic cancer
To better understand potential underlying mechanisms of import-
ance in PDAC, we performed a series of pathway analyses using genes
that were recurrently mutated in two or more individuals using
GeneGO15, and identified mechanisms known to be important in cancer:
G1/S checkpoint machinery (P 5 1.49 3 1023), apoptosis (P 5 1.32 3

1024), regulation of angiogenesis (P 5 7.72 3 1024) and TGF-b sig-
nalling (P 5 9.50 3 1024). Interestingly, novel gene signatures were
enriched in our cohort, including axon guidance (P 5 5.30 3 1025)
(Supplementary Table 9). The inclusion of mutation data for 24 cases
from ref. 4 strengthened the association of axon guidance (P 5

3.3 3 1027), and was more evident still when all mutated genes in our
data set were used as input (P 5 4.67 3 1028).

Functional relevance of genomic events
Differentiating somatic driving events of carcinogenesis from passenger
mutations is a major challenge in cancer genomics16. Despite significant
advances in computational algorithms, experimental evidence of func-
tional relevance is paramount. We used data from three published
experimental biological screens to infer functional consequences for
the individual genomic events and the pathways we identified. These
included data from two independent Sleeping Beauty transposon (SB)
mutagenesis screens in Kras transgenic mouse models of PDAC17,18

and an in vitro short hairpin RNA (shRNA) screen which examined
the consequences of downregulating 11,194 putative cancer genes on
survival in a panel of 102 cell lines (13 pancreatic)19 (Supplementary
Methods and Supplementary Figs 5 and 6). Data from these screens
confirmed the functional importance of KRAS, TP53, CDKN2A and
SMAD4 mutations and attributed potential functional relevance
to most significantly mutated genes—MLL3, TGFBR2, SF3B1, EPC1,
ARID1A, ARID2, MAP2K4, ATM, NALCN, ZIM2, SLC16A4
(Table 2)—and many genes mutated at low frequency (Supplemen-
tary Table 4).

Pathway analysis of high confidence insertions in SB transposon
mutagenesis screens demonstrated enrichment for axon guidance
genes (P 5 1.6 3 1023), providing independent supportive evidence
for a potential role in the pathogenesis of PDAC. In these screens, 14
genes involved in axon guidance pathways were detected (5 genes
common to both). In addition, a further 32 genes were mutated in
at least one SB pancreatic tumour (out of 21) but did not meet the
significance threshold with the stringent analyses that were applied17

(Supplementary Tables 10 and 11).

Axon guidance pathway genes
The class of genes traditionally described for their roles in axon guidance
(semaphorins, slits, netrins and ephrins) are important regulators of

Table 1 | Mutations in pancreatic ductal adenocarcinoma (n 5 99)
Mutation class Total

Missense 1,684
Nonsense 99
Splice site 89
Insertion/deletion 144
Non-silent 2,016
Silent 611

Table 2 | Significantly mutated genes in pancreatic ductal adenocarcinoma
Gene symbol Gene name and protein function SB mutagenesis* shRNA{

KRAS Oncogene; GTPase; activation of MAPK activity Yes Yes
TP53 Tumour suppressor p53; DNA damage response – Yes
CDKN2A Cyclin-dependent kinase inhibitor 2A; G1/S transition of mitotic cell cycle; tumour suppressor Yes –
SMAD4 Mothers against decapentaplegic homologue 4; BMP signalling pathway Yes Yes
MLL3 Myeloid/lymphoid or mixed-lineage leukaemia protein 3; DNA binding; regulation of transcription Yes Yes
TGFBR2 Transforming growth factor-b receptor type II; regulation of growth Yes –
ARID1A AT-rich interactive domain-containing protein 1A; SWI/SNF complex; chromatin modification Yes Yes
ARID2 AT-rich interactive domain-containing protein 2; chromatin modification Yes –
EPC1 Enhancer of polycomb homologue 1; histone acetylation Yes –
ATM Ataxia telangiectasia mutated; DNA damage response – Yes
SF3B1 Splicing factor 3B subunit 1; nuclear mRNA splicing – Yes
ZIM2 Zinc finger imprinted 2; regulation of transcription – Yes
MAP2K4 Dual specificity mitogen-activated protein kinase kinase 4; Toll-like receptor signalling pathway Yes Yes
NALCN Sodium leak channel non-selective protein; sodium channel activity – Yes
SLC16A4 Solute carrier family 16 member 4; monocarboxylate transporter – Yes
MAGEA6 Melanoma-associated antigen 6; protein binding – ND

