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ABSTRACT

Motivation: Systematic Evolution of Ligands by EXponential
Enrichment (SELEX) represents a state-of-the-art technology
to isolate single-stranded (ribo)nucleic acid fragments, named
aptamers, which bind to a molecule (or molecules) of interest via
specific structural regions induced by their sequence-dependent
fold. This powerful method has applications in designing protein
inhibitors, molecular detection systems, therapeutic drugs and
antibody replacement among others. However, full understanding
and consequently optimal utilization of the process has lagged
behind its wide application due to the lack of dedicated
computational approaches. At the same time, the combination of
SELEX with novel sequencing technologies is beginning to provide
the data that will allow the examination of a variety of properties of
the selection process.
Results: To close this gap we developed, Aptamotif, a computational
method for the identification of sequence–structure motifs in SELEX-
derived aptamers. To increase the chances of identifying functional
motifs, Aptamotif uses an ensemble-based approach. We validated
the method using two published aptamer datasets containing
experimentally determined motifs of increasing complexity. We were
able to recreate the author’s findings to a high degree, thus proving
the capability of our approach to identify binding motifs in SELEX
data. Additionally, using our new experimental dataset, we illustrate
the application of Aptamotif to elucidate several properties of the
selection process.
Contact: przytyck@ncbi.nlm.nih.gov, Zuben.Sauna@fda.hhs.gov

1 INTRODUCTION
Aptamers are synthetic but biologically active single-stranded
(ribo)nucleic molecules, typically ranging between 15 and 120 nt
(James, 2000). These short sequences can be designed to bind, with
high affinity and specificity, a vast spectrum of molecular targets
(apatopes), spanning from small organic molecules (Barrick and
Breaker, 2007; Lozupone et al., 2003) over macromolecules such as
proteins (Dobbelstein and Shenk, 1995; Kim et al., 2011) to entire
organisms (Li et al., 2011). Their high structural stability over a
wide range of pH and temperatures and their diverse functionality
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make aptamers ideal candidates for a broad spectrum of in vitro
assays and in vivo tools. Applications for aptamers include protein
inhibition and purification (Esposito et al., 2011; Walker et al.,
2011), molecular detection systems (Nielsen et al., 2010; Zelada-
Guilln et al., 2010), therapeutic drugs (Wang et al., 2011) and
antibody replacement (Bunka et al., 2010; Ni et al., 2011); the
latter being of high interest in the pharmaceutical industry due to
substantially lower production costs, shelf lives of years and, in
many cases, higher target specificity (Kupakuwana et al., 2011).
Moreover, since aptamers are chemically synthesized, they provide
a more consistent source of material than antibodies that are secreted
by cells.

Aptamers targeting a specific apatope are experimentally
identified through the Systematic Evolution of Ligands by
EXponential Enrichment (SELEX) protocol (Tuerk and Gold, 1990).
The experimental design of SELEX is based on the assumption
that a large enough pool of candidate sequences is likely to contain
nucleotide strands capable of binding to any target molecule. The
traditional SELEX procedure iterates over five basic steps defining
one selection cycle: incubation, binding, partitioning and washing,
target-bound elution, and amplification. Starting with a single-
stranded (ribo)nucleic acid sequence library of, typically, 1015

random species flanked by primer sites to aid amplification, at
each cycle a sequence pool is incubated with target molecules.
The species in the pool potentially bind the target with specificity,
depending on their sequence and structure. At the end of each
cycle, low-affinity binders are removed from the solution whereas
bound species are eluted and amplified, forming the input for the
next round. Eventually, only molecules that bind with high affinity
remain.

However, detailed understanding and studies regarding precise
aptamer–apatope interaction and consequently the evolutionary
processes induced by this interplay lag behind the wide application
of SELEX products. Aptamer binding properties are a function
of both, sequence and structure; however, current analyses are
predominately focused on sequence. Until now, a common practice
was to sequence a sample of aptamers from the last cycle of
SELEX and examine them for possible sequence motifs using ad hoc
approaches or motif finding programs, such as MEME (Bailey and
Elkan, 1994) or GLAM2 (Frith et al., 2008). These motifs are then
validated in expensive and time-consuming wet lab experiments,
frequently by introducing a series of point mutations into the
identified sequence regions with the goal of inducing conformational
changes in the structures. Using adequate binding affinity assays
then allows for the quantification of this mutation with respect to
the binding strength, considering the region as functionally active,
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i.e. part of the binding motif, if a significant decrease is measured
(Dubey et al., 2005; Lozupone et al., 2003; Lvesque et al., 2007;
Yamamoto et al., 2000). Although, in addition to the sequence-
based analysis, secondary structures predicted by programs such
as MFold (Zuker, 1989) are manually compared (e.g. Lozupone
et al., 2003) when the structural properties are neglected during motif
identification. However, for aptamers targeting proteins, the binding
properties are largely determined by how well these molecules
fit into the cavities of their apatope counterparts, and are hence
strongly dependent on their shape. Thus, understanding of the
structural restrictions imposed on binders is crucial in aptamer
studies. In addition, comparing properties of motifs originating from
subsequent cycles might then represent the first step toward an
enhanced understanding of the SELEX process and its more full
utilization. Finally, new sequencing technologies have opened the
doors to sequencing of complete pools of aptamers. This provides
an unprecedented opportunity to address many selection-related
questions but demands appropriate computational tools.

Can we adopt solutions, which have been developed with other
applications in mind, to uncover and study aptamer motifs? One
promising tool is MEMERIS (Hiller et al., 2006) (MEME for RNAs
including Secondary Structures), which is specifically designed
for searching sequence motifs in a set of RNA sequences and
simultaneously integrating information about secondary structures.
MEMERIS uses secondary structure information to bias its search
toward substrings that tend to reside in single-stranded regions
(Hiller et al., 2006). A similar approach is used in the recently
published RNAcontext program developed to predict binding
affinities of RNA molecules to a given RNA binding protein (Kazan
et al., 2010). RNAcontext fits a statistical model that incorporates
both sequence and secondary structure information to the input pool
of sequences and their experimentally measured binding affinity
values. The fitted models are then interpreted to extract binding
motifs and their preferred secondary structure. RNAprofile (Pavesi
et al., 2004) on the other hand, first identifies candidate regions
containing a prescribed number of hairpins, and then performs
all-by-all pairwise alignment of candidate regions that are later
clustered to uncover common motifs. Finally, several methods exist
for pairwise alignment of RNA molecules that utilize both, sequence
and secondary structure information. Methods, such as RNAForester
(Höchsmann et al., 2003) and ExpaRNA (Heyne et al., 2009)
assume that the secondary structure is known and is provided as
input. Other methods, such as LocARNA (Will et al., 2007) and its
extension LocARNATE (Otto et al., 2008) do not require secondary
structure to be known in advance and compute the alignment and
corresponding consensus secondary structure using a variation of
the Sankoff fold-align algorithm (Sankoff, 1985).

Unfortunately, these approaches are not fully compatible with the
requirements imposed on aptamer motif identification procedures.
First, aptamer motifs, while connected in secondary structure, are
often discontinuous in sequence, which limits the applicability
of MEMERIS. Next, we lack any prior knowledge about
possible conformations of the aptamers, rendering RNAprofile-
type preprocessing useless in this context. Additionally, it has been
repeatedly realized that the minimum free energy (MFE) structure
is not necessarily the only structure assumed by RNA molecules.
This is even more important in the context of aptamers, where
the MFE structure would have to be computed independently of
its apatope counterpart. Last but not the least, any approach that

requires all-by-all alignment of the input sequences (local or global)
cannot scale up to deal with the number of species resulting from
sequencing entire aptamer pools.

Here, we report Aptamotif, an ensemble-based method for
effective extraction of sequence–structure motifs from SELEX-
derived aptamers. Building on the broad success of ensemble-
based approaches, Aptamotif considers optimal and suboptimal
structures within the proximity of the MFE structure. We represent
each aptamer by its functional space, i.e. the set of substructures
that might potentially undergo binding interaction with the target
molecule. These substructure ensembles are then concurrently
compared to identify candidates with strong common features in
terms of sequence, by aligning the underlying primary structure of
the substructures, and structure, by restricting these alignments to
compatible substructures with similar shape. Our approach hence
takes into account both, sequence variability and indels as well as
structural fluctuations with respect to small loop size alterations.