ND, not determined.
*Significant insertion sites in two independent Sleeping Beauty mutagenesis screens17,18.
{ In vitro shRNA screens in 102 cancer cell lines with effect on cell survival19.
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normal neuronal migration and positioning during embryonic
development. More recently, they have been implicated in cancer cell
growth, survival, invasion and angiogenesis20; however, the incidence
of aberrations in these genes in cancer is largely unknown. We iden-
tified recurrent mutations and copy-number variations (CNVs) of
axon guidance pathway genes in this cohort (Fig. 1 and Supplemen-
tary Table 4): SLIT2 and ROBO2 mutations were present in 5% of
patients, with focal copy-number losses of ROBO1, and SLIT2 detected
by GISTIC2.0 analysis and confirmed by manual review, potentially
having an impact on a further 15% of the cohort, suggesting that
aberrant SLIT/ROBO signalling is potentially a common feature of
PDAC (Figs 1 and 2). In addition, we used targeted PCR-based se-
quencing of an additional 30 cases of PDAC for axon guidance genes
and identified mutations in ROBO1 in two patients and additional
mutations in SLIT2 and ROBO2 (one patient each). Low mRNA
expression of the ROBO2 receptor was associated with poor patient
survival (P 5 0.04). Furthermore, high mRNA expression of ROBO3, a
known inhibitor of ROBO2 signalling21, demonstrated an appropriate
reciprocal inverse association with poor survival (P , 0.006) (Fig. 2).

Class 3 semaphorins (SEMA3A and SEMA3E) exhibited significant
amplification in 18% of patients and an additional 3% harboured
mutations (Fig. 1). Semaphorins signal through neuropilin and plexin
receptors to elicit their effects22. SEMA3A amplification correlated
with high mRNA expression on microarray (P 5 0.03), and high
mRNA expression of SEMA3A and PLXNA1, another molecule cen-
tral to semaphorin signalling, were both associated with poor patient
survival on univariate analysis (Fig. 3a), and were independently pro-
gnostic on multivariate analyses with clinico-pathological variables
(Supplementary Table 12).

To elucidate further the significance of the observed CNV events, we
reviewed copy number, CNV segment size and changes in heterozyg-
osity of axon guidance genes in a recent independent CNV analysis of
39 fine-needle aspiration biopsies23 and the 16 PDAC cell lines in the

CONAN database (http://www.sanger.ac.uk/cosmic)24. Overall, the
predominant changes recapitulated our studies, showing frequent
focal losses within genes involved in SLIT/ROBO signalling, and gains
in genes involved in canonical semaphorin signalling (Supplementary
Tables 4, 13 and 14).

To assess whether dysregulation of axon guidance genes is associated
with early neoplastic transformation, as are many developmental sig-
nalling pathways, we examined mRNA expression in murine models of
early pancreatic carcinogenesis (in vitro acinar-to-ductal metaplasia
and in vivo pancreatic injury). Expression levels of components of
SLIT/ROBO and semaphorin signalling changed progressively from
normal pancreas, through acinar-to-ductal metaplasia and pancreatic
injury to genetically engineered murine PDAC, indicating a role for the
dysregulation of these axon guidance genes in tumour initiation and
progression (Fig. 3b and Supplementary Table 15).