Aptamotif is well suited for identifying functional sites in their
native configuration and in capturing relationships between binders
selected in consecutive SELEX cycles. While currently implemented
with the aim of providing the proof of principle in the context of
traditional, small-sized, sampled SELEX data, Aptamotif can be
adopted to deal with large datasets that will result from sequencing
whole aptamer pools using next-generation sequencing technology,
which we are currently exploring.

2 RESULTS AND DISCUSSION
In this section, we present Aptamotif, a novel computational
approach for aptamer motif identification. We begin with a high-
level description of the algorithm. We then test Aptamotif on two
publicly available SELEX datasets of different complexity for which
binding sites where determined experimentally. We demonstrate the
benefits of our ensemble approach and show that motifs identified by
Aptamotif are in better agreement with published binding sites than
those identified by two widely used RNA motif extraction programs.
Next, we apply our approach to study selection properties of the
SELEX protocol. For this purpose, we experimentally generated a
new dataset sampling two consecutive SELEX cycles. Our results
show variability of sequence–structure motifs in the SELEX cycles
and the utility of our approach for studying the evolution process in
the SELEX procedure.

2.1 Algorithm outline
Secondary structure contributes to the stability and biochemical
properties of the RNA molecule such as its affinity toward its
interacting partners. RNAsecondary structure is defined by a specific
pairing pattern between nucleotides or base pairing (Zuker and
Sankoff, 1984). For the purpose of the discussion below, it is
important to mention that every secondary structure can be uniquely
decomposed into a set of basic non overlapping substructures
as shown in Figure 1. Stacking pairs contain nucleotides that
participate in base pairing, whereas loops consist of closing and
interior base pairs together with nucleotides that do not participate
in such contacts and therefore comprise single-stranded regions
of the structure. Loops are further classified into four different
types: (i) hairpin loops; (ii) bulge loops; (iii) interior loops; and
(iv) multibranch loops.

i216

 at Physical Sciences L
ibrary on Septem

ber 26, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


Copyedited by: TRJ MANUSCRIPT CATEGORY:

[09:39 20/6/2012 Bioinformatics-bts210.tex] Page: i217 i215–i223

Identification of sequence–structure RNA binding motifs

Fig. 1. Components of RNA secondary structure. In this study, bulge loops and interior loops are treated individually. Despite the fact that one is a degenerate
version of the other, they represent substructures of different flexibility. Multibranch loops are limited to three components. Due to generally short length of
the aptamers, loops with more than three branches are highly unlikely. At present, substructures of known aptamers fall into one of the categories (i)–(iv),
but we might consider extending our current loop treatment as additional data becomes available and such need emerges. Secondary structure representations
were in part created using VARNA (Darty et al., 2009)

We define an aptamer motif as a loop substructure present in
a large fraction of aptamers and showing statistically significant
sequence similarity in its single-stranded regions. There is growing
evidence that the biological function of many RNA molecules
crucially depends on single-stranded regions (Schudoma et al.,
2010). This seems to be especially true for RNA molecules evolved
by the SELEX protocol. In fact, the majority of binding sites reported
in manually curated databases of SELEX experiments (Lee et al.,
2004) reside in loops.

Given a pool of aptamer specie, our algorithm uses a three-step
procedure to identify sequence–structure motifs. For each aptamer,
optimal and suboptimal secondary structures are computed and loops
with their sequences are extracted in the structural processing step.
The seed identification step then proceeds in iterations, where at
each iteration K (a user defined parameter), aptamers are sampled
uniformly at random from the pool. The loops of matching type
extracted from these aptamers are then aligned and scored. A
small number of iterations are performed and the best-scoring loop
alignments are retained and searched against the entire pool of
aptamers in the seed extension step. In what follows we elaborate
on and justify important aspects of these three steps.

Structural processing: we use the RNAsubopt algorithm (Backofen
and Siebert, 2007; Wuchty et al., 1999) to enumerate all secondary
structures within a user-defined energy range from the MFE
structure, the base pair configuration with the smallest attainable
folding free energy, for every aptamer sequence in the pool. Primer
sites are included in the prediction as these tend to influence
the folding properties of the species in vitro and must therefore
also be considered in silico. The generated secondary structures
are then processed to extract the loops and their sequences.
Thus each aptamer is associated with a substructure ensemble, a
collection of unique substructures that are divided into four non
overlapping subsets one for each loop type (hairpin, bulge, interior
and multibranch). Here, all loops partially or entirely located in
primer sites are excluded from the substructures ensemble and hence
not further considered.

It has been repeatedly shown that biologically active
conformations of non coding RNAs do frequently not correlate
with the MFE structure but are rather present as structures with
slightly higher free energy values (Ding et al., 2005; Zuker,
1989). We expect this discrepancy to be even more prominent for
RNA molecules resulting from SELEX experiments as biologically

active conformations of aptamers are thought to be stabilized
through interactions with their binding partners. It is important,
therefore, to set δ, a user-defined parameter that defines energy
range for secondary structure enumeration, high enough to guarantee
inclusion of biologically active conformations in the analysis.
Extremely high values of δ, however, will substantially increase the
size of the substructure ensemble and thus increase computational
time. We found that for aptamer datasets analyzed in this article, the
value of 3 kcal/mol provides a good tradeoff between sensitivity and
computational complexity.

Seed identification: the brute-force approach for identifying
common sequence–structure motifs involves an exhaustive
comparison of substructure ensembles. This, however, would be
prohibitively expensive even for small problem sizes both in terms
of average aptamer size and the number of aptamers in the pool.
Assuming R aptamer sequences and denoting by Nk , the size of
the substructure ensemble associated with aptamer k, the number

of comparisons involved is on the order of O
(∏R

i=1Ni

)
.

In order to reduce the problem to a manageable size, we rely
on the following key observation: if the motif is present in a large
enough fraction of aptamers, then K aptamers selected uniformly at
random from the pool will contain the motif with a non negligible
probability. In practice, final SELEX cycles are expected to contain
at least 50% of highly target-specific binders (Bowser, 2005), in
most of the cases however, these percentages, denoted as f in the
following, are much larger . Accordingly, our algorithm performs
a small number of sampling iterations where at each iteration
K aptamers are sampled from the pool and their substructure
ensembles are exhaustively aligned and scored. The probability of
success of one iteration to draw a sample containing K species with

a common motif is therefore f K , meaning that on average every 1
f

K

sampling step will retrieve at least one motif.
Hence, given K aptamers, our method performs all possible

alignments of K substructures such that each substructure is selected
from a different substructure ensemble. Only substructures of the
same type are aligned i.e. hairpins are aligned with hairpins, internal
loops with internal loops, etc. Substructure alignment involves
multiple sequence alignment (MSA) of the single-stranded regions
of the loops as shown in Figure 2 in the case of internal loops. In
order to substantially reduce the number of MSA computations,
we exclude all combinations with a length difference of more
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Fig. 2. Example of one substructure alignment step comprising a combination of five interior loops from different substructure ensembles, which are processed
by individually aligning the single-stranded regions in 5′–3′ direction. Note that closing and interior base pairs (indicated in bold) are excluded from the
alignment since these are assumed to contribute structural stability

than G bases between the aligned regions. In our test scenarios
setting, G=2 has proven to eliminate up to 70% of all substructure
combinations without noticeable impact onto the quality of the
resulting motifs. Other, more sophisticated procedures for reducing
the number of MSAs are possible but not implemented in the current
version of the algorithm.

Each MSA is scored by its degree of conservation. By treating the
individual alignment components as a single block of K sequences
and L columns over the alphabet �, the conservation is described
as the sum I over the column wise information content I (i)

I =
L∑

i=1

I (i), I (i)=
|�|∑
j=1

nij log

(
nij/K

bj

)
(1)

where nij denotes the number of occurrences of the j-th letter in the
i-th column and bj refers to the background frequency of the j-th
letter (Hertz and Stormo, 1999). While this measure allows ranking
alignments of equal dimension, it is inapplicable for comparisons
between alignments of varying K and L. In order to overcome this
problem, we assign a P-value to each MSA. For any alignment with
score I0, the P-value indicates the probability p(Ix ≥ I0) of observing
a score Ix equal to or better than I0, under the assumption that
each of the alignment columns have been sampled independently
according to a certain background distribution. Naively solving
this problem requires traversing all I ≥ I0, which is prohibitively
expensive. We therefore use the currently fastest and most accurate
algorithm for P-value approximation, by Nagarajan and Keich,
2008; Nagarajan et al., 2005.