Discussion
We devised methodologies to optimize mutation detection for
clinical samples in a large cohort of patients and reaffirm known
mutations in PDAC, better define their prevalence in a large cohort
of early PDAC, and identify potential novel drivers in this disease.
Somatic mutations in ATM were identified in a significant proportion
of patients (8%), highlighting the importance of BRCA-mediated
DNA damage repair mechanisms in sporadic PDAC as well as familial
disease13. Previously, mutations in individual genes involved in chro-
matin remodelling such as ARID1A25 have been described and addi-
tional genes identified here (EPC1 and ARID2) infer that chromatin
remodelling may have an important role in PDAC, along with other
cancer types26.

Novel mutations in genes traditionally described for their roles in
axon guidance were also observed by a combination of genomic data
and supportive experimental evidence from independent murine SB
mutagenesis screens. Axon guidance is integral to organogenesis,
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Figure 1 | Mutations and copy number variation in axon guidance genes.
Axon guidance pathway genes with recurrent mutations and/or copy-number
changes defined by GISTIC2.0 analysis (Q , 0.2), and manually reviewed for
focal alterations. a, SNV and CNV frequency per patient with gene-centric
summary (left) and patient-centric summary (top); numbers of patients with
mutations and proportion of each event are presented. Please see

Supplementary Table 4 for further details. b, Clinico-pathological variables for
individual patients. APGI, Australian Pancreatic Cancer Genome Initiative;
BCM, Baylor College of Medicine; IPMN, intraductal papillary mucinous
neoplasm; Mod, moderately differentiated; OICR, Ontario Institute for Cancer
Research; PDAC, pancreatic ductal adenocarcinoma; Undiff, undifferentiated.
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activity promotes MET signalling downstream and may have an impact on

therapeutic strategies aimed at inhibiting MET activity at the receptor level.
(Adapted from ref. 20.) Aberrations in SLIT2 and/or ROBO1/2 affected 23% of
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ROBO2), with 18% demonstrating CNV corresponding to loss of the gene.
b, c, High expression of SLIT receptor ROBO2 was associated with a better
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Figure 3 | Axon guidance genes in human and murine pancreatic ductal
adenocarcinoma. a, Kaplan–Meier survival curves showing co-segregation of
aberrant expression of components of semaphorin signalling with outcome.
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expression and both are independent poor prognostic factors. b, Quantitative
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LSL-Trp53R172H). Error bars represent standard error of the mean (see
Supplementary Table 15 for details).
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regeneration, wound healing and other basic cellular processes22,27.
The widespread genomic aberrations observed here in axon guidance
genes suggests that they may have a role in PDAC, joining mounting
evidence in other cancers20,28, including a recent report demonstrating
ROBO2 mutations in liver-fluke-associated cholangiocarcinoma29. In
addition, evidence from cancers of the lung, breast, kidney and cervix
implicate aberrant SLIT/ROBO signalling in carcinogenesis20; Robo1
knockout mice develop bronchial hyperplasia and focal dysplasia, and
inactivation of Slit2 and Slit3 leads to the development of hyperplastic
disorganized lesions in the breast20. Upregulation of MET and WNT
signalling have important roles in PDAC, and recent data indicate
that SLIT/ROBO signalling modulates MET and WNT signalling
activity through CDC42 and b-catenin, respectively20. Loss of SLIT/
ROBO signalling can potentially be an alternative mechanism for
deregulating these pathways downstream of their receptors, and in
addition could influence the activity of inhibitors that target these
upstream components, for example, MET inhibitors (Fig. 2).

Class 3 semaphorins are the only secreted semaphorins in ver-
tebrates. They regulate cell growth, invasiveness and angiogenesis,
and are highly expressed in metastatic cells in many cancer types30,31.
Although aberrant semaphorin signalling in cancer seems to be organ
specific32, our finding that high expression of SEMA3A and its receptor
PLXNA1 co-segregates with poor patient survival is supported by a
previous study that reported this association and also demonstrated
promotion of invasiveness of PDAC cell lines by SEMA3A31. Thera-
peutics targeting molecules involved in axon guidance have been
developed as potential strategies to facilitate neuronal regeneration
after injury33, but are yet to be assessed for their role in cancer treatment.