Special attention must be paid to the role of gaps. We
introduce an additional letter ‘-’ into the alphabet and modify the
background frequencies to reflect high abundance of this artificial
letter. Consequently, columns with high gap ratios contain less
information as compared to columns with highly conserved letters
resulting in a decreased score.

Sorting the combinations by increasing P-values establishes
a ranking order in which top scoring candidates correspond to
substructures with high sequence and structure similarity. We denote
these potential motifs as seeds since at this point their frequency of
occurrence in the aptamer pool remains unknown, and retain the set
of P (where P is a user defined parameter) best scoring alignments
at each iteration.

Seed extension: in order to assess the degree of abundance of the
seeds in the aptamer pool, each seed is ‘extended’ by searching
for approximate sequence–structure matches against the remaining
aptamer ensembles. To account for nucleotide variations, we opted

for a profile matching-oriented approach in which each of the
seed’s alignment block is first converted into a position-specific
scoring matrix (PSSM). These profiles are then matched against
the corresponding single-stranded regions of all loops of equal
type in the pool. We use local profile sequence alignments in
order to account for possible gaps in the motif instances within
individual aptamers. Consequently, spurious seeds not shared by
a large fraction of aptamers are excluded, whereas those still
persisting after this procedure are considered motifs and reported to
the user.

2.2 Recreating experimentally determined motifs
We applied our method onto two SELEX datasets in an attempt
to recreate the experimentally determined motifs in silico. In
traditional aptamer research, only top binders or their refined
versions are commonly published, leaving only a limited number
of publications additionally containing the set of raw aptamer
sequences. However, we have been able to identify two reasonably
large datasets from this limited repertoire as representatives for
aptamer classes of increasing complexity regarding sequence
continuity and shape of the motif. In each experiment we generated
all suboptimal structures within a region of 3 kcal/mol from the
MFE structure and performed 50 iterations of substructure ensemble
alignments, choosing 5 ensembles in each round. The maximal
length difference between substructure components was set
to G=2.

Our first validation dataset was published by Dobbelstein and
Shenk in which aptamers were selected against the ribosomal
protein L22 (Dobbelstein and Shenk, 1995). The RNA library
consists of a pool of 16 aptamers containing a 30 nt, initially
randomized region flanked by primer binding sites of length 24 nt
(5′) and 23 nt (3′), respectively. Dobbelstein and Shenk identified
a highly conserved stem–loop structure as the functional site of the
L22 binding aptamers. The hairpin consists of 6–9 nts, with the
most 3′ nt being thymine in most of the species and a (5′)G-C(3′)
configuration forming the closing base pair. This scenario represents
a motif of intermediate complexity since the motif is continuous
in primary structure but it contains a large number of insertions,
deletions and variations in sequence.

The first five top scoring motifs reported by Aptamotif together
with the in vitro derived gold standard are listed in Figure 3A
and are in good agreement with the author’s findings. All motifs
are correctly predicted as hairpins and show high consistency
between each other, indicating that these likely represent instances
of the same functional site. Furthermore, each hit matches the
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Fig. 3. First five top scoring motifs for the datasets of (A) Dobbelstein and Shenk (1995) and (B) Lozupone et al. (2003) identified by Aptamotif. Motifs are
drawn as sequence logos with corresponding secondary structure in dot-bracket notation below. Secondary structures without sequence logos correspond to the
consensus structures of adjacent regions to the motifs. The thinness of a letter denotes the likelihood for gap insertions. First row: experimentally determined
motifs as described in corresponding publications

experimentally determined motif to a large extent in terms of
motif size and location on the individual aptamers. Although
our results suggest a slightly larger loop size that includes the
reported (5′)G-C(3′) base pair as single-stranded nucleotides, we
also found the closing base pair to have a strong tendency
toward a combination of guanine and cytosine, indicating that this
constellation might play an important role in the structural stability
of the hairpin. Further inspection revealed a total of two conserved
thymines at the 3′-end of the loop structure, the latter corresponding
to the thymine identified by Dobbelstein and Shenk. Our method
additionally reported a highly conserved adenine near the hairpins
center, not mentioned in the publication, which might contribute to
the biological activity of the aptamers.

Summarizing, the reported motifs are in good agreement with
the published structures, hence demonstrating the flexibility of our
approach to account for nucleotide modifications, while maintaining
the capability of extracting important structural features responsible
for the biological fitness of the aptamers.

In order to test the full potential of our method, as our second
test case, we selected a set of aptamers binding the amino acid
isoleucine, published by Lozupone et al. (2003). In this case, the
biologically active site was identified in an asymmetric interior
loop, thus representing a scenario with non continuous primary
structure. The motif comprises two sequence modules with TACG
and CTATTGGGG as the consensus sequences for modules 1 and
2, respectively. Within the internal loop, all nucleotides show
absolute conservation except for the second thymine in module 2.

Furthermore, the base pairs closing the loop structure are also highly
conserved.

Figure 3B demonstrates the first five top scoring motifs identified
by Aptamotif as well as the structural properties and sequence
conservation of the published active site. All results are correctly
identified as interior loop structures and associated with the motif
reported by the authors, however, presenting slight variations in the
module sizes. The less conserved second thymine in module 2 is
also captured by each motif of our approach. The variability in the
number of nucleotides in each module might be explained by the
fact that our method relies on the comparison of entire structure
ensembles and is therefore more sensitive to statistical variations.
We were hence able to recreate the results published by Lozupone
et al. in the majority of the points, suggesting that our algorithm is
capable of extracting the biologically relevant motif from a pool of
aptamer sequences.

2.3 Assessing the significance of ensemble utilization
In order to provide evidence for the necessity of ensemble-based
motif identification, we repeated the experiments described in
Section 2.2 predicting only the MFE structure for each aptamer.
Figure 4 depicts the first five top scoring motifs for the datasets of
Dobbelstein and Shenk (Fig. 4A) and Lozupone et al. (Fig. 4B),
respectively.

In comparison to the ensemble-based results shown in Figure 3,
the motifs identified in the first dataset (A) describe the native
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A B

Fig. 4. First five top scoring motifs for the datasets of (A) Dobbelstein and Shenk (1995) and (B) Lozupone et al. (2003) identified by Aptamotif using only
MFE structures. Notations as in Figure 3

binding site (hairpin) with only relative accuracy whereas the
results from the binding site residing in the inner loop (B) show
no resemblance to the native motif and were instead predicted as
hairpins. Furthermore, only a small fraction of sequences (∼1–3)
match the seeds after the extension step, hence indicating low
reliability of the results.

These tests show that motifs residing in energetically favorable
substructures, such as small hairpins, could still be identified using
conventional MFE-based approaches. However, more complex and
energetically less favorable active sites, such as larger hairpins
or inner loops, require the prediction of suboptimal structures for
successful motif extraction since their MFE configurations lack the
corresponding base pair formations.

2.4 Comparison to alternative approaches
In order to demonstrate the true capabilities of our program, we
applied two motif prediction programs, MEMERIS and GLAM2,
to the datasets presented above and compared the resulting motifs to
the outcome of Aptamotif. MEMERIS was chosen since it makes
use of secondary structure information to guide the motif search
toward single-stranded regions whereas GLAM2, unlike many other
methods, allows for gaps in the subsequences constituting the
identified area. To guarantee a fair comparison, each program was
allowed to generate 10 solutions out of which the one that best
fits the description of the published motif was chosen. Since, in
contrast to Aptamotif, MEMERIS and GLAM2 require the expected
width w of the motif as a parameter, we generated 10 results for
each possible value of w and selected the best matches from this
result set.

As shown in Figure 5A, for the dataset of Dobbelstein and
Shenk, all three methods perform similarly well in capturing
primary structure features of the published motif, demonstrating
that Aptamotif is capable of competing with state of the art
sequence based approaches in scenarios with continuous primary
structures. Furthermore, the additional information regarding the
secondary structure provided by our program outperforms the
predictive capabilities of MEMERIS and GLAM2, offering higher
level insight into possible binding interaction mechanisms between
the aptamer and its apatope.