As illustrated here, global genomic analysis of large, well-annotated
and clinically homogeneous cohorts of patients can identify mecha-
nisms that are common among genomically diverse cancers, and will
be pivotal in the development of novel therapeutic strategies that are
guided by the determination of the molecular phenotype of individual
patients34. Future work will be required to determine which key com-
ponents, when damaged, drive the disease, and these mechanisms
will need to be assessed in molecularly well-characterized preclinical
models35. The potential therapeutic strategies identified will then
require testing in appropriate clinical trials that are specifically designed
to target subsets of patients stratified according to well-defined mole-
cular markers36,37.

METHODS SUMMARY
Sample acquisition and processing. Samples used were prospectively acquired
and restricted to primary operable, non-pretreated pancreatic ductal adenocarci-
noma. Representative sections were reviewed independently by at least one addi-
tional pathologist with specific expertise in pancreatic diseases. Samples either
had full face frozen sectioning performed in optimal cutting temperature (OCT)
medium, or the ends excised and processed in formalin to verify the presence of
carcinoma in the sample to be sequenced and to estimate the percentage of malig-
nant epithelial nuclei in the sample relative to stromal nuclei. Macrodissection was
performed if required to excise areas that did not contain malignant epithelium.
Sequencing. Cellularity of each tumour sample was estimated with pathology
review, deep sequencing of KRAS and a method developed using genome-wide
SNP array data (qpure10). Exon capture was performed using the SureSelect II or
Nimblegen capture methods and paired-end sequenced on the SOLiD (v4) or
GAII/HiSeq platforms. Somatic mutations were called and then verified on the
Ion Torrent Personal Genome Machine (Life Technologies Corporation) and 454
(Hoffman–La Roche Limited).
Analysis. Significantly mutated genes were identified using the Genome MuSiC
package12. DNA copy number analyses were performed using the Illumina
HumanOmni1 Quad genotyping arrays and GenoCN software. Recurrent and sig-
nificant copy number changes were identified using GISTIC2.014. Functional enrich-
ment of gene categories was assessed using the Metacore package (Thomson-Reuters
Corporation) and the MSigDB v3.0 database38. All sample information and data for
mutation, copy number and expression analyses were submitted to the ICGC DCC
at http://dcc.icgc.org/. A complete description of the materials and methods in-
cluding approvals for human research and animal experimentation is provided in
Supplementary Information.
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18. Pérez-Mancera, P. A. et al. The deubiquitinase USP9X suppresses pancreatic
ductal adenocarcinoma. Nature 486, 266–270 (2012).

19. Cheung, H. W. et al. Systematic investigation of genetic vulnerabilities across
cancer cell lines reveals lineage-specificdependencies inovariancancer.Proc.Natl
Acad. Sci. USA 108, 12372–12377 (2011).

20. Mehlen, P., Delloye-Bourgeois, C. & Chedotal, A. Novel roles for Slits and netrins:
axonguidancecuesas anticancer targets? NatureRev.Cancer 11,188–197 (2011).

21. Sabatier, C. et al. The divergent Robo family protein rig-1/Robo3 is a negative
regulator of slit responsiveness required for midline crossing by commissural
axons. Cell 117, 157–169 (2004).

22. Trusolino, L. & Comoglio, P. M. Scatter-factor and semaphorin receptors: cell
signalling for invasive growth. Nature Rev. Cancer 2, 289–300 (2002).

23. Birnbaum, D. J. et al. Genome profiling of pancreatic adenocarcinoma. Genes
Chromosom. Cancer 50, 456–465 (2011).

24. Bamford, S. et al. The COSMIC (Catalogue of Somatic Mutations in Cancer)
database and website. Br. J. Cancer 91, 355–358 (2004).

25. Jones, S. et al. Somaticmutations in the chromatin remodeling gene ARID1A occur
in several tumor types. Hum. Mutat. 33, 100–103 (2012).

26. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF
complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).

27. Comoglio, P. M. & Trusolino, L. Invasive growth: from development to metastasis.
J. Clin. Invest. 109, 857–862 (2002).
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