The advantage of ensemble-based secondary structure informa-
tion is even more evident when inspecting the comparison of the
second dataset, summarized in Figure 5B. While MEMERIS and
GLAM2 are capable of pinpointing the individual modules of
the interior loop, determining a functional dependency between
these is purely based on the user’s expertise and is considered
a non trivial task. GLAM2 additionally tends to overestimate
the true size of the modules due to its gap extension policy. In
fact, many motifs reported by this program spanned the entire
sequence region between modules 1 and 2, a region forming
a non conserved hairpin structure of variable size (data not
shown). These observations, combined with the knowledge about
the role of suboptimal structures demonstrated in the previous
section, illustrate that these discordancies cannot be solved by a
simple post-processing analysis. Aptamotif, however, is capable
of not only exactly identifying the involved primary structure
but also provides the crucial information that the functional site
constitutes two modules in order to form a biologically active
entity.

i220

 at Physical Sciences L
ibrary on Septem

ber 26, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


Copyedited by: TRJ MANUSCRIPT CATEGORY:

[09:39 20/6/2012 Bioinformatics-bts210.tex] Page: i221 i215–i223

Identification of sequence–structure RNA binding motifs

A B

Fig. 5. Performance comparison of Aptamotif against MEMERIS and GLAM2 on the dataset of (A) Dobbelstein and Shenk (30 nt region) and (B) Lozupone
et al. (26 nt region). Each program was allowed to generate 10 solutions out of which the best fitting the description of the published motif was chosen.
MEMERIS and GLAM2 were allowed to generate two motifs to give each method equal chance of identifying the interior loop components. Sequences in
the boxed areas represent a small subset of aptamers with an instance of the identified motif. Nucleotides participating in the motifs are colored in black,
bold letters stand for nucleotides forming a base pair and sequence similarity is indicated by the sequence logo above. Green and yellow shaded areas show
secondary structure features in terms of hairpins and interior loops, respectively, if provided by the method

We also applied RNAcontext to these two datasets. Even though
the authors claim that RNAcontext can be used for motif extraction
in the absence of detailed affinity data, we could not confirm this
using our datasets. There are several potential reasons for this
poor performance. First, RNAcontext was primarily developed for
prediction of binding affinity values by fitting a statistical sequence–
structure context model to the input pool of sequences and their
experimentally measured affinity values, which is then interpreted
to extract the binding motifs. Another confounding factor may
be in the way the structural information is incorporated in the
statistical model. Each nucleotide in the sequence is associated with
its propensity to be in one of several secondary structure contexts.
Thus the structures in the ensemble are ‘averaged’, which may
cause the program to miss on motifs residing in secondary structure
conformations not heavily represented in the ensemble. Our method
on the other hand explicitly considers each structure in the ensemble
by performing exhaustive search.

These examples clearly demonstrate the advantages and
potentials of ensemble-based motif elucidation for sequence–
structure motifs in aptamers. Our approach is capable of accurately

identifying biologically active regions, even if conservation is
shifted toward the secondary structure layer and can cope with
motifs, whose native shape does not coincide with the MFE
structure.

2.5 Application of aptamotif to analyzing ensemble
properties across SELEX cycles

The selection process and evolutionary pressure exerted on the
aptamer pool during SELEX are currently not well understood.
We therefore generated and analyzed two new experimental sets
of aptamers from consecutive SELEX cycles containing aptamers
designed against the coagulation Factor VIII, a crucial blood
clotting protein in humans. Factor VIII deficiency is known to
cause the disease hemophilia A. The initial RNA pool contained
a randomized region of 60 nt, flanked by 20 and 21 bases long
primer sites in 5′ and 3′ direction, respectively. In each SELEX
cycle, the strongest binders were selected and sequenced, leading
to a dataset of 41 aptamers from cycle 3, and 45 representatives
from cycle 5. Preliminary sequence analyses showed a low degree
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of nucleotide similarity indicating that target specificity might be
strongly shifted toward structural features. We applied Aptamotif to
each of these sets and compared the reported motifs.

We then used these results to elucidate possible selection
patterns and evolutionary properties of the species emerging from
one cycle to the other. Our analysis revealed a multibranch
loop structure comprising three components and containing the
absolutely conserved sequence pattern TTA in the longest, central
block. This multibranch loop was identified in both cycles, but with
less frequency in cycle 5 (29 times in cycle 3 against 21 times in
cycle 5). Interestingly, in the latter cycle, the same sequence pattern
was additionally identified in an abundant hairpin motif not detected
in round 3. In some cases, these two configurations were even
found to occur together in the same aptamer, possibly enhancing
the binding affinity of these species. These findings suggest that
species of successive cycles represent a non random subset of
previous rounds hence supporting the original theory of selection in
SELEX experiments. Furthermore, they indicate that hairpins seem
to outcompete multibranch loop binders, suggesting a selective
pressure toward energetically more favorable substructures. We
point that this type of insight would be impossible to obtain
by analyzing sequence motifs alone, therefore, demonstrating the
power of Aptamotif to gain insight into the selective mechanisms
governing the SELEX protocol.

2.6 Runtime and implementation details
A middle sized dataset of approximately 50 sequences and 100 nt
in length (including primers ) requires ∼1.5–2 h of computation
time on a 3 GHz dual-core CPU using the standard parameters
defined in Section 2.2. The choice of K , G and δ has substantially
higher impact on the runtime as compared to the dataset size, and is
ranging between 2 min (K =3, G=2, δ=3) up to 94 h (K =6,G=4,
δ=3). We did not find any improvement in motif quality with values
K >5, G>2 and δ>3. Values for δ≤2 where insufficient for the
generation of the inner loop motif.

MSA are computed using the MUSCLE alignment software
(Edgar, 2004). Aptamotif generates an HTML file as output,
containing detailed information of each motif in a tree-
like, collapsible and well-organized structure, displaying loop
type, P-value and information content, frequency of occurrence
in the ensemble, and the seed sequences and substructure
alignments. Furthermore, sequence logos of the single-stranded
motif components as well as the secondary structure representation
of each match in the structure ensemble allow for a graphical
exploration of the motifs properties. Aptamotif is currently
implemented as a modular and extendible python module and
available upon request.

3 CONCLUSION AND OUTLOOK
We have presented Aptamotif, the first ensemble-based method for
the identification of sequence–structure motifs in SELEX-derived
aptamers, provided proof of principle validation on the example
of two aptamer datasets containing experimentally determined
motifs of increasing complexity, and highlighted its advantages over
traditional motif finding programs. Additionally, we illustrated its
application in elucidating several properties regarding the selection
process between consecutive SELEX cycles.

In this work, we focused on the analysis of traditional SELEX
data, i.e. relatively small samples of species from the sequence pool.
Our results, and especially the comparison between consecutive
cycles, suggest the existence of certain mechanisms governing
the selection process that are still to be fully uncovered. It will
be interesting to study such selection with the complete set of
aptamers in a SELEX cycle, allowing for a more accurate motif
analysis and providing a more detailed insight into the evolutionary
concepts acting during this process. With the emergence of
next-generation, high-throughput sequencing technologies, these
data are now increasingly becoming available. In fact, we are
currently generating such data for every pool of entire SELEX
experiments, yielding millions of aptamers per cycle. This new
dimension of information should allow for addressing numerous
open questions that cannot be answered by traditional datasets
alone. These include the correlation between indels and target
affinity in binding regions, and elucidating the importance of motif
adjacent stem–loop structures and their stabilizing contribution
to the active site as well as their overall importance in the
selection process. This can be addressed by an expansion of the
current treatment of the motifs to broader local structures as, for
example, considered in Backofen and Will (2004) for pairwise local
sequence–structure alignments. Tracking the evolution of motifs
from the initial pool to the last cycle is likely to additionally
reveal specific selection properties in SELEX experiments, such
as whether in early selection stages inner loops or multiple loops
in which only one single-stranded region binds the target are
always competed out of the pool in favor for energetically more
stable hairpin or bulge structures. We are currently developing
novel approaches that will allow the principles of Aptamotif to
effectively scale with these emerging data masses in terms of
sequence–structure processing and substructure ensemble-based
motif examination.

Aptamotif addresses the urgent need of developing more
advanced computational tools to support aptamer–apatope
interaction research. We believe that our method not only provides
a tool for efficient SELEX data analysis, but might also prove to be
useful in the study of other naturally occurring non coding RNAs
that might present conserved sequence–structure patterns among
different organisms.
